
Journal of
Mathematical

Inequalities

Volume 19, Number 4 (2025), 1283–1311 doi:10.7153/jmi-2025-19-83

INTEGRAL FORMS AND FUNCTIONAL BOUNDS FOR CERTAIN

EXTENDED EXTON’S DOUBLE HYPERGEOMETRIC FUNCTIONS

RAKESH K. PARMAR, TIBOR K. POGÁNY ∗ AND S. PIRIVINA

(Communicated by T. Burić)

Abstract. We extend and systematically investigate some particular Exton’s double hypergeo-

metric function XA:B;B′
C:D;D′ [x,y] , which is motivated by the recent integrated version of the Euler’s

Beta integral form with a Macdonald function K (z) in the integrand. The newly introduced ex-

tended Exton’s double hypergeometric functions XA:B;B′
C:D;D′ [x,y; p,q, , ] is then represented by a

number of integral representations of the Euler and Laplace types, including several further rep-
resentations involving Bessel J (z) and modified Bessel functions I (z) of the first kind along
with recurrence formulae. Using existing functional bounds for extended Euler’s Beta function,
various functional upper bounds are derived for particular extended Exton’s double hypergeo-

metric functions XA:B;B′
C:D;D′ [x,y; p,q, , ] . Also, plethora of bounding inequalities are established

by virtue of Luke’s, von Lommel’s, Minakshisundaram and Szász and Olenko’s bounds. The ex-
position ends with a newly introduced probability distribution applying extended Kummer and
of Horn functions, for which moment inequalities of Turán type are proved.

1. Introduction and preliminaries

The Euler function of the first kind, or in short – the Beta function’s integral form
[1]

B(s, t) =
∫ 1

0
xs−1(1− x)t−1 dx, min{s,t} > 0, (1.1)

becomes the parent function for generalizations by exponential, Kummer’s hypergeo-
metric function, Macdonald function, Mittag–Leffler class functions among others of
a suitably defined argument h(t) , say, by including the kernel h(x) into a parametric
integral [26]

Bh(s, t) = B(s,t)[h] =
∫ 1

0
xs−1(1− x)t−1 h(x)dx , min{s,t} > 0.

The thorough overview of the ancestry and presentation of the Beta-transforms getting
Bp , Bp,q , Bp, , Bp,q;m and others is given in the recent papers [19, 24, 26]. So, we
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refer to these publications and the further appropriate references therein, not repeating
unnecessarily the known facts and generalizations.

We begin introducing one of the most used special functions in our exposition,
the Macdonald function (modified Bessel function of the second kind) of the order 
which definition reads [22, p. 251, Eq. 10.27.4]

K (z) =

2

csc()
(
I−(z)− I(z)

)
,  �∈ Z,

otherwise for any n ∈ Z , lim
→n

K (z) = Kn(z) is used. Here [22, p. 249, Eq. 10.25.2]

I(z) =
( z

2

)

n�0

(
z
2

)2n

( +1+n)n!
,

is the modified Bessel function of the first kind. Next, the extended Beta function [24]
is a Beta transform integral with the Macdonald function K for the building block
containing the defining kernel h(x) . The resulting integral expression turns out to be
[24, p. 2, Definition 1]

B
p,q,(s, t) =

√
2


∫ 1

0
xs−1(1− x)t−1

√
h (x)K+ 1

2
(h (x))dx , (1.2)

where the modified argument

h (x) =
p

x
+

q

(1− x)
,  = (p,q, ) (1.3)

possesses singularities and the endpoints of the unit integration interval. Here the pa-
rameters’ range  > 0, min{(p),(q)} > 0; 2min{s,t} >  > 0, whilst  ∈ R .
Now, the modified Bessel I(x) is real for all  ∈ R and arg(z) = 0 and have in mind
that

K+ 1
2
(z) =

√

2z

e−z(1+O(z−1)
)
, z → , (1.4)

is the reason for including the multiplication factor for K+ 1
2

in the definition (1.2).
The related extended Gauss hypergeometric function Taylor series definition reads

[24, p. 3, Definition 2, Eq. (4)]

F
p,q,(a, b; c; z) = 

k�0

(a)k
B

p,q,(b+ k, c−b)
B(b, c−b)

zk

k!
, (1.5)

in which the parameters  > 0, min{p,q} � 0; c ∈ C \Z
−
0 , (c) > (b) > 0 and

|z|< 1; the extension of the Kummer function power series form is [24, p. 3, Definition
2, Eq. (5)]


p,q,(b; c; z) = 

k�0

B
p,q,(b+ k, c−b)

B(b, c−b)
zk

k!
. (1.6)

where  > 0, min{p,q} � 0; (c) > (b) > 0.
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In [24] are used generalized Beta function (1.2) to extend the Gaussian and the
Kummer’s confluent hypergeometric functions to establish their functional bounding
inequalities, Turán inequalities and studied their raw moments and moment inequalities
by defining a novel probability Beta distribution. Specifying the values of parameters
p,q, and  , the generalized Beta function B

p,q,(s,t) (1.2) covers a whole spectrum
of various well-known forms of extended Beta functions. In fact (1.2) is a so-called
Beta function transform and maps a suitable input function  into a multiparameter
function [12]

 �→
∫ 1

0
xs−1(1− x)t−1(x)dx .

In defining integral (1.2) we have (x) =
√

h (x)K+ 1
2

(
h (x)

)
, being

√
h (x) the

necessarily implemented correcting factor function (up to the multiplicative constant√
2/ ), compare with the relation (1.4). In turn, the constraint min{s, t} > 

2 > 0
follows immediately by re-writing

√
h (x) in (1.2) into a convenient form.

Setting the values of the parameters p,q,, in (1.2) we get various known and
frequently studied members of the Beta functions’ family. So, when  = 1 and q = p
we arrive at the so-called (p,)-extended Beta function introduced by Parmar et al. [23,
p. 93, Eq. (13)]:

Bp,(s, t) =

√
2p


∫ 1

0
xs− 3

2 (1− x)t−
3
2 K+ 1

2

(
p

x(1− x)

)
dx,

where (p) > 0; min{(s),(t)} > 0, and
√

p takes its principal value. This kind
Beta function is recently considered by Milovanović et al. in [19, p. 1433, Eq. (1.1)]
for establishing Gautschi–Pinelis type upper bounds for the Macdonald function and the
(p,)-extended Beta function. For complete details of numerous other special cases,
we refer to the recent articles [25, 26]. Finally, if use the fact (1.4) and set  = 0 and
p,q ↘ 0, then B

p,q,(s, t) approaches B(s, t) giving Euler’s integral (1.1).

The research conduction in this paper will be carried out through the following
plans: 1. introducing the four parametric extension of certain Exton’s double hyper-
geometric function XA:B;B′

C:D;D′ [x,y,];  = (p,q,, ) by considering the definition of

extended Beta function B
p,q,(s,t) in (1.2) involving the Macdonald kernel Kn+ 1

2
;

2. establishing the associated integral representations including Euler’s and Laplace-
Mellin type, as well as certain integral representations involving Bessel J(z) and
Modified Bessel functions I(z) along with recurrence formulae; 3. several func-
tional upper bounds are derived for extended Exton’s double hypergeometric functions
XA:B;B′

C:D;D′ [x,y;] . Other fashion bounding inequalities are derived via Luke’s, von Lom-
mel’s, Minakshisundaram and Szász and Olenko bounds. 4. Finally, we introduce a
new probability distribution building the density function in terms of specific extended
Exton function. Using related extended Kummer and Horn functions moment inequal-
ities of Turán type are proved.
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2. Exton’s double hypergeometric function XA:B;B′
C:D;D′ [x,y]

The generalized hypergeometric function with r numerator and s denominator
parameters in the power series form reads

rFs(a1, . . . ,ar;b1, . . . ,bs;z) = 
k�0

r

j=1

(a j)k

s

j=1

(b j)k

zk

k!
,

where ( )n =  ( + 1) · · · ( + n− 1) = ( + n)/( ) ,
(
 ∈ C\Z

−
0 , n ∈ N0

)
and

( )0 = 1 denotes the raising/shifted factorial or Pochhammer symbol, a j ∈ C , j ∈
1,r := {1, 2, . . . , r} and b j ∈ C\Z

−
0 , j ∈ 1,s . The symbol  being the familiar Euler’s

Gamma integral

(s) =
∫ 

0
e−t ts−1 dt, (s) > 0 .

Particular cases for r = 2, s = 1 and r = 1, s = 1 are the Gaussian hypergeometric
function and Kummer’s confluent hypergeometric function

2F1
(
a1,a2; b1; z

)
= 

k�0

(a1)k(a2)k

(b1)k

zk

k!
, 

(
a1;b1; z

)
= 1F1

(
a1;b1; z

)
= 

k�0

(a1)k

(b1)k

zk

k!
,

respectively.
In 1921, P. Appell introduced four double hypergeometric functions F1 ,F2, F3 and

F4 , which were unified and generalized by Kampé de Fériet F j:k;l
r:s;t [x,y] function (see,

for details, [30, p. 27, Eq. (28)]). Presently, the recent authors studied in [25] the
extension of the double hypergeometric function

H4[ a,b′;d,d′;x,y] = 
k,n�0

(a)2k+n(b′)n

(d)k(d′)n

xk

k!
yn

n!
; 2

√
|x|+ |y| < 1 , (2.1)

pioneered by Horn in [5], also see [30, p. 24 and p. 59], where a, b′ ∈ C and d,d′ ∈
C\Z

−
0 .

H. Exton in 1982 introduced the double hypergeometric XA:B;B′
C:D;D′ [x,y] function

which double power series reads [3]

XA:B;B′
C:D;D′

[ (a) : (b);(b′)
(c) : (d);(d′)

∣∣∣x, y
]

= 
k,n�0

((a))2k+n((b))k((b′))n

((c))2k+n((d))k((d′))n

xk

k!
yn

n!
, (2.2)

where (a) denotes the sequence of parameters a1, · · · ,aA , whilst ((a))n stands for
(a1)n · · ·(aA)n and the empty symbol equals 1; consider mutually the other parame-
ter’s writing. The convergence conditions of (2.2) are presented in [3] and [29, pp.
153–158].
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PROPOSITION 1. For all a,b′,d,d′ > 0 the Exton function

X1:0;1
0:1;1

[ a : −;b′
− : d;d′

∣∣∣x, y
]

= 
k,n�0

(a)2k+n(b′)n

(d)k(d′)n

xk

k!
yn

n!

converges for all (x,y) ∈ C2 provided 2
√|x|+ |y|< 1 .

Proof. Recognize by comparing (2.2) and (2.1) that

X1:0;1
0:1;1

[ a : −;b′
− : d;d′

∣∣∣x, y
]

= H4[a,b′;d,d′;x,y] .

Since the convergence domain of the H4 is 2
√|x|+ |y| < 1, see [30, p. 59], the claim

obviously follows. �

At this point we mention that simultaneously we have in mind that the convergence
conditions which hold for the Srivastava–Daoust F function (compare for the detailed
definition (5.4)) one reduce to [29, pp. 157–158]

1 = 1+2 (C−A)+D−B > 0

2 = 1+C−A+D′ −B′ > 0;

so (2.2) converges absolutely for all x,y ∈ C , see [4, Appenix B]. Another cases of
convergence conditions related to interiors of a disks in C can be deduced from [29, pp.
153–157].

Focusing to the Exton X specific cases when A,B,B′,C,D,D′ ∈ {0,1} which does
not harm the generality of considerations and can be straightforwardly unified to the
general case (2.2), we distinguish three main forms:

1. A = C = 1 and the B �= D , B′ �= D′ arbitrarily; 1 = 1 + D− B � 0, 2 =
1+D′ −B′ � 0;

2. A = C and either B = D = 1 or B′ = D′ = 1; 1 = 1; 2 = 1+D′ −B′ � 0;

3. A = C and B = D ; B′ = D′ ; 1 = 2 = 1,

pointing out that any X converges in these specified cases.
Moreover, the subcase 2.1. A = C = 0, B = D = 0 means that

X0:0;1
0:0;1

[− : −;b′
− : −;d′

∣∣∣x,y]= ex(b′;d′;y) ;

and using then B = D = 1 and B′ = D′ = 0 we arrive at

X0:1;0
0:1;0

[− : b;−
− : d;−

∣∣∣x,y]= ey(b;d;x) .
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Next, 2.2. A = C = 1, B = D = 1 results in

X1:1;0
1:1;0

[a : b;−
c : d;−

∣∣∣x,y]= 
k,n�0

(a)2k+n(b)k

(c)2k+n(d)k

xk

k!
yn

n!
, (2.3)

which turns out to be irreducible, according to the best of our knowledge.
It remain the cases 3.1. A = C = 0 and B = B′ = D = D′ = 1 giving a product of

two Kummer functions, viz.

X0:1;1
0:1;1

[− : b;b′
− : d;d′

∣∣∣x,y]= 
(
b;d;x) ·(b′;d′;y) ,

and 3.2. A = C = B = B′ = D = D′ = 1, where the structure of the resulting

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n(b)k(b′)n

(c)2k+n(d)k(d′)n

xk

k!
yn

n!
(2.4)

depends on the structure of upper and lower constituting parameters. Similarly, by
structuring of upper and lower constituting parameters, we get following other forms of
Exton functions:

3.3. A = C = 1, B′ = D′ = 1, B = 0 and D = 1

X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n(b′)n

(c)2k+n(d)k(d′)n

xk

k!
yn

n!
, (2.5)

3.4. A = C = 1, B = D = 1, B′ = 0 and D′ = 1

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n(b)k

(c)2k+n(d)k(d′)n

xk

k!
yn

n!
, (2.6)

3.5. A = C = 1, B = B′ = 0 and D = D′ = 1

X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n

(c)2k+n(d)k(d′)n

xk

k!
yn

n!
, (2.7)

3.6. A = 1 , C = 0 , B = D = 1 and B′ = D′ = 1

X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n(b)k(b′)n

(d)k(d′)n

xk

k!
yn

n!
, (2.8)

3.7. A = 1, C = 0, B = 0, D = 1 and B′ = D′ = 1

X1:0;1
0:1;1

[ a : −;b′
− : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n(b′)n

(d)k(d′)n

xk

k!
yn

n!
. (2.9)

Finally, the most simple case turns out to be

X0:0;0
0:0;0

[− : −;−
− : −;−

∣∣∣x,y]= ex+y .
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Now, it is obvious that the transformation of a ratio of two Pochhammer symbols:

()
( )

=
B( +  , −)

B(, −)
(2.10)

can be successfully applied to the Pochhammer symbols ratio(s) in the summand of
Exton functions (2.3) and (2.4), where  ∈ N0 stands for the summation index. This
results in

X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y]= 
k,n�0

B(a+2k+n,c−a)
B(a,c−a)

B(b+ k,d−b)
B(b,d−b)

xk

k!
yn

n!
, (2.11)

where (c) > (a) > 0, (d) > (b) > 0, and simultaneously

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y]= 
k,n�0

B(a+2k+n,c−a)
B(a,c−a)

B(b+ k,d−b)
B(b,d−b)

B(b′ +n,d′ −b′)
B(b′,d′ −b′)

xk

k!
yn

n!
,

(2.12)
in which additionally (d′) >(b′) > 0. Similarly, for the Exton’s functions (2.5) and
(2.9), we have the transformations of (2.12) by virtue of (2.10) in the following forms:

X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣x,y]= 
k,n�0

B(a+2k+n,c−a)
B(a,c−a)

B(b′ +n,d′ −b′)
B(b′,d′ −b′)

1
(d)k

xk

k!
yn

n!
,

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y]= 
k,n�0

B(a+2k+n,c−a)
B(a,c−a)

B(b+ k,d−b)
B(b,d−b)

1
(d′)n

xk

k!
yn

n!
,

X1:0;0
1:1;1

[a : −;−
c : d;d′

∣∣∣x,y]= 
k,n�0

B(a+2k+n,c−a)
B(a,c−a)

1
(d)k(d′)n

xk

k!
yn

n!
,

X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n
B(b+ k,d−b)

B(b,d−b)
B(b′ +n,d′ −b′)

B(b′,d′ −b′)
xk

k!
yn

n!
,

X1:0;1
0:1;1

[ a : −;b′
− : d;d′

∣∣∣x,y]= 
k,n�0

(a)2k+n
B(b′ +n,d′ −b′)

B(b′,d′ −b′)
1

(d)k

xk

k!
yn

n!
. (2.13)

The next section deals with some new forms of extended Exton’s XA:B;B′
C:D;D′ [x,y;] func-

tions by replacing the Beta functions B(s,t) building the numerator in previous rela-
tions (2.11) to (2.13) by the appropriately used extended Beta function B

p,q,(s,t) .

3. On Exton’s extended XA:B;B′
C:D;D′ [x,y;] functions

Now, corresponding integral representations are derived by using Beta integral
representation (1.2) in relations (2.11) to (2.13). Also, we point out that it is of con-
siderable interest to extend the here established results to other Exton’s XA:B;B′

C:D;D′ [x,y]
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functions covered by the general case (2.2). First, we introduce the following general-
ized Exton’s double hypergeometric function as the double power series

X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y;]= 
k,n�0

B
p,q,(a+2k+n,c−a)

B(a,c−a)
B

p,q,(b+ k,d−b)
B(b,d−b)

xk

k!
yn

n!
,

(3.1)

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y;]= 
k,n�0

B
p,q,(a+2k+n,c−a)

B(a,c−a)
B

p,q,(b+ k,d−b)
B(b,d−b)

· B
p,q,(b

′ +n,d′ −b′)
B(b′,d′ −b′)

xk

k!
yn

n!
, (3.2)

recalling the parameter space for = (p,q,, ) , that is  > 0, min{(p),(q)}> 0,
 ∈R and min{u,v}> 

2 > 0, with u∈ {a,b,b′} , v∈ {c−a,d−b,d′−b′} . Moreover,

X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y;]= 
k,n�0

B
p,q,(a+2k+n,c−a)

B(a,c−a)
B

p,q,(b′ +n,d′ −b′)
B(b′,d′ −b′)(d)k

xk

k!
yn

n!
,

(3.3)

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y;]= 
k,n�0

B
p,q,(a+2k+n,c−a)

B(a,c−a)
B

p,q,(b+ k,d−b)
B(b,d−b)(d′)n

xk

k!
yn

n!

(3.4)

X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣x,y;]= 
k,n�0

B
p,q,(a+2k+n,c−a)

B(a,c−a)
1

(d)k(d′)n

xk

k!
yn

n!
, (3.5)

X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣x,y;]= 
k,n�0

(a)2k+n
B

p,q,(b+ k,d−b)
B(b,d−b)

B
p,q,(b

′ +n,d′ −b′)
B(b′,d′ −b′)

xk

k!
yn

n!
,

(3.6)

X1:0;1
0:1;1

[ a : −;b′
− : d;d′

∣∣∣x,y;]= 
k,n�0

(a)2k+n
B

p,q,(b′ +n,d′ −b′)
B(b′,d′ −b′)(d)k

xk

k!
yn

n!

= H
4,p,q, [a,b′;d,d′;x,y], (3.7)

where the extended Horn’s function H
4,p,q, [x,y] in (3.7) has been studied recently by

the authors, consult [25].

3.1. Integral representations

This section deals with the various integral representations including Euler’s and
Laplace–Mellin type, as well as certain integral representations including some other
representations involving Bessel J(z) and modified Bessel functions I(z) .
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THEOREM 1. For all  > 0 , min{(p),(q)} > 0 ,  ∈ R and min{u,v} > 0 ,
with u ∈ {a,b,b′} , v ∈ {c−a,d−b,d′ −b′} , where a,b,b′,c,d,d′ > 0 we have

X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y;]=
2


1
B(a,c−a)B(b,d−b)

∫
(0,1)2

ta−1sb−1(1− t)c−a−1

· (1− s)d−b−1 exst2+yt
√

h (t)h (s)K+ 1
2
(h (t))K+ 1

2
(h (s))dt ds ,

and

X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y;]=

√
2


1
B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1eyt

√
h (t)

·K+ 1
2
(h (t))

p,q,(b; d; xt2)dt ,

where h is described in (1.3) as h (x) = px− +q(1− x)− .

Proof. Substituting the definition (1.2) of B
p,q,(s, t) into (3.1), we have

X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y;]=
2
 

k,n�0

∫
(0,1)2

ta+2k+n−1(1− t)c−a−1

B(a,c−a)
sb+k−1(1− s)d−b−1

B(b,d−b)

·
√

h (t)h (s)K+ 1
2
(h (t))K+ 1

2
(h (s))dt ds

xk

k!
yn

n!

=
2


∫
(0,1)2

ta−1(1− t)c−a−1

B(a,c−a)
sb−1(1− s)d−b−1

B(b,d−b)

√
h (t)h (s)

·K+ 1
2
(h (t))K+ 1

2
(h (s)) 

k,n�0

(xst2)k

k!
(yt)n

n!
dt ds

=
2


∫
(0,1)2

ta−1(1− t)c−a−1

B(a,c−a)
sb−1(1− s)d−b−1

B(b,d−b)

√
h (t)h (s)

·K+ 1
2
(h (t))K+ 1

2
(h (s))exst2+ytdt ds,

which confimrs the first claim. As to the second integral, observe [24, Theorem 1, Eq.
(7)]


p,q,(b;c;z) =

√
2/

B(b,c−b)

∫ 1

0
t b−1(1− t)c−b−1 ezt

√
h (t)K

+ 1
2

(
h (t)

)
dt,

provided p > 0 and |arg(1− z)|<  or, for p = 0, (c) > (b) > 0, which implies

X1:1;0
1:1;0

[a : b;−
c : d;−

∣∣∣x,y;]=

√
2


1
B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1 eyt

√
h (t)

·K+ 1
2

(
h (t)

)


p,q,(b; d; xt2)dt,

and completes the proof. �
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In the next seven theorems we present the integral representations for special ex-
tended Exton’s X functions: single integral forms (3.2)–(3.7) double integral expres-
sions ((3.2) in two different ways) and a triple integral representation for (3.2). The
proving methodology is a routine one, substituting (1.2) of B

p,q,(a, b) into the ex-
tended series definitions (3.2)–(3.7) and after legitimate summation–integration order
changes we implement into obtained expressions’ integrands either the exponential or
another appropriate special functions, for instance, the ordinary confluent hypergeomet-
ric and/or the extended Kummer hypergeometric functions 0F1,

p,q, , or their prod-
ucts. We omit the detalied proof of these results.

THEOREM 2. For all  > 0 , min{(p),(q)} > 0 ,  ∈ R and min{u,v} > 0 ,
with u ∈ {a,b,b′} , v ∈ {c− a,d− b,d′ − b′} , where a,b,b′,c,d,d′ > 0 the following
integral expressions exist for X1:1;1

1:1;1 [x,y;] in (3.2) reads as

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y,]=
(2/)3/2

B(a,c−a)B(b,d−b)B(b′,d′ −b′)

∫
(0,1)3

ta−1sb−1rb′−1

· (1− t)c−a−1(1− s)d−b−1(1− r)d′−b′−1exst2+ytr
√

h (t)h (s)h (r)
·K+ 1

2
(h (t))K+ 1

2
(h (s)) K+ 1

2
(h (r))dt dsdr .

THEOREM 3. For all  > 0 , min{(p),(q)} > 0 ,  ∈ R and min{a,c− a} ,
min{b,d−b} , min{b′,d′ −b′} > 0 we have the integral expressions for X1:1;1

1:1;1 [x,y;]
in (3.2) as

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y;]=

√
2/

B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t))

p,q, (b; d; xt2)
p,q,(b

′; d′; yt)dt ,

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y;]=
2/

B(a,c−a)B(b,d−b)

∫
(0,1)2

ta−1

(1− t)a−c+1

sb−1

(1− s)b−d+1 exst2

·
√

h (t)h (s)K+ 1
2
(h (t))K+ 1

2
(h (s))

p,q, (b
′;d′;yt)dt ds,

and

X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y;]=
2/

B(a,c−a)B(b′,d′ −b′)

∫
(0,1)2

ta−1

(1− t)a−c+1

rb′−1

(1− r)b′−d′+1

· eytr
√

h (t)h (r)K+ 1
2
(h (t))K+ 1

2
(h (r))

p,q,(b; d; xt2)dt dr.

THEOREM 4. The function X1:0;1
1:1;1 [x,y;] in (3.3) possesses the integral form:

X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣x,y;]=

√
2


1
B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) 0F1(−;d;xt2)

p,q,(b
′; d′; yt)dt, (3.8)

provided min{a,c−a}> 0 .
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The Kummer’s confluent hypergeometric function 0F1 is related to the Bessel
functions J(z) and the modified Bessel function I(z) , both of the first kind of the
order  with the formulae [22, p. 228, Entries 10.16.9, 10.39.9]

0F1

(
−; +1;− z2

4

)
= ( +1)

(2
z

)
J(z), (3.9)

0F1

(
−;+1;

z2

4

)
= ( +1)

(2
z

)
I(z), (3.10)

where − �∈N in both cases. Thus, using (3.9) and (3.10) in (3.8), (3.13) and (3.14), we
yield integral expressions for these extended Exton’s double hypergeometric functions.

COROLLARY 4.1. Let the parameter space the same as in Theorem 4. Then inte-
gral representations hold for X1:0;1

1:1;1 [x,y;] in (3.3) as

X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,y;
]

=

√
2


(d)x
1−d

2

B(a,c−a)

∫ 1

0
ta−d(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) Jd−1(2

√
x t)

p,q,(b
′; d′; yt)dt (3.11)

X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y;]=

√
2


(d)x
1−d

2

B(a,c−a)

∫ 1

0
ta−d(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) Id−1(2

√
x t)

p,q,(b
′; d′; yt)dt (3.12)

THEOREM 5. For  ,(p),(q) > 0 ,  ∈ R and min{a,c−a}> 0 , we have the
integral expression for X1:1;0

1:1;1 [x,y;] in (3.4), namely

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y;]=

√
2


1
B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) 0F1(−;d′;yt)

p,q,(b; d; xt2)dt . (3.13)

COROLLARY 5.1. For  ,(p),(q) > 0 ,  ∈R and a,c,d′ > 0 that min{a,c−
a} > 0 . Then we have

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,−y;
]

=

√
2

(d′)y

1−d′
2

B(a,c−a)

∫ 1

0
ta−

d′−1
2 (1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) Jd′−1(2

√
yt)

p,q,(b; d; xt2)dt

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y;]=

√
2

(d′)y

1−d′
2

B(a,c−a)

∫ 1

0
ta−

d′−1
2 (1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) Id′−1(2

√
yt) 

p,q,(b; d; xt2)dt .
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THEOREM 6. For  ,(p),(q) > 0 ,  ∈ R and min{a,c−a}> 0 we have the
integral

X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣x,y;]=

√
2


1
B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) 0F1(−;d;xt2) 0F1(−;d′;yt)dt . (3.14)

COROLLARY 6.1. For d,d′ > 0 and the same parameters as in Theorem 6 the
integrals hold

X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣− x,−y;
]

=

√
2

(d)(d′)x

1−d
2 y

1−d′
2

B(a,c−a)

∫ 1

0
ta−d− d′−1

2 (1− t)c−a−1

·
√

h (t)K+ 1
2
(h (t))Jd−1(2

√
xt)Jd′−1(2

√
yt)dt, (3.15)

X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣x,y;]=

√
2

(d)(d′)x

1−d
2 y

1−d′
2

B(a,c−a)

∫ 1

0
ta−d− d′−1

2 (1− t)c−a−1

·
√

h (t)K+ 1
2
(h (t))Id−1(2

√
xt) Id′−1(2

√
yt)dt.

THEOREM 7. For  ,(p),(q) > 0 ,  ∈ R and a > 0 we infer

X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣x,y;]=
1

(a)

∫ 

0
e−tta−1

p,q,(b; d; xt2)
p,q,(b

′; d′; yt)dt.

(3.16)

THEOREM 8. For  ,(p),(q) > 0 ,  ∈ R and a > 0 there follows

X1:0;1
0:1;1

[ a : −;b′
− : d;d′

∣∣∣x,y;]=
1

(a)

∫ 

0
e−t ta−1

0F1(−;d;xt2)
p,q,(b

′; d′; yt)dt .

3.2. Recurrence relations

Next, we establish three recurrence formulae for the Exton’s functions X1:0;1
1:1;1 [x,y;] ,

X1:1;0
1:1;1 [x,y;] and X1:0;0

1:1;1 [x,y;] by using the contiguous relation for the confluent hy-
pergeometric 0F1 , see [28, p. 19, Eq. (2.2.2)] or [28, p. 20, Eq. (2.2.7)].

LEMMA 1. We have the following contiguous relation

0F1(−;−1;x)− 0F1(−;;x)− x
(−1) 0F1(−; +1;x) = 0. (3.17)

THEOREM 9. There holds the recurrence relation for X1:0;1
1:1;1 [x,y,] in (3.3):

X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y,]= X1:0;1
1:1;1

[ a : −;b′
c : d−1;d′

∣∣∣x,y;]

+
a(a+1)x

c(c+1)d(1−d)
X1:0;1

1:1;1

[ a+2 : −;b′
c+2 : d +1;d′

∣∣∣x,y;] .
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Proof. Applying the contiguous relation in the Lemma 1 to the integral (3.8) after
simplification we obtain the statement. �

THEOREM 10. The recurrence relation holds true:

X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y;]= X1:1;0
1:1;1

[ a : b;−
c : d;d′ −1

∣∣∣x,y;]

+
ay

cd′(1−d′)
X1:1;0

1:1;1

[ a+1 : b;−
c+1 : d;d′ +1

∣∣∣x,y;] .
By virtue of the relation (3.17) applied to (3.13) we arrive at the claim of the

theorem. So, no need is there for further detailed explanations. Moreover, the relation
(3.17) to used in the integral expression (3.14) results in the next result. We also skip
the straightforward steps in proving this recurrence.

THEOREM 11. The following recurrence relation for X1:0;0
1:1;1 [x,y,] in (3.5) holds

true:

X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣x,y;]= X1:0;0
1:1;1

[ a : −;−
c : d−1;d′ −1

∣∣∣x,y;]

+
ay

cd′(1−d′)
X1:0;0

1:1;1

[ a+1 : −;−
c+1 : d−1;d′+1

∣∣∣x,y;]

+
a(a+1)x

c(c+1)d(1−d)
X1:0;0

1:1;1

[ a+2 : −;−
c+2 : d +1;d′ −1

∣∣∣x,y;]

+
a(a+1)(a+2)xy

c(c+1)(c+2)d(1−d)d′(1−d′)
X1:0;0

1:1;1

[ a+3 : −;−
c+3 : d +1;d′+1

∣∣∣x,y,] .

4. Functional bounds for extended Exton’s X functions

This section explores bounding inequalities for the extendedExton’s double hyper-
geometric function XA:B;B′

C:D;D′ [x,y;] . Our main aim in this section are to find bounding
inequalities for the above considered cases of this function.

4.1. Functional bounds extablished via series representations

In this introductory part of this subsection we present sharp estimates for the ex-
tended Beta, hypergeometric and confluent hypergeometric functions B

p,q, , F
p,q, and


p,q, .

The first auxiliary lemma describes an estimate for B
p,q, defined in (1.2).
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LEMMA 2. [24, p. 5, Theorem 2, Eq. (8)] Let p,q > 0 ,  ∈ (0,1)∪ (1,) ,
 ∈ R . Then for all 2min{s,t} >  > 0 we have

B
p,q,(s, t) �

√
2pqK+ 1

2

((
p

1
+1 +q

1
+1
)+1

)
√

(
p

1
−1 +q

1
−1
) −1

2

B
(
s− 

2 ,t− 
2

)
=:

 (p,q) B
(
s− 

2 ,t− 
2

)
. (4.1)

The second auxiliary lemma gives an estimate for F
p,q, and 

p,q, presented in
(1.5) and (1.6)

LEMMA 3. [25, p. 7, Theorem 3.2] For all p,q > 0 and  ∈ (0,1)∪ (1,) ,
 ∈ R , or when p = 0 = q, (t) > (s) > 0 we have

∣∣F
p,q,(a,s; t; z)

∣∣� 
 (p,q)

B
(
s− 

2 ,t− s− 
2

)
B(s,t − s) 2F1

(
a,s− 

2 ; t− ; |z|) ,
∣∣

p,q,(s; t;z)
∣∣ � 

 (p,q)
B
(
s− 

2 ,t− s− 
2

)
B
(
s,t − s

) 
(
s− 

2 ; t− ; |z|) , (4.2)

provided 2min{s, t−s}>  and 2F1 and  denote the Gauss hypergeometric function
and the Kummer confluent hypergeometric function, respectively.

The following theorem provides bounding inequalities for following Exton’s dou-
ble hypergeometric function X1:1;0

1:1;0 [x,y;] , X1:1;1
1:1;1 [x,y;] X1:0;1

1:1;1 [x,y;] , X1:1;0
1:1;1 [x,y;]

and X1:0;0
1:1;1 [x,y,] by using their series representations given in the previous section 3.

THEOREM 12. Assume that p,q > 0 and  ∈ (0,1)∪ (1,) ,  ∈ R and the con-
straints

min{a,c−a}>

2

; min{b,d−b}>

2

; min{b′,d′ −b′} >

2

.

Then we have the following functional bounds

∣∣∣X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y;]∣∣∣� [
 (p,q)

]2 B
(
a− 

2 ,c−a− 
2

)
B
(
b− 

2 ,d−b− 
2

)
B(a,c−a)B(b,d−b)

·X1:1;0
1:1;0

[
a− 

2 : b− 
2 ;−

c− : d− ;−
∣∣∣|x|, |y|] , (4.3)

∣∣∣X1:1;1
1:1;1

[ a : b;b′
c : d;d′

∣∣∣x,y;]∣∣∣� [
 (p,q)

]3 B
(
a− 

2 ,c−a− 
2

)
B
(
b− 

2 ,d−b− 
2

)
B(a,c−a)B(b,d−b)B(b′,d′ −b′)

·B(b′ − 
2 ,d′ −b′ − 

2

)
X1:1;1

1:1;1

[
a− 

2 : b− 
2 ;b′ − 

2
c− : d− ;d′ −

∣∣∣|x|, |y|],
(4.4)
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∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y;]∣∣∣� [
 (p,q)

]2 B
(
a− 

2 ,c−a− 
2

)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B(b′,d′ −b′)

·X1:0;1
1:1;1

[
a− 

2 : −;b′ − 
2

c− : d;d′ −

∣∣∣|x|, |y|] , (4.5)

∣∣∣X1:1;0
1:1;1

[ a : b;−
c : d;d′

∣∣∣x,y;]∣∣∣� [
 (p,q)

]2 B
(
a− 

2 ,c−a− 
2

)
B
(
b− 

2 ,d−b− 
2

)
B(a,c−a)B(b,d−b)

·X1:1;0
1:1;1

[
a− 

2 : b− 
2 ;−

c− : d− ;d′
∣∣∣|x|, |y|] , (4.6)

∣∣∣X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣x,y;]∣∣∣� 
 (p,q)

B
(
a− 

2 ,c−a− 
2

)
B(a,c−a)

X1:0;0
1:1;1

[
a− 

2 : −;−
c− : d;d′

∣∣∣|x|, |y|] .
(4.7)

Proof. We first prove the functional bound for (4.3). Applying the bound of
B

p,q,(s, t) in (4.1) to the extended Exton function (3.1) we get

∣∣∣X1:1;0
1:1;0

[ a : b;−
c : d;−

∣∣∣x,y;]∣∣∣=
∣∣∣∣∣ k,n�0

B
p,q,(a+2k+n,c−a)

B(a,c−a)
B

p,q,(b+ k,d−b)
B(b,d−b)

xk

k!
yn

n!

∣∣∣∣∣
�
[

 (p,q)

]2


k,n�0

B(a+2k+n− 
2 ,c−a− 

2 )
B(a,c−a)

B(b+ k− 
2 ,d−b− 

2 )
B(b,d−b)

|x|k
k!

|y|n
n!

=
B
(
a− 

2 ,c−a− 
2

)
B
(
b− 

2 ,d−b− 
2

)
[

 (p,q)

]−2
B(a,c−a)B(b,d−b)

X1:1;0
1:1;0

[
a− 

2 : b− 
2 ;−

c− : d− ;−
∣∣∣|x|, |y|].

This proves the inequality (4.3). Similar arguments as in this proof verify (4.4), (4.5),
(4.6) and (4.7). The details are omitted here. �

4.2. Functional bounds via integral representations

In this subsection, we investigate the bounds of some members from the class of
extended Exton’s double hypergeometric function XA:B;B′

C:D;D′ [x,y;] having integral rep-
resentation formulae. To accomplish this goal we review and recall certain inequalities
pertaining to the generalized hypergeometric function, Bessel function and modified
Bessel functions of the first kind as follows:

• For  j �  j > 0, j = 1,r and t � 0, there exist Luke’s bilateral functional in-
equalities for the generalized hypergeometric function rFr [17, Theorem 16, Eq.
(5.6)]

et � rFr
(
1, . . . ,r;1, . . . ,r; t

)
� 1−

(
1− et),

where

 =
max
1� j�r

 j

min
1� j�r

 j
,
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and the equality holds for t = 0. In the case when r = 1 we have the Kummer
confluent hypergeometric function (; ;t) = 1F1(; ; t) ; in that case when
 �  > 0 we have

e

 t � (; ; t) � 1− 


(
1− et), t � 0. (4.8)

• The set of bounding inequalities for J and I read as

(i) von Lommel’s bounds [31, pp. 31 and 406], [14], [15, pp. 548–549]

|J(t)| � 1, |J+1(t)| � 1√
2
,  ∈ R+, t ∈ R; (4.9)

(ii) Minakshisundaram and Szász bound [6, Eq. (1.8)], [20, pp. 36-37]; cf. [31,
p. 16]

|J(t)| � 1
( +1)

( |t |
2

)
,  � 0, t ∈ R; (4.10)

(iii) For  � 0 and t ∈ R there are the bounds by Landau [13]

|J(t)| � bL−1/3, bL = 3
√

2sup
t�0

Ai(t), (4.11)

|J(t)| � cL |t|−1/3, cL = sup
t�0

t1/3J0(t) , (4.12)

where Ai(·) stands for the Airy function

Ai(t) =

2

√
t
3

[
J−1/3

{
2
( t

3

)3/2
}

+ J−1/3

{
2
( t

3

)3/2
}]

. (4.13)

(iv) Olenko’s bound [21, Theorem 2.1]

sup
t�0

√
t |J(t)| � bL

√
1/3 +

1
1/3

+
32

1

10
=: dO,  > 0 , (4.14)

where 1 is the smallest positive zero of the Airy-function Ai in (4.13) and
bL is the Landau’s constant in (4.11). This bound is asymptotically precise
and the constant bL is the best possible.

(v) Luke [17, p. 55, Eq. (6.25)] obtained the following result

I(t) <

(
t
2

)
( +1)

cosht, t > 0,  > − 1
2 . (4.15)

The following theorem states our second set of bounding inequalities.
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THEOREM 13. Letting p,q > 0 and  ∈ (0,1)∪ (1,) ,  ∈ R to hold the fol-
lowing constraints

min{a,c−a}>

2

; min{b,d−b}>

2

; min{b′,d′ −b′} >

2

.

Then we have the following bounds

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,y,
]∣∣∣� [

 (p,q)
]2 |x| 1−d

2 (d)B
(
a−d− 

2 +1,c−a− 
2

)
B(a,c−a)B(b′,d′ −b′)

·B(b′ − 
2 ,d′ −b′ − 

2

){
1− b′ − 

2

d′ −
[
1−

(
a−d− 

2 +1;c−d− +1; |y|
)]}

.

Next, there holds

∣∣∣X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣− x,y,
]∣∣∣� bL |x| 1−d

2 (d)B
(
a−d− 

2 +1,c−a− 
2

)
3
√

d−1
[

 (p,q)

]−2
B(a,c−a)B(b′,d′ −b′)

·B(b′ − 
2 ,d′ −b′ − 

2

){
1− b′ − 

2

d′ −
[
(1−

(
a−d− 

2 +1;c−d− +1; |y|
)]}

,

(4.16)

where bL := 3
√

2 supt�0 Ai(2
√

xt) denotes the first Landau’s constant.

Proof. First, apply the estimate (4.2) to the integral representation (3.11) to obtain

∣∣∣X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣− x,y;
]∣∣∣� 

 (p,q)

√
2

|x| 1−d

2 (d)B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B

(
b′,d′ −b′

)
·
∫ 1

0

ta−d
√

h (t)
(1− t)a−c+1 K+ 1

2
(h (t))

∣∣Jd−1(2
√

xt)
∣∣(b′ − 

2 ;d′ − ; |y|t)dt

� 
 (p,q)

√
2

|x| 1−d

2 (d)B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B

(
b′,d′ −b′

)
· max
0�t�1

√
p(1− t) +qt sup

0<t<1
K+ 1

2

( p

t
+

q

(1− t)

)

·
∫ 1

0
ta−d− 

2 (1− t)c−a− 
2 −1 ∣∣Jd−1(2

√
xt)
∣∣(b′ − 

2 ;d′ − ; |y|t)dt

� 
 (p,q)

√
2

|x| 1−d

2 (d)B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B

(
b′,d′ −b′

)
·
√

max
0�t�1

{p(1− t) +qt}K+ 1
2

(
inf

0<t<1

{ p

t
+

q

(1− t)

})

·
∫ 1

0
ta−d− 

2 (1− t)c−a− 
2 −1 ∣∣Jd−1(2

√
xt)
∣∣(b′ − 

2 ;d′ − ; |y|t)dt.

(4.17)
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Both estimated functions in the integrand are positive in the declared range of its pa-
rameters, and the Macdonald function K(z) monotone decreases and it is continuous
in z > 0. For h1(t) = p(1− t) +qt , we have h′1(t) = 

[− p(1− t)−1+qt−1
]
, and

the stationary point becomes

t0 =
1

1+
( q

p

) 1
−1

∈ (0,1).

Furthermore

h′′1(t) =  ( −1)
[
p(1− t)−2 +qt−2]< 0,  ∈ (0,1),

therefore t0 is the abscissa of maximum for h1(t) , consequently

h1(t0) =
pq(

p
1

−1 +q
1

−1
)−1

, (4.18)

Now, we analyse the argument function of the Macdonald function h (t) = pt− +
q(1− t)− . The stationary point t1 is the solution of h′ (t) = − [pt−−1 − q(1−
t)−−1

]
= 0 in t viz.

t1 =
1

1+
( q

p

) 1
+1

∈ (0,1).

Being h′′ (t) =  ( +1)
[
pt−−2 +q(1− t)−−2

]
> 0 for all t ∈ (0,1) , so is h (t1) the

global minimum; here

h (t1) = min
0<t<1

h (t) =
(
p

1
+1 + p

1
+1
)+1

,

accordingly

K+ 1
2
(h (t1)) = K+ 1

2

((
p

1
+1 +q

1
+1
)+1

)
. (4.19)

Put (4.18) and (4.19) into (4.17) and abbreviate


 (p,q) =

√
2pqK+ 1

2

((
p

1
+1 +q

1
+1
)+1

)
√

(
p

1
−1 +q

1
−1
) −1

2

,

which gives

∣∣∣X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣− x,y;
]∣∣∣� [

 (p,q)
]2 (d) |x| 1−d

2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
·
∫ 1

0
ta−d− 

2 (1− t)c−a− 
2−1∣∣Jd−1(2

√
xt)
∣∣(b′ − 

2 ;d′ − ; |y|t)dt. (4.20)
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By virtue of Luke’s upper bound (4.8) for Kummer’s confluent hypergeometric function
(·) in (4.20) we conclude

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,y;
]∣∣∣� [

 (p,q)
]2 (d) |x| 1−d

2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
·
∫ 1

0
ta−d− 

2 (1− t)c−a− 
2 −1 ∣∣Jd−1(2

√
xt)
∣∣[1− b′ − 

2

d′ −
(
1− e|y|t

)]
dt . (4.21)

Using the first von Lommel’s bound in (4.9) and evaluating the (4.21) we find

∣∣∣X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣− x,y;
]∣∣∣� [

 (p,q)
]2 (d) |x| 1−d

2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
·
∫ 1

0
ta−d− 

2 (1− t)c−a− 
2−1

[
1− b′ − 

2

d′ −
(
1− e|y|t

)]
dt .

By utilizing the first Landau’s result (4.11) we readily derive the inequality (4.16) in a
similar manner. �

As to the counterpart result in which the modified Bessel function of the first kind
Id−1 has important role we should start with the integral representation formula (3.12)
of Corollary 4.1.

THEOREM 14. For all p,q > 0 and  ∈ (0,1)∪ (1,) ,  ∈ R and to hold

min{a,c−a}>

2

; min{b′,d′ −b′} >

2

,

we have for x > 0

∣∣∣X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣x,y;]∣∣∣� [
 (p,q)

]2 B
(
a− 

2 ,c−a− 
2

)
B(b′ − 

2 ,d′ −b′ − 
2 )

B(a,c−a)B(b′,d′ −b′)

· cosh(2
√

x )
[
1− b′ − 

2

d′ −
+

b′ − 
2

d′ −

(
a− 

2 ,c− ; |y|)]. (4.22)

Moreover, for the same parametric range and for 0 < x < 1
4 , 2

√
x+ |y|< 1 , it is

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y;]∣∣∣� [
 (p,q)

]2 B
(
a− 

2 ,c−a− 
2

)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B(b′,d′ −b′)

·
{(

1− b′ − 
2

d′ −
)

(
a− 

2 ; c− ;2
√

x
)
+

b′ − 
2

d′ −

(
a− 

2 ;c− ;2
√

x+ |y|)}. (4.23)

Proof. As x > 0, estimating the integral (3.12) with the Luke’s bound (4.15) we
get

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y;]∣∣∣�
√

2


(d)x
1−d

2

B(a,c−a)

∫ 1

0
ta−d(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) |Id−1(2

√
x t)| |

p,q,(b
′; d′; yt)|dt



1302 R. K. PARMAR, T. K. POGÁNY AND S. PIRIVINA

�
√

2


1
B(a,c−a)

∫ 1

0
ta−1(1− t)c−a−1

√
h (t)

·K+ 1
2
(h (t)) cosh(2

√
xt) |

p,q,(b
′; d′; yt)|dt.

Apply now (4.2) to the extended Kummer function’s modulus, and treat the resulting
Kummer function by another Luke’s bound (4.8). This results in:

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣x,y;]∣∣∣�
[

 (p,q)

]2
B(b′ − 

2 ,d′ −b′ − 
2 )

B(a,c−a)B(b′,d′ −b′)

·
∫ 1

0
ta−


2 −1(1− t)c−a− 

2 −1 cosh(2
√

xt)(b′ − 
2 ; d′ − ; |y|t)dt

�
[

 (p,q)

]2
B(b′ − 

2 ,d′ −b′ − 
2 )

B(a,c−a)B(b′,d′ −b′)

·
∫ 1

0
ta−


2 −1(1− t)c−a− 

2 −1 cosh(2
√

xt)
[
1− b′ − 

2

d′ −
(
1− e|y|t

)]
dt (4.24)

�
[

 (p,q)

]2
B(b′ − 

2 ,d′ −b′ − 
2 ) cosh(2

√
x )

B(a,c−a)B(b′,d′ −b′)

·
∫ 1

0
ta−


2 −1(1− t)c−a− 

2 −1
[
1− b′ − 

2

d′ −
(
1− e|y|t

)]
dt

=

[

 (p,q)

]2
B(b′ − 

2 ,d′ −b′ − 
2 ) cosh(2

√
x )

B(a,c−a)B(b′,d′ −b′)
B
(
a− 

2 ,c−a− 
2

)

·
[
1− b′ − 

2

d′ −
+

b′ − 
2

d′ −

(
a− 

2 ,c− ; |y|)].
Here, we use the obvious estimate

sup
0<t<1

cosh(2
√

xt) = cosh(2
√

x), x > 0,

whilst the last equality follows by

∫ 1

0
xp−1 (1− x)q−1 erx dx = B(p,q)(p; p+q;r) , min{p,q} > 0 ,

which completes the proof of the first bound in (4.22).
Next, by using the inequality cosh(t) � et , that is, in our setting cosh(2

√
xt) �

e2
√

xt for t � 0 in (4.24) for the same parametric range and simplifying, we get the
desired second bound (4.23). �

THEOREM 15. Assume that p,q > 0 ,  ∈ (0,1)∪(1,) ,  ∈R , and min{a,c,b,
d−1,b′,d′} > 0 for which hold the following constraints

min{a,c−a}>

2

; min{b,d−b}>

2

; min{b′,d′ −b′} >

2

.
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Then, the following bounded inequality holds true for x � 0, y ∈ R:

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,y;
]∣∣∣� [

 (p,q)
]2 B

(
a− 

2 ,c−a− 
2

)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B(b′,d′ −b′)

·
{

1− b′ − 
2

d′ −
[
1− 

(
a− 

2 ; c− ; |y|)]}.

Moreover,∣∣∣X1:0;1
1:1;1

[a : −;b′
c : d;d′

∣∣∣− x,y,
]∣∣∣� [

 (p,q)
]2 (d)B

(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B(b′,d′ −b′)

·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cL

3
√

2 |x| 3d−2
6

B
(
a−d− 

2 + 2
3 ,c−a− 

2

)
·
{

1− b′− 
2

d′−
[
1−

(
a−d− 

2 + 2
3 ;c−d− + 2

3 ; |y|)]}
dO√

2 |x| 2d−1
4

B
(
a−d− −1

2 ,c−a− 
2

)
·
{

1− b′− 
2

d′−
[
1−

(
a−d− −1

2 ;c−d− + 1
2 ; |y|)]}

,

where for Landau’s second constant cL see (4.12), dO denotes Olenko’s constant (4.14)
and bL stands for the Landau’s first constant (4.11).

Proof. First, we point out that the estimates of Bessel function in (4.10), (4.12)
and (4.14) are of the magnitude |Jd−1(t)|� C t where C∈ {[2d−1(d)]−1,cL,dO} and
 ∈ {d−1,− 1

3 ,− 1
2} , respectively. We also point out that the domain of (4.10) is t ∈R ,

whilst for other estimates holds t � 0. Now, the application of the bound (4.10) to the
integrand in (4.21) results in

∣∣∣X1:0;1
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,y;
]∣∣∣� [

 (p,q)
]2 |x| 1−d

2 (d)B
(
b′ − 

2 ,d′ −b′ − 
2

)
B(a,c−a)B

(
b′,d′ −b′

)
·
∫ 1

0
ta−d− 

2 (1− t)c−a− 
2 −1 ∣∣Jd−1(2

√
xt)
∣∣ [1− b′ − 

2

d′ −
(
1− e|y|t

)]
dt

� C
[

 (p,q)

]2 (d)|x| 1−d+
2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
·
∫ 1

0
ta+−d− 

2 (1− t)c−a− 
2−1

[
1− b′ − 

2

d′ −

(
1− e|y|t

)]
dt

= C
[

 (p,q)

]2 (d)|x| 1−d+
2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
{(

1− b′ − 
2

d′ −

)

·
∫ 1

0
ta+−d− 

2 (1− t)c−a− 
2−1 dt

+
b′ − 

2

d′ −

∫ 1

0
ta+−d− 

2 (1− t)c−a− 
2 −1 e|y|t dt

}
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= C
[

 (p,q)

]2 (d)|x| 1−d+
2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
·B(a+−d− 

2 +1,c−a− 
2

)
·
{

1− b′ − 
2

d′ −
+

b′ − 
2

d′ −

(
a+−d− 

2 +1;c+−d− +1; |y|)
}

= C
[

 (p,q)

]2 (d)|x| 1−d+
2

B(a,c−a)
B
(
b′ − 

2 ,d′ −b′ − 
2

)
B
(
b′,d′ −b′

)
·B(a+−d− 

2 +1,c−a− 
2

)
·
{

1− b′ − 
2

d′ −
(
1−

(
a+−d− 

2 +1;c+−d− +1; |y|))
}

.

Than, inserting (C,) ∈ {(1/[2d−1(d)],d − 1),(cL,− 1
3 ),(dO,− 1

2 )} , respectively, we
get the bounds affiliated to the Minakshisundaram and Szász, the second Landau’s and
Olenko’s estimates. �

THEOREM 16. Following bounded inequalities hold true:

∣∣∣X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
|x| 1−d

2 |y| 1−d′
2 (d)(d′)

B(a,c−a)

·B
(
a−d− d′+−3

2 , c−a− 
2

)
∣∣∣X1:0;0

1:1;1

[ a : −;−
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
b′L b′′L |x|

1−d
2 |y| 1−d′

2 (d)(d′)
3
√

d−1 3
√

d′ −1B(a,c−a)

·B
(
a−d− d′+−3

2 , c−a− 
2

)
, (4.25)

as a,c > 0 ; d,d′ > 1 ; 2(a−d)+3 > d′+ , 2(c−a) >  . For min{a,c−a}> 
2 > 0

it is ∣∣∣X1:0;0
1:1;1

[a : −;−
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
B
(
a− 

2 , c−a− 
2

)
B(a,c−a)

,

whilst when 2(a−d) > d′ + −2,2(c−a)− > 0 , we have

∣∣∣X1:0;0
1:1;1

[ a : −;−
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
(d)(d′)
B(a,c−a)

c2
L |x|

2−3d
6 |y| 2−3d′

6

3
√

4

·B(a−d− d′+
2 +1, c−a− 

2

)
,

and min{4(a−d)−2(d′+ )+3,2(c−a)−}> 0 implies the bound∣∣∣X1:0;0
1:1;1

[a : −;−
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
d2

O(d)(d′)
2B(a,c−a)

|x| 1−2d
4 |y| 1−2d′

4

·B(a−d− d′+
2 + 3

4 , c−a− 
2

)
.

In this theorem throughout min{a,c−a},d,d′ > 0 , unless otherwise stated.
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Proof. Taking modulus of the both side on the integral representations (3.15), we
obtain

∣∣∣X1:0;0
1:1;1

[a : −;b′
c : d;d′

∣∣∣− x,−y;
]∣∣∣�

√
2

(d)(d′) |x| 1−d

2 |y| 1−d′
2

B(a,c−a)

∫ 1

0

ta−d− d′+−1
2

(1− t)a−c+ 
2 +1

·
√

h1(t)K+ 1
2

(
h (t)

) |Jd−1(2
√

xt)Jd′−1(2
√

yt )|dt. (4.26)

Now estimating h1(t) and h (t) in the integrand similarly to Theorem 13 and substi-
tuting (4.18) and (4.19) in (4.26), writing shorthand


 (p,q) =

√
2pqK+ 1

2

((
p

1
+1 +q

1
+1
)+1

)
√

(
p

1
−1 +q

1
−1
) −1

2

,

we obtain

∣∣∣X1:0;0
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
(d)(d′) |x| 1−d

2 |y| 1−d′
2

B(a,c−a)

·
∫ 1

0
ta−d− d′+−1

2 (1− t)c−a− 
2 −1 |Jd−1(2

√
xt)Jd′−1(2

√
yt )|dt. (4.27)

Using the first one of von Lommel’s bounds in (4.9) we find that

∣∣∣X1:0;0
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
(d)(d′) |x| 1−d

2 |y| 1−d′
2

B(a,c−a)

·B
(
a−d− d′−

2 + 3
2 ,c−a− 

2

)
.

Next, by utilizing the first Landau’s result (4.9) we deduce the inequality (4.25) in a
similar manner.

Now, re-calling that the estimates of Bessel function in (4.10), (4.12) and (4.14)
have magnitude |Jd−1(t)| � C |t| , |Jd′−1(t)| � C1|t|1 where

C ∈ {[2d−1(d)]−1,cL,dO}; C1 ∈ {[2d′−1(d′)]−1,cL,dO};

and
 ∈ {d−1,− 1

3 ,− 1
2}; 1 ∈ {d′ −1,− 1

6 ,− 1
4},

respectively. Now, the application of these estimates (4.10) to the integral (4.27) results
gives

∣∣∣X1:0;0
1:1;1

[ a : −;b′
c : d;d′

∣∣∣− x,−y;
]∣∣∣� 

 (p,q)
(d)(d′) |x| 1−d

2 |y| 1−d′
2

B(a,c−a)

·
∫ 1

0
ta−d− d′+−1

2 (1− t)c−a− 
2 −1 |Jd−1(2

√
xt)Jd′−1(2

√
yt)|dt
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� CC1
 (p,q)

(d)(d′) |x| 1−d+
2 |y| 1−d′+1

2

B(a,c−a)

∫ 1

0

ta++
1
2 −d− d′+−1

2

(1− t)a−c+ 
2 +1

dt

= CC1
 (p,q)

(d)(d′) |x| 1−d+
2 |y| 1−d′+1

2

B(a,c−a)

·B(a++ 1
2 −d− d′+−1

2 +1,c−a− 
2

)
.

Than, taking either C = [2d−1(d)]−1 , C1 = [2d′−1(d′)]−1 , cL or dO and  ∈ {d −
1,− 1

3 ,− 1
2} , 1 ∈ {d′ − 1,− 1

6 ,− 1
4} mutually, we realize the bounds affiliated to the

Minakshisundaram and Szász, the second Landau’s and Olenko’s estimates, respec-
tively. �

5. Applications to statistical distribution

Special functions are important in studying probability distribution and statisti-
cal inference (see for instance [2, Chapter 17], [18, Chapters 6 and 8], [4, 7–9, 11]).
Recently, researchers have been studying McKay Bessel-type distributions, which are
related to special functions, such as Horn’s confluent functions (see [4, 7, 8, 16]). The
extended Exton’s double hypergeometric function (3.16) is expected to have many ap-
plications, similar to the generalized Beta and Gamma functions. One potential appli-
cation is in statistics, and it can also be applied in inequality theory to derive novel

bilateral bounds for the generalized Exton’s function X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣x,y;] using

probabilistic methods.
Consider the random variable  defined on a standard probability space (,F,P) ,

where  is a sample space, F is the related sigma algebra on  , and P is a probability
function characterized by the following probability density function throughout (abbr.
density):

f (u) =

{
Cp,q( ,a) ua−1e−u 

p,q,(b;d;xu2) 
p,q,(b′;d′;yu), u > 0

0 elsewhere,

where it is assumed that () > 0, (a) > 0, the positive arguments (x,y) , and the
parameters p,q ,  , and u,v,v′ are suitably constrained so that f (u) remains non-
negative. By the Theorem 7, that is, Eq. (3.17) the normalization constant reads

Cp,q( ,a) =
a

(a)X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
] .

We define the generalized Horn’s gamma distribution of the random variable (abbr. r.v.)
 as GHG( ) , where  = (p,q,, ;a,b,b′;−,d,d′, ;x,y) is the parameter vector.
Alternatively, we denote this as  ∼ f (u) . Hereafter, we will derive some statistical
functions for the r.v.  ∼ GHG( ) .
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5.1. Raw moments and Turán inequalities

The s th fractional-order moments ms, s > 0 equal

ms = E s =
∫ 

0
us f (u) du =

(a)s

 s

X1:1;1
0:1;1

[a+ s : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
]

X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
] . (5.1)

As the first application of (5.1), we derive a Turán-type inequality for the extended
Exton’s double hypergeometric function X1:1;1

0:1;1 [·] by virtue of the moment inequality,
which holds for the nonnegative r.v.  ∼ f (u) . Lukacs reported on the moment in-
equality [16, p. 28, Equation (1.4.6)]

m2
s+r � ms ms+2r, min{s,r} > 0 . (5.2)

By inserting the expression (5.1) in (5.2), we obtain for all 2s > −a , s+2r > −a the
bounding inequality

{
X1:1;1

0:1;1 [s+ r]
}2� (a+ s)(a+ s+2r)

2(a+ s+ r)
X1:1;1

0:1;1 [s] ·X1:1;1
0:1;1 [s+2r],

where the shorthand

X1:1;1
0:1;1 [ ] = X1:1;1

0:1;1

[a+ : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
]

is used. Also, another statement by Lukacs [16, p. 393, a)] asserts that for 0 < r � s ,
the moment inequality m2

s+r � m2s m2r holds, which can be inferred using the Cauchy–
Bunyakovsky–Schwarz inequality. This inequality implies a variant of the Turán-type
inequality, viz.

{
X1:1;1

0:1;1 [s+ r]
}2� (a+2s)(a+2r)

2(a+ s+ r)
X1:1;1

0:1;1 [2s] ·X1:1;1
0:1;1 [2r] , 2min{s,r} > −a.

5.2. Characteristic function

The Fourier transform of the density f (t) is the characteristic function (ch.f.)
 (t) of the r.v.  . Hence,

 (t) = Eeit =
∫ 

0
eitu f (u)du

= Cp,q( ,a)
∫ 

0
e−(−it)u ua−1

p,q,(b;d;xu2) 
p,q,(b

′;d′;yu)du .

Therefore, again by virtue of Theorem 7, the ch.f. becomes

 (t) =
a X1:1;1

0:1;1

[ a : b;b′
− : d;d′

∣∣∣ x
(− it)2 ,

y
− it

;
]

( − it)a X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
] . (5.3)
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The next summation result establishes a connection between the density and the ch.f.
through the corresponding integer-order moments. For this result we need the definition

of the multiple Srivastava–Daoust generalized Lauricella F (n)
D series [30, p. 37, Eq.

(21)]

FA:B(1);···;B(n)

C:D(1);···;D(n)

( [(a) :  (1), · · · , (n)] : [(b(1)) : (1)]; · · · ; [(b(n)) : (n)]

[(c) : (1); · · · ;(n)] : [(d(1)) :  (1)]; · · · ; [(d(n)) :  (n)]

∣∣∣∣∣x1, . . . ,xn

)

= 
mmmmm�0

A

j=1

(a j)m1
(1)
j +···+mn

(n)
j

B(1)


j=1

(b(1)
j )

m1
(1)
j
· · ·

B(n)


j=1

(b(n)
j )

mn
(n)
j

C

j=1

(c j)m1
(1)
j +···+mn

(n)
j

D(1)


j=1

(d(1)
j )

m1
(1)
j
· · ·

D(n)


j=1

(d(n)
j )

mn
(n)
j

xm1
1

m1!
· · · xmn

n

mn!
,

(5.4)

where mmmmm := (m1, · · · ,mn) and the parameters satisfy

 (1)
1 , · · · , (1)

A , · · · , (n)
1 , · · · , (n)

D(n) > 0.

We write (a) for the sequence of A parameters a1, · · · ,aA , with similar interpretations
for (b(1)), · · · ,(c), · · · ,(d(n)) . Empty products should be interpreted as unity.

The transformation formula of the specific Srivastava–Daoust triple generalized
Lauricella hypergeometric function into the Exton’s double hypergeometric series fol-
lows.

THEOREM 17. For any positive parameter vector  = (p,q,, ;a,b,b′;d,d′, ;
x,y) it is

a

(− it)a X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣ x
( − it)2 ,

y
− it

;
]

= F1:1;1
0:1;1

(
[a : 1,2,1] : [b : 1]; [b′ : 1]

− : [d : 1]; [d′ : 1]

∣∣∣∣∣ it ,
x
2 ,

y


)
,

where F1:1;1
0:1;1 stands for the Srivastava–Daoust triple generalized Lauricella hypergeo-

metric F function.

Proof. The Maclaurin series of the ch.f. reads [16, p. 41]

 (t) = 
n�0

mn
(it)n

n!
.

Inserting (5.1) into this expansion routine steps lead to the assertion. Indeed, we have

 (t) ·X1:1;1
0:1;1

[ a : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
]

= 
n�0

(a)n

n X1:1;1
0:1;1

[a+n : b;b′
− : d;d′

∣∣∣ x
2 ,

y


;
] (it)n

n!

= 
n,k,m�0

(a)n(a+n)2k+m(b)k(b′)m

(d)k(d′)m

(
it

)n

n!

(
x
2

)k
k!

( y

)m

m!
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= 
n,k,m�0

(a)n+2k+m(b)k(b′)m

(d)k(d′)m

( it

)n

n!

(
x
2

)k
k!

( y

)m

m!

= F1:1;1
0:1;1

(
[a : 1,2,1] : [b : 1]; [b′ : 1]

− : [d : 1]; [d′ : 1]

∣∣∣∣∣ it ,
x
2 ,

y


)
,

where we applied the property (a) j(a+ j)l = (a) j+l of the product of two Pochhammer
symbols. Putting (5.3) into the left-hand-side expression, we complete the proof. �

6. Concluding remarks and observations

Present research outcomes introducing the four parametric extension of certain Ex-
ton’s double hypergeometric function XA:B;B′

C:D;D′ [x,y,];  = (p,q,, ) by utilizing the

definition of extended Beta function B
p,q,(s,t) in (1.2) which involves the Macdonald

kernel Kn+ 1
2

in the kernel of integral. Then we systematically developed the associated

integral representations including Euler’s and Laplace-Mellin type, as well as certain
integral representations involving Bessel J (z) and modified Bessel functions I(z)
along with some recurrence formulae. By applying several functional upper bounds
such as Luke’s, von Lommel’s, Minakshisundaram and Szász and Olenko bounds, we
derived several bounds for defined extended Exton’s double hypergeometric functions
XA:B;B′

C:D;D′ [x,y;] . Finally, as an application, we introduced a new probability distribution
building the density function in terms of specific extended Exton’s function and studied
moments and characteristic function. Using related extended Kummer and Horn func-
tions moment inequalities of Turán type are also proved. It is worth to mention here the
recent articles by Jankov Maširević and Pogány [10] and Pogány [27] in which another
type functional inequality results are presented for the Exton’s X functions, inferred by
probabilistic considerations.

We observe that for Exton’s double hypergeometric function X1:0;0
1:1;1 [x,y;] , we

can derive similar results parallel to Theorem 16 for (3.15) involving product of modi-
fied Bessel function of the first kind Id−1 ; however, this study we left to the interested
readers. Further, for above defined certain Exton’s double hypergeometric function
XA:B;B′

C:D;D′ [x,y,] , monotonicity properties, log convexity and generating function are un-
der investigations.
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