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INTEGRAL FORMS AND FUNCTIONAL BOUNDS FOR CERTAIN
EXTENDED EXTON’S DOUBLE HYPERGEOMETRIC FUNCTIONS

RAKESH K. PARMAR, TIBOR K. POGANY* AND S. PIRIVINA

(Communicated by T. Buric)

Abstract. We extend and systematically investigate some particular Exton’s double hypergeo-

-R-R . . . . .
metric function Xé'gjg, [x,¥], which is motivated by the recent integrated version of the Euler’s

Beta integral form with a Macdonald function Ky (z) in the integrand. The newly introduced ex-

tended Exton’s double hypergeometric functions XéffB

.Dig’ [x,y:p,q,Vv,A] is then represented by a
number of integral representations of the Euler and Laplace types, including several further rep-
resentations involving Bessel J, (z) and modified Bessel functions I, (z) of the first kind along
with recurrence formulae. Using existing functional bounds for extended Euler’s Beta function,
various functional upper bounds are derived for particular extended Exton’s double hypergeo-

metric functions Xé:gfg, [x,¥;p,q,v,A]. Also, plethora of bounding inequalities are established
by virtue of Luke’s, von Lommel’s, Minakshisundaram and Szdsz and Olenko’s bounds. The ex-
position ends with a newly introduced probability distribution applying extended Kummer and

of Horn functions, for which moment inequalities of Turdn type are proved.

1. Introduction and preliminaries

The Euler function of the first kind, or in short — the Beta function’s integral form
(1] |
B(s,t):/ 1 —x 'y, min{s,7} >0, (1.1)
0

becomes the parent function for generalizations by exponential, Kummer’s hypergeo-
metric function, Macdonald function, Mittag—Leffler class functions among others of
a suitably defined argument A(¢), say, by including the kernel 4 (x) into a parametric
integral [26]

By(s, 1) = B(s,t)[h] = /le“‘fl(l —x) " h(x)dx, min{s,z} > 0.

The thorough overview of the ancestry and presentation of the Beta-transforms getting
By, Bpg, Bpv, Bpgum and others is given in the recent papers [19,24,26]. So, we
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refer to these publications and the further appropriate references therein, not repeating
unnecessarily the known facts and generalizations.

We begin introducing one of the most used special functions in our exposition,
the Macdonald function (modified Bessel function of the second kind) of the order v
which definition reads [22, p. 251, Eq. 10.27.4]

Ko(z) = g ose(nv) (Iv(2)—1(z), V&7,

otherwise for any n € 7Z, ‘l/im Ky(z) = Ky (z) is used. Here [22, p. 249, Eq. 10.25.2]
—n

v (;)2"
Iv(z) = (5) rgb_l“(v—kzl—i—n)n!’

is the modified Bessel function of the first kind. Next, the extended Beta function [24]
is a Beta transform integral with the Macdonald function K, for the building block
containing the defining kernel /(x). The resulting integral expression turns out to be
[24, p. 2, Definition 1]

I"IV S t \/7/ h@( ) v+%(h9(x))dx, (1.2)

where the modified argument

p q
h = 4+ 1 0=(p,q,Ar 1.3
B(x) " (l—x)l (pq ) (1.3)
possesses singularities and the endpoints of the unit integration interval. Here the pa-
rameters’ range A > 0, min{R(p),R(¢)} > 0; 2min{s,z} > A > 0, whilst v € R.
Now, the modified Bessel I, (x) is real for all v € R and arg(z) =0 and have in mind

that
T _
Kv+%(z):1/z—ze (1+0@"), z— e (1.4)

is the reason for including the multiplication factor for K|, 41 in the definition (1.2).

The related extended Gauss hypergeometric function Taylor series definition reads
[24, p. 3, Definition 2, Eq. (4)]

(b+k,c—b)

A ) pqv
Fyavla b z) = 2 (@) B(b.c—b) L

k>0

(1.5)

in which the parameters A > 0, min{p,q} > 0; c € C\Z;, R(c) > R(b) > 0 and
|z| < 1; the extension of the Kummer function power series form is [24, p. 3, Definition
2, Eq. (5)]

b+k,c—0)

v
Pl]
pqv(bc 7) = kg() B(b, c—b) R (1.6)

where A >0, min{p,q} > 0; R(c) > R(b) >0
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In [24] are used generalized Beta function (1.2) to extend the Gaussian and the
Kummer’s confluent hypergeometric functions to establish their functional bounding
inequalities, Turdn inequalities and studied their raw moments and moment inequalities
by defining a novel probability Beta distribution Specifying the values of parameters
p.q,A and v, the generalized Beta function B% 5.q.v(s:1) (1.2) covers a whole spectrum
of various well-known forms of extended Beta functions. In fact (1.2) is a so-called
Beta function transform and maps a suitable input function ¢ into a multiparameter
function [12]

|—>/ X)L (x)dx.

In defining integral (1.2) we have ¢(x) = \/hg(x) Kv+% (ho(x)), being \/hg(x) the
necessarily implemented correcting factor function (up to the multiplicative constant
\/2/m), compare with the relation (1.4). In turn, the constraint min{s,7} > % >0

follows immediately by re-writing +/hg(x) in (1.2) into a convenient form.

Setting the values of the parameters p,q,Vv,A in (1.2) we get various known and
frequently studied members of the Beta functions’ family. So, when A =1 and ¢ = p
we arrive at the so-called (p, v)-extended Beta function introduced by Parmar et al. [23,
p. 93, Eq. (13)]:

_ J2p 3 _3 P
p7 St /X 2 ZKH_% (x(l—x))dx’

where R(p) > 0; min{R(s),R(¢)} >0, and ,/p takes its principal value. This kind
Beta function is recently considered by Milovanovi¢ ef al. in [19, p. 1433, Eq. (1.1)]
for establishing Gautschi—Pinelis type upper bounds for the Macdonald function and the
(p,v)-extended Beta function. For complete details of numerous other special cases,
we refer to the recent articles [25,26]. Finally, if use the fact (1.4) and set v =0 and
P,q "\, 0, then qu »(s,7) approaches B(s, ¢) giving Euler’s integral (1.1).

The research conduction in this paper will be carried out through the following
plans: 1. introducing the four parametric extension of certain Exton’s double hyper-
geometric function XC 'D. D, [x y,0];0 = (p,q,v,A) by considering the definition of
extended Beta function Bp qv(s:1) in (1.2) involving the Macdonald kernel K 1
2. establishing the associated integral representations including Euler’s and Laplace-
Mellin type, as well as certain integral representations involving Bessel Jy(z) and
Modified Bessel functions I,,(z) along with recurrence formulae; 3. several func-
tional upper bounds are derived for extended Exton’s double hypergeometric functions

X‘é D g, [x,y;©]. Other fashion bounding inequalities are derived via Luke’s, von Lom-
mel’s, Minakshisundaram and Szdsz and Olenko bounds. 4. Finally, we introduce a
new probability distribution building the density function in terms of specific extended
Exton function. Using related extended Kummer and Horn functions moment inequal-

ities of Turdn type are proved.
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2. Exton’s double hypergeometric function X D D [x y]

The generalized hypergeometric function with r numerator and s denominator
parameters in the power series form reads

=~
—
S
<
<
=~
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~
Il

—_
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rFY(ah“‘7ar;b17"'7b5;2) =

»
v
o
T
=
>
:‘-/
=

where (8), =68(8+1)---(8+n—1)=T(8+n)/T(8), (6 €C\Z,;, n€Ny) and
(8)o =1 denotes the raising/shifted factorial or Pochhammer symbol, a; € C, j €
1,r:={1,2,...,r} and bj € C\Z,, j €1,s. The symbol I being the familiar Euler’s
Gamma integral

I(s) = / Tt ld, R(s) > 0.
0

Particular cases for r =2, s =1 and r =1, s = | are the Gaussian hypergeometric
function and Kummer’s confluent hypergeometric function

(al)k(a2)k Zk — E (al)k Z—k
2Fi(a1,02: b1:2) kgf) (b1 k! (aribi;2) = 1Fi(aribii2) =0 (b1)i k!

respectively.

In 1921, P. Appell introduced four double hypergeometric functions Fi , F>, F3 and
F4, which were unified and generalized by Kampé de Fériet F,’Sktl [x,y] function (see,
for details, [30, p. 27, Eq. (28)]). Presently, the recent authors studied in [25] the
extension of the double hypergeometric function

a b)), Xk "
Hyla,b'id,dx,y] = ), % o %; 2/ x|+ vl < 1, (2.1)
k=0 no Ko

pioneered by Horn in [5], also see [30, p. 24 and p. 59], where a, b’ € C and d,d’ €
C\z, .
H. Exton in 1982 introduced the double hypergeometric XA

cD. D,[ x,y] function
which double power series reads [3]

[ (@) (b): ()
XEo5 | (0): (aysian

}_ 5 ((@)) 2 (B))i () ﬂ (2.2)

where (@) denotes the sequence of parameters aj,---,as, whilst ((a)), stands for
(a1)n---(as)n and the empty symbol equals 1; consider mutually the other parame-
ter’s writing. The convergence conditions of (2.2) are presented in [3] and [29, pp.
153-158].
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PROPOSITION 1. Forall a,b’,d,d" > 0 the Exton function

a:—;b

a nb/nxkn
o x,y}:: D (@)t (D)0 X" "

X -
0:131 [ (d)x(d)y kLl

k,n=0

converges for all (x,y) € C* provided 2./|x[+ |y| < 1.

Proof. Recognize by comparing (2.2) and (2.1) that

a:—b

1:0;1
Xo1:1 [— dyd

X, y] = Hyla,b';d,d';x,y).

Since the convergence domain of the Hy is 2+/|x| + |y| < 1, see [30, p. 59], the claim
obviously follows. [J

At this point we mention that simultaneously we have in mind that the convergence
conditions which hold for the Srivastava—Daoust F' function (compare for the detailed
definition (5.4)) one reduce to [29, pp. 157-158]

Al =1+2(C—A)+D—-B>0
A =14+C—A+D —B >0;

so (2.2) converges absolutely for all x,y € C, see [4, Appenix B]. Another cases of
convergence conditions related to interiors of a disks in C can be deduced from [29, pp.
153-157].

Focusing to the Exton X specific cases when A, B,B',C,D,D’ € {0,1} which does
not harm the generality of considerations and can be straightforwardly unified to the
general case (2.2), we distinguish three main forms:

1. A=C=1 and the B# D, B' # D' arbitrarily; Ay =1+D—-B >0, Ay =
1+D'—B >0;

2. A=Candeither B=D=1orB =D'=1;Ai=1; Ap)=1+D'—-B >0;
3. A=Cand B=D; B =D'; A=A =1,

pointing out that any X converges in these specified cases.
Moreover, the subcase 2.1. A =C =0, B =D = (0 means that

¥ 001 - =0
0:0;1 | _ . —;d/

)@y} ="' o(b;d’y);
and using then B=D =1 and B' = D' = (0 we arrive at

X(g)ll,,(g){_ cdi— ’X,Y] = eyq)(b;d;x) .
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Next,2.2. A=C=1, B=D =1 results in

1:1;0 a:b;— a b)kx y
Xl:l;O[C:d;_)xJ’} Z; c) Ol Kinl’ (2.3)

which turns out to be irreducible, according to the best of our knowledge.

It remain the cases 3.1. A=C =0 and B=B =D =D’ =1 giving a product of
two Kummer functions, viz.

—:byb

Xo [ Ldyd'

X y} @ (b:d;x)-@(V:d'sy),
and3.2. A=C =B =B'=D=D'=1, where the structure of the resulting

y (@Ot 2 7"
k30 (©)2kn(d)i(d')n k! !

depends on the structure of upper and lower constituting parameters. Similarly, by
structuring of upper and lower constituting parameters, we get following other forms of
Exton functions:

33.A=C=1,B=D'=1,B=0and D=1

oafa:—;b (@)oksn(B)n  XFy"
X35 | i Y] = = 2 )y KT 3

34A=C=1,B=D=1,B=0and D' =1

(2.4)

1:1 a. bb/
X [c d;d'

] =

(@ain(b)i ¥y
(oo (d)e(dD, Kl 1l 2.6
' y} k%o ()okin(d)i(d)n k! 0!’ (2.6)

35,A=C=1,B=B=0and D=D'=1

><

e da

. k \n
x| oo[ . } (@)2ksn y 27
Bl c:d; d/ Y knz;'o ()atn(d)i(d)n k! 1!
36, A=1,C=0,B=D=1and B=D'=1
qafa:bb (@)21n (D) (B)n X* "
x L1 { a:b; X, } _ n Xy 2.8)
0L | gt [¥Y kéo (d)d),  Knl
37.A=1,C=0,B=0,D=1and B =D'=1
0: - (@)2sn(b)n X* ¥
X””l[ x ] \)2kn O Jn XY (2.9)
Ol —rasa 9] T & )@, Knd

Finally, the most simple case turns out to be

I



EXTENDED EXTON’S DOUBLE HYPERGEOMETRIC FUNCTION 1289

Now, it is obvious that the transformation of a ratio of two Pochhammer symbols:

(O() _B(O(—i-‘u,ﬁ_a)
(ﬁ)z B(o,B— ) (2.10)

can be successfully applied to the Pochhammer symbols ratio(s) in the summand of
Exton functions (2.3) and (2.4), where u € Ny stands for the summation index. This
results in

a:b;—
c:d;—

D B(a+2k+n,c—a)B(b+k,d—b) x*y"

Xl:l;O[ Yy
110 B(a,c—a) B(b,d—b) k!'n!’

x,y} - 2.11)

k,n=0

where R(c) > R(a) >0, R(d) > R(b) > 0, and simultaneously

Xl;l;l{a:b;b’ xy] _y B(a+2k+n,c—a)B(b+kd—b) Bl +n,d —b)x*y
LEL [ eodyd' | w0 Blac—a) B(b,d—b) B(V,d —b) k!'n!’
(2.12)

in which additionally R(d’) > R(b’) > 0. Similarly, for the Exton’s functions (2.5) and
(2.9), we have the transformations of (2.12) by virtue of (2.10) in the following forms:

Xm{a — b’xy' -~y B(a+2k+nc—a)B' +nd -b) 1 Xy

LEU e dyd 77 vido  Blac—a) B(',d' —V) (d)k!'n!’

Xl:l;o[a:b;— xy_ ~y B(a+2k+n,c—a)B(b+k,d—b) 1 x_ky_"
LLL | e:dyd |77 ] (S0 B(a,c—a) B(b,d—b) (d'),k!n!’
oola:—:i1—| 1 +2k+nc a) 1 xkyn

Xl‘.O‘,O a ’ X, = a PR

BEL [ cogsa [] T knz;lo B(a,c—a) (d)i(d)n k! n!

B(b+kd—b)B(W' +n,d —b)x*y"
B(b,d—b) B(b,d' —b') k!'n!’
B(b +n,d —b) 1 x*y

1:0;1_51:_;17/ 1
Xow | gpar V) = kz;'o TR A 1) (d) k!l .13)

L[ a:bb 1
X011 cd:d 1Y T 2 (@)2k4n
N ’ - k,n=0

The next section deals with some new forms of extended Exton’s X‘é DD [x7y; O] func-
tions by replacing the Beta functions B(s,#) building the numerator in previous rela-
tions (2.11) to (2.13) by the appropriately used extended Beta function B% »a, y(8,1).

3. On Exton’s extended X*'

C: D D/ [x y;©] functions

Now, corresponding integral representations are derived by using Beta integral
representation (1.2) in relations (2.11) to (2.13). Also, we point out that it is of con-

R-R/
siderable interest to extend the here established results to other Exton’s X’Cq:'gfg, [x, Y]



1290 R. K. PARMAR, T. K. POGANY AND S. PIRIVINA

functions covered by the general case (2.2). First, we introduce the following general-
ized Exton’s double hypergeometric function as the double power series

Xu;o[a:b;— xy@] _y B:  (a+2k+n,c—a)B,  (b+kd—Db)xky
B0 Lerd;— 77 0 B(a,c—a) B(b,d—b)  kln!’
(3.1)
Xl:l;l[a:b§b/ xy'@} _ 2 quv(a+2k+nc a) pqv(b+kd b)
Hllerdd 202, Blac—a) B(b,d —b)

B g (B +nd =) kg
B ,d —b) knl’

(3.2)

recalling the parameter space for © = (p,q,v,A), thatis A >0, min{R(p),R(q)} >0,
v €R and min{u,v} > ’21 >0, withue{a,b,b'},ve{c—a,d—b,d —b'}. Moreover,

Xl:O;l{ai_;b/ . '@} - 2 quv(a+2k+n c—a) pqv(b’—l—n d — b’)x_ky_"
i ecdsa PP T A B(a,c—a) B(W.d —V)(d); k'n!’
(3.3)
rrofaib;—| B, (a+2k+n,c—a)B,  (b+k,d—Db)
Xiin [c‘d'd’ “”8} =X B(a,c—a) p(qb d—b)(d), k! n'
St k>0 ) ) no K It
(3.4)
P - BY, (a+2k+nc—a) 1 Ky
x 100 &= s Q| = P4,V ’ — 3.5
ELL | ecgyd [0 kéo B(a c—a) (d)e(d)n K !’ (3-5)
ata: bb . (b+k,d—b) B, (b +n,d —b') xk y
Xl_.l_,l a:o; 0| = ; pqv P,V A
R . T A ,%O(a)z"* B(b,d—b) B, d—b) Kn!
(3.6)
Xl:O’l ra:—;b .®' o 2 pqv(b/+n d — b)x y
R T i BN Dokin =B T B (@) Kinl
=H}, yla,bd,d"x.y)], (3.7)

where the extended Horn’s function H?

4 pgvY] in (3.7) has been studied recently by
the authors, consult [25].

3.1. Integral representations

This section deals with the various integral representations including Euler’s and
Laplace—Mellin type, as well as certain integral representations including some other
representations involving Bessel J, (z) and modified Bessel functions 7, (z).
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THEOREM 1. Forall A >0, min{R(p),R(g)} >0, veR and min{u,v} >0,
with u € {a,b,b'}, v {c—a,d—b,d —b'}, where a,b,b’,c,d,d >0 we have

- b — 2 1
Xl‘.l‘,O{a ; @] / fa=1gh=101 _ pye—a-1
1:1;0 c: d’_ X, )5 p B(a c_a )B(b,d—b) (071)2 N ( )

(1= )0 e D g (1) g (5) K, 1(he(1))K, 1 (ho(s))drds,

and

- — 2 1 1
th,lh,O[ ’®:| _ il / tafl 1—1 c—a— l h
L0 | oo e — [ 7 B(a,c—a) Jo ( ) o(?)

K,y (ho(1) @ o (b3 d: 2a) di

where hg is described in (1.3) as hg(x) = px* +q(1 —x)~*.

Proof. Substituting the definition (1.2) of B s, 1) into (3.1), we have

pqv(

e pe 2 jat2kin—1(1 _ pye—a—1 dik—1(] _ gyd—b-1
Xllfllf(()) [a 4 ’X,)C@] =— / ( ) s (1—s)
L0 e dy— T o/ 0.0) B(a,c —a) B(b,d —b)

n

ho()hg(s) Kv+1 (ho (1)K, ! (ho(s))dr dsx—]< —

k' n
a—1 c—a—1 b1 d=b-1
5 (1= 1) <(17d>b) ho(0)ho(s)

(xust®)* ()"

wJo,1? Bla,c—a) B(b
11 (he (1)K, 1 (ho(s))

drds

k>0 k! n!
2 ta—l 1 —z)c—a— 1 b 1 1— d—b—1
_2 U= U= " o) ho(s)
7 Jo1? B(a,c—a) B(b,d —b)

K, 1(he(1))K, 1 (ho(s)) e drds,

which confimrs the first claim. As to the second integral, observe [24, Theorem 1, Eq.

(Nl

@) ulbicic) = 2 [ b RK (a0

provided p > 0 and |arg(1 —z)| < 7 or, for p =0, R(c) > R(b) > 0, which implies

- . _ % 1 ! a—1/1 _ ;\c—a—1 yt
xy;0| = 17 (1—1) e’ \/hy(t)
_ a) Jo

7 B(a,c—
KVJF%(he(t)) Mv(b d;xt?)dt,

Xl:l;O [a 1 b;
1:1;0 c:d:

and completes the proof. [l
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In the next seven theorems we present the integral representations for special ex-
tended Exton’s X functions: single integral forms (3.2)—(3.7) double integral expres-
sions ((3.2) in two different ways) and a triple integral representation for (3.2). The
proving methodology is a routine one, substituting (1.2) of B% ba, v(a, b) into the ex-
tended series definitions (3.2)—(3.7) and after legitimate summation—integration order
changes we implement into obtained expressions’ integrands either the exponential or
another appropriate special functions, for instance, the ordinary confluent hypergeomet-
ric and/or the extended Kummer hypergeometric functions oFj, ®* or their prod-
ucts. We omit the detalied proof of these results.

p:q,v>

THEOREM 2. Forall A >0, min{R(p),R(g)} >0, veR and min{u,v} >0,
with u € {a,b,b'}, vE {c—a,d—Db,d' — '}, where a,b,b',c,d,d" > 0 the following
integral expressions exist for Xllfll;;ll [x,y;©] in (3.2) reads as

iiifa:bib (2/m)*? / a1 -1 b1

Xlil;l[c:d;d’ x7y7®}_ Blac—a)B(b,d—b)BW.d —0) Joup' °
'(1—[)67a71(1—s)d b— 1(1 )d’ -1 xst +ytr ho(1)ho (s)ho (r)

Kooy (ho(0) K, .y (ho(s)) K., (ho (1)) dr dsdr.

THEOREM 3. Forall A >0, min{R(p),R(¢)} >0, v € R and min{a,c —a},
min{b,d — b}, min{b',d' —b'} > 0 we have the integral expressions for X11::11;;11 [x, ;0]
in (3.2) as

pifazbb | 1 \2® /1 a—1 c—a-1
XEE o g e = Blac—a) o 17 ho(0)
v+1(h9( )) pqv(b d; xt ) pqv(b/ d/ yt)dt
dala: bl 2/ ra=1 sb-1 2
Xl.'l.’l a ’ ;@ = / Xst
l-lvl[c:d;d’ oY ] B(a,c—a)B(b,d—b) Joay (1 —r)aer1 (1—s)p—d+1©
ho(D)ho()K, ., 1 (ho (1)K, . 1 (ho(5) @}, (b1 syt)dr ds,
and
a: bb/ 2/717 tafl rbfl
X ,@ = T
[ cdid Y ] B(a,c—a)B(b,d' — b)) /(0,1)2 (1—r)a ot (1 — b=

"V ho(t)ho(r)K,, 1 (ho (1)K, 1 (he(r))P (b ds xt%)didr.

THEOREM 4. The function X [x ¥;0] in (3.3) possesses the integral form:

X y,®] — % ;a) ‘/Olta_l(l _t)c—a—l he(t)

7 B(a,c—

b/

1:0;1
Xian [ dd/

Kv+%(h9(t))0F1(—;d;xt2) @, (bidy)dr, (3.8)

provided min{a,c —a} > 0.
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The Kummer’s confluent hypergeometric function oFj is related to the Bessel
functions J,(z) and the modified Bessel function I, (z), both of the first kind of the
order v with the formulae [22, p. 228, Entries 10.16.9, 10.39.9]

2 \%
oFi (—;v+1;—%) —T(v+1) (%) Io(2), (3.9)

2 2\ V
oF1 <—;v+ I;ZZ) =T(v+1) (;) 1y(2), (3.10)

where —v € N in both cases. Thus, using (3.9) and (3.10) in (3.8), (3.13) and (3.14), we
yield integral expressions for these extended Exton’s double hypergeometric functions.

COROLLARY 4.1. Let the parameter space the same as in Theorem 4. Then inte-

gral representations hold for X 11 P 11 [x,y;0] in (3.3) as

0] = 2 EE T i et gl

n B(a,c—a
K,y (o (1) Ja-1 VA D) @, (B3 d's yr)dr (B.11)

1-d
L
x,y;@] Y ERC R / 11 =) /R (1)
0

7 B(a,c—a)
Kv+%(h9(t))ld 1(2\/_t) pqv(b/;d/;yt)dt (3.12)

THEOREM 5. For A,R(p),R(g) >0, v €R and min{a,c—a} >0, we have the
integral expression for Xllfll;;? [x,;©] in (3.4), namely

xy,@} — E;a)/‘oltul(l_t)c a—1 hﬂ()

7 B(a,c—
Kv+%(h6(t))0F1(—;d/;yt) pqv(b d;xt?)dr. (3.13)

a:b,—

X { dyd

COROLLARY 5.1. For A,R(p),R(q) >0, veR and a,c,d >0 that min{a,c—
a} > 0. Then we have

— 2T(d)y T [, aa o
0| =4/——— 7 (1—1)¢ ho(t
%70 \/nB(a’c_a)/O (1-1) o)

Ky (ho(0)) o1 (250) @ (b %)

2 F(d/)y% Lo g a1
;0| = - 7T (1—1) e hy(t
Y ] V nB(a,c—a)/o ( ) o(?)
Ko 1 (ho(1)) Lr—1(2/57) @ (bsd;xt?)dr.
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THEOREM 6. For A, R(p),R(g) >0, v €R and min{a,c —a} > 0 we have the
integral

21 Lo Cu
. — It a 1— c—a
%76 EBTC_@ |- 0

K. 1(ho(1)) oF (—d:xt?) oFy (—:d;yt)de. (3.14)

Loof[at —i—
L] exdsyd!

COROLLARY 6.1. For d,d" > 0 and the same parameters as in Theorem 6 the
integrals hold

1-d 1-d
roofa:—s— . [2 F(d)F(d’)x—z—y—z— L d a1
Xl:l;l [C:d;d/ —x,—y,@)] = E B(a c—a) o t 2 (I—I)C “
ho (K, 1 (ho (1) Ja—1(2v/x0) -1 (2V/y1)dt, (3.15)
1—d 1-d'
coofa:——| o1 [20@r(@)x=zy =" /1 ed e
Xt [Cidm’/ x’y’Q] ~Vrn  B(ac—a) 0! 7 (1=

ho (K, 1 (ho (1)la—1(2v/xt) Ly—1 (2V/y1)dt

THEOREM 7. For A,R(p),R(g) >0, vER and a > 0 we infer

;1] a: b;b/
o1 [— cdyd'

. _ 1 al A A 1ol
x,y:0] = F(a>/0 O (b ds )0 (B ds ),

P4V
(3.16)
THEOREM 8. For A,R(p),R(g) >0, veR and a > 0 there follows
XlOl b/ @ 1 ~ —t ,a—1 F d 2 b/ d/ d
0:1;1 dd/xy’ m 0 e 7 01(_’ ’XI) pqv( yt)

3.2. Recurrence relations

Next, we establish three recurrence formulae for the Exton’s functions X 11::?“11 [x,y;0],

X 11::11;;? [x,y;0] and X 11::10;10 [x,y;0] by using the contiguous relation for the confluent hy-
pergeometric oFy, see [28, p. 19, Eq. (2.2.2)] or [28, p. 20, Eq. (2.2.7)].

LEMMA 1. We have the following contiguous relation

oFi(—=7—Lx) — oF1(=:7:x) — oFi(—:y+ L;x)=0. (3.17)

_r
y(y—1)
THEOREM 9. There holds the recurrence relation for X [x y,0] in (3.3):

a:—b
c:d—1;d
a(a+l)x Xl:O;l{ a+2: b
cle+1)d(1—d) B Le42: d—l—ld’

1:0;1
XY 9} =X\ [

X, V5 @)}

xy,@].
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Proof. Applying the contiguous relation in the Lemma 1 to the integral (3.8) after
simplification we obtain the statement. [J
THEOREM 10. The recurrence relation holds true:

a:b;—
2d;d’

a:b;—
c:d;d —
n ay 1.1,0[ a+1:b;—

cd' (1—d) "Bl le+1:dyd’

il

xy,@] X ?{

x,y;@]

x,y;@)} .

By virtue of the relation (3.17) applied to (3.13) we arrive at the claim of the
theorem. So, no need is there for further detailed explanations. Moreover, the relation
(3.17) to used in the integral expression (3.14) results in the next result. We also skip
the straightforward steps in proving this recurrence.

THEOREM 1 1. The following recurrence relation for Xllfﬁ;? [x,y,0] in (3.5) holds
true:

1:0;0 - . 1:0;0 a:—;— .
X8| i 0] =X o e
ay 1:0,0 atl:—;— . }
+cd’(1—d’)X1¢1;1{c+1:d—1;d’ %,7;©
+1 2.
e
et Dl =)t e+ 2:d+ 13—

ala+1)(a+2)xy Xl:O;O[ a+3:—;—
clc+D)(c+2)d(1 —d)d'(1—d) "B Le+3:d+ 1id

x,y,@] .

4. Functional bounds for extended Exton’s X functions

This section explores bounding inequalities for the extended Exton’s double hyper-

geometric function XC DD [x, ¥;0]. Our main aim in this section are to find bounding

inequalities for the above considered cases of this function.

4.1. Functional bounds extablished via series representations

In this introductory part of this subsection we present sharp estimates for the ex-

A
tended Beta, hypergeometric and confluent hypergeometric functions B% pave Fpg v and
q)/l

Pia;V

The first auxiliary lemma describes an estimate for B% defined in (1.2).

p.q,v
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LEMMA 2. [24, p. 5, Theorem 2, Eq. (8)] Let p,q >0, A € (0,1)U(1L,00),
v € R. Then for all 2min{s,t} > A > 0 we have

1 1

\/WKer (( T‘HI“')AH> B(s—

A A A
BP q.v ( ) S 1 1 A S f’t 7)
\/E(pl—l +gAi-1 ) 2
A A
= Q(p.q)B(s— 5.1~ %). (4.1
The second auxiliary lemma gives an estimate for Fy, , and d)p q,v Presented in

(1.5) and (1.6)

LEMMA 3. [25, p. 7, Theorem 3.2] For all p,q >0 and A € (0,1)U (1,),
vER, orwhen p=0=gq, R(t) > R(s) >0 we have

B(s— 5.t s— 2

|F(asit:2)| < Q(p.q) ( B(zst—s) 2)2F1(a,s—%;t—k;lz\),
Bs—&,t s— 2

@}, (s::2)] < QL (p.q) (B(Zst—s) 2)®(s—%;t—/l;|z\), (4.2)

provided 2min{s,t —s} > A and yF| and ® denote the Gauss hypergeometric function
and the Kummer confluent hypergeometric function, respectively.

The following theorem pr0V1des bounding inequalities for following Exton’s dou-
ble hypergeometric function X1 10 Ox,y:0], Xllfll;;ll [x,y;0] X11::R;11 [x,y;0], Xllfll;;lo [x,y;0]
and X 11:10;?[)6’ ¥, 0] by using their series representations given in the previous section 3.

THEOREM 12. Assume that p,q >0 and A € (0,1)U(1,e°), v € R and the con-
straints

A A A
min{a,c —a} > 5 min{b,d — b} > 5 min{#’,d' —b'} > 5

Then we have the following functional bounds

e e [ e
Xffé)[i:%fﬁjgjhxuwy\y 43)

[0 e < [ad g B2 B0 gd 0 S)
B~ o= B[4 T D% )

4.4)
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s

A A A A
yroa[a:=b | N o 2B(a—5,c—a=%)B(b' —5,d' -V ~5)
it | o: gz (2O S [ (P9) B(a,c—a)B(b.d' — 1)
A A
wifa—5:—b —5%
X C T 7 ] (4.5)
A A A A
gro[aibi—| o1 o 2Bla—5,c—a—5)B(b—5,d—b—7)
LEL e:did HYs < [@v(pa) B(a,c —a)B(b,d —b)
A l
110[a b—
X[ T W] 4.6)
oola: — — B(a—&c—a—&) oofa—2% ——
10,0 a4 —; . A ’ 1:0,0| a R
‘XIZM [c:d;d/ x,y,@” < (p.q) B(iz c—a) : X [c—i 2d;d’ ] ’
4.7)

Proof. We first prove the functional bound for (4.3). Applying the bound of
Bg%v(s,t) in (4.1) to the extended Exton function (3.1) we get

quv(a—|—2k+nc a) pqv(b+kd b)xy
B(a,c —a) B(b,d—b)  k!n!

Y

k,n=>0

‘Xlzl;O[a 1b;—
1:1;0 Cid;—

o] -

> @ Blat2ktn-%.c—a-24)Blb+k-4d—b-%) [y

< |2 (p,
[ v(p q)} kéo B(a,c—a) B(b,d b) K n!

Bladiea B0 ddb-§) ypra-d:
[Q%(p.g)] " Blac—a)B(b,d—b) o Le—A:

This proves the inequality (4.3). Similar arguments as in this proof verify (4.4), (4.5),
(4.6) and (4.7). The details are omitted here. [

4.2. Functional bounds via integral representations

In this subsection, we investigate the bounds of some members from the class of
extended Exton’s double hypergeometric function X D D, [x ¥;©] having integral rep-
resentation formulae. To accomplish this goal we review and recall certain inequalities
pertaining to the generalized hypergeometric function, Bessel function and modified
Bessel functions of the first kind as follows:

e For B; > oj >0, j=1,r and 7 > 0, there exist Luke’s bilateral functional in-
equalities for the generahzed hypergeometric function ,F, [17, Theorem 16, Eq.

(5.6)]
e < Fo(on,.. . o Br,. . Brit) K 1—w(1—¢),
where
max O(j
_Iggsr
min f3;’

I<j<r



1298 R. K. PARMAR, T. K. POGANY AND S. PIRIVINA

and the equality holds for r = 0. In the case when r = 1 we have the Kummer
confluent hypergeometric function ®(ct; ;1) = 1 Fi(a; B31); in that case when
B > o >0 we have

o
eﬁ’g@(a;ﬁ;t)gl—%(l—e’), 1>0. (4.8)

e The set of bounding inequalities for J, and [, read as

(1) von Lommel’s bounds [31, pp. 31 and 406], [14], [15, pp. 548-549]

1
Jv(t)] <1, J < —, veR,, teR; 4.9
v (1)] Jvi1(2)] NG + 4.9
(i) Minakshisundaram and Szdsz bound [6, Eq. (1.8)], [20, pp. 36-37]; cf. [31,
p. 16]
|J(t)|<¥ m ’ v>0, teR; (4.10)
\% X F(V+ l) 2 bl = bl b .

(iii) For v > 0 and ¢ € R there are the bounds by Landau [13]

(@) <bLv3, by = V2supAi(r), (4.11)
=0
(@) <ecle|T'3, e =supt'PUo(r), (4.12)
>0

where Ai(-) stands for the Airy function

Ai(r) = g \/g {1_1/3 {2 (%)3/2} +J1)3 {2 (%)3/2}} L @13)

(iv) Olenko’s bound [21, Theorem 2.1]

372
< 13, 8 20 —. 4.14
gg\/ﬂj‘,(m bL\/v oA gy —idos V>0, @G1d

where 7| is the smallest positive zero of the Airy-function Ai in (4.13) and
by, is the Landau’s constant in (4.11). This bound is asymptotically precise
and the constant by, is the best possible.

(v) Luke [17, p. 55, Eq. (6.25)] obtained the following result

O

1(7) NPEEY cosht, t>0, u>—1. (4.15)

The following theorem states our second set of bounding inequalities.
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THEOREM 13. Letting p,q >0 and A € (0,1)U(1,e0), v € R 10 hold the fol-
lowing constraints

A A A
min{a,c —a} > 5 min{b,d — b} > 5 min{b’,d’' —b'} > 5

Then we have the following bounds

—d
ofa: —;b N 2 |x \T d)B (a—d—%—kl,c—a—%)
‘Xl [c dd’ —x7y7®”< [Qv(p"’)] B(a,c—a)B(t.d' — b))
)
B —4d -4 {1-—Z[1-0(a—d—4+Lc—ad-2+L:Dl)]}.

Next, there holds

I L L/ R S
1:1;1 c:d.d [R4) \ym [g@(pﬂ)]*zB(a7c—a)B(b’,d'—b/)
;A g I A b/_% A
BV —4.d —b _7){1_d’—)t [(1—(I)(a—d—5+1;c—d—/l+1;|y|>]}7

(4.16)

where by := /2 sup,~q Ai(2\/xt) denotes the first Landau’s constant.

Proof. First, apply the estimate (4.2) to the integral representation (3.11) to obtain
roafa:—b
‘Xl 1;1 {

\/>|x| —kd b %)
—x,y;0
cdd/ ’ ac—) (b’d’ b’)
/1 t“_d\/he(t)K
0

et K (o (0) [ (V0| @0 — 5 — s i)

<Qi(p.q)

1-d
2 {7 I(@)B -5,d -1 -3)
T B(a,c—a)B(b,d’ — ')

)4 q
- ma 1—t)*+qgt* s K,, ( +7>
nax \p(1 =0 +a &g T

D ama-t %1
/ T2 (1—1) a-b- a1 (2/at)| @B — 41d — As|ylr) de
¢‘x B(b' —5.d'— b/ %)
(a,c—a)B(t/,d' =)
_ A rp_ 9
%‘Eﬁé‘“’ (=07 +a) Ky (it {37 +<1_,>x })

A
/ 4 (1 )5 g (/)| @ — Rid — syl dr
0
4.17)
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Both estimated functions in the integrand are positive in the declared range of its pa-
rameters, and the Macdonald function K, (z) monotone decreases and it is continuous
in z>0. For iy (t) = p(1—1)* +qt*, we have I (1) = A [—p(1 —t)’l_1+qt’l_1] , and
the stationary point becomes

1
ty= —— € (0,1).

1+(1)ﬁ

<

Furthermore
W) =2 —1)[p(1—1)* 2+g* 2] <0, A €(0,1),

therefore 7y is the abscissa of maximum for 4 (¢), consequently

hl(l‘o)z T L)A—l s (4.18)

Now, we analyse the argument function of the Macdonald function hy(¢) = pt’7L +
q(1—1)~*. The stationary point 7, is the solution of K (t) = —A [pt"l_1 —q(l—
1)1 =01in1 viz.

1
H=——"¢c(0,1).

L+ ()

Being (1) = A(A+1)[pt ™2 +q(1—1)*72] > 0 forall 1 € (0,1), sois /g(t1) the
global minimum; here

ho(t1) = min ho() = (7o + prim )+
0<t<1
accordingly
K, 1(ho(n) =K, i ((p77 +q71)* " (4.19)
v o)) =8, 1P q : :

Put (4.18) and (4.19) into (4.17) and abbreviate

A
Qv(Pa‘I): 1 1 Al 9

which gives

20(d)|x| 2" B ~5.d b %)
B(a,c —a) B(b’,d’—b’)

roafa:—b
‘X“‘l {c:d;d’

—x7y;®} ‘ < [93 (p,q)}

1 7d7& . 7&71 / A /
/ T (=) T g (V) [ — Ad — A lyln)dr. (4.20)
0
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By virtue of Luke’s upper bound (4.8) for Kummer’s confluent hypergeometric function
®(-) in (4.20) we conclude

0:1 34
)Xl {c dd’

oy v P T@p ' B -4.d -0 -%)
x,y,®”< [Qv(qu)] B(a,c—a) B(b’,d’—b/)

! a—d—% ca-to V-4 t
-/Ot =51 —1)e3 1|Jd,1(2\/?cz)}[1—d/_i(1—elyl)}dz. 4.21)

Using the first von Lommel’s bound in (4.9) and evaluating the (4.21) we find

[P B2
B(a,c —a) B(b’,d’—b’)

{a —b

1:0:1
‘X” c:d;d

x7y;®} ‘ < [93 (P,q)

laf _4 cfuféf b/_&
-/Ot TEA—n T 1 o2 (1=,

By utilizing the first Landau’s result (4.11) we readily derive the inequality (4.16) in a
similar manner. [

As to the counterpart result in which the modified Bessel function of the first kind
1;_1 has important role we should start with the integral representation formula (3.12)
of Corollary 4.1.

THEOREM 14. Forall p,q >0 and A € (0,1)U(1,%), v €R and to hold
A A
min{a,c —a} > 5 min{b',d' — b'} > Px

we have for x >0

A A I A g I A
olfa: —b/ ‘< 2 2B(a—7,c—a—7)B(b—7,d—b—j)
‘Xl { cdid' ”’6] < [&v(p.9)] B(a,c—a)B(V,d' — 1)
/I /l b/_&
cosh(2\/—){ —/l+d’ iq)(a—%c—/l;\y\)}. (4.22)

Moreover, for the same parametric range and for 0 < x < %7 2Vx+y| < 1,itis

a—’zl,c a——) (b'— l,d’—b’—%)

B(a,c—a)B(b',d' — V)

x,y;®H < [Qé(p,q)r B(

V-5 A V-5 A
{1 -2 2)0(a—4ic—aavi) + o—20(a—hie—A2Va+ ) | 423)

Proof. As x > 0, estimating the integral (3.12) with the Luke’s bound (4.15) we

get
xy:0]| < @% [t Vi@
Kv+1( ( )) |Id 1(2\/—0‘ ‘q)pqv(b/;d/;yt)‘dt

:0;
1;

SRR

]
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S\/gm /Olt“_l(l—t)c‘”_l ho (1)

K, 1(ho(1)) cosh(2y/xt) |(I)p gy ('sd' s yn)lde.

Apply now (4.2) to the extended Kummer function’s modulus, and treat the resulting
Kummer function by another Luke’s bound (4.8). This results in:

2
Qf(p,q)] BY —5,d' —b' - %)
B(a,c—a)B(b',d' —b')

[

d;d' xy’®H<[

Lo g A
/0 151 = 1) 5 cosh(2y/xr) B(B — &1 d’ — As [ylr) dr

2
_ [ BW —5.d -1 %)
= B(a,c—a)B(b',d' —b')

1
/ t“_%_l(l —t)C_“_%_1 cosh(2+/xt) [1
0

_ [Q%4(p,q)]"B(b —4,d' — 1/ — %) cosh(2,/x)
= B(a,c—a)B(',d" — b’)

L A b —%
. a—%5-171 _ ,\c—a—%5—1 A TN
/0 2 (1 =) [1 70 (1—e )] d

(9 (p.9)] "B —5.d' b/ %) cosh(2y) |

/

— 5 _ o
t
-2 /l(l—ey)}dt (4.24)

_ 2 kg 2
- Blac_a)BH.d V) Bla=3,c-a-3)
b/_& b/ A
[1-Z =2+ 2 o(a— 4]

Here, we use the obvious estimate

sup cosh(2y/xt) = cosh(2v/x), x>0,

0<r<1

whilst the last equality follows by

1
/ N (1—x)? e de=B(p,q)®(p;p+q;r),  min{p,q} >0,
0

which completes the proof of the first bound in (4.22).

Next, by using the inequality cosh(z) < €', that is, in our setting cosh(2/xr) <
e2V¥ for t > 0 in (4.24) for the same parametric range and simplifying, we get the
desired second bound (4.23). [

THEOREM 15. Assume that p,q >0, A € (0,1)U(1,e0), v € R, and min{a,c,b,
d—1,b',d'} >0 for which hold the following constraints

A A A
min{a,c —a} > 5 min{b,d — b} > 5 min{#’,d' —b'} > 5
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Then, the following bounded inequality holds true for x > 0,y € R:

[ -] < b g | BRI Y )
(-2 (e die-abi))
Moreover,
'Xfﬁoﬁl[i:;;;;fz)fl vxel|< [etra] (g() E a))L (czji i b’%)
%ZL%Z (a-d=5+3c-a-%)
-{dl ’;,,L[l—cp(a—d—%%,c d—A+2 \y\)]}
X ,

.{1_%[1_ (a—d=25Ye—d-a+ L) |}

where for Landau’s second constant cy, see (4.12), dp denotes Olenko’s constant (4.14)
and by, stands for the Landau’s first constant (4.11).

Proof. First, we point out that the estimates of Bessel function in (4.10), (4.12)
and (4.14) are of the magnitude |J;_(¢)| < €¢¥ where € € {[297'T'(d)] ', c,do} and
ke{d—1, é7 é} respectively. We also point out that the domain of (4.10) is t € R,
whilst for other estimates holds # > 0. Now, the application of the bound (4.10) to the
integrand in (4.21) results in

2 2 T(d)B(W —4,d — b — %)
B(a,c—a)B(b',d' — V')

! a— —& c—a—&— b/_&
e e ey [1- 52 (1)

—x yﬂ” < [Qﬁ(p,q)}

2 D(d)lx| 5" BB —%.d' — b —4)
B(a,c—a) B(bﬁd’—b’)

1 A A b —%
. atk—d—7% c—a—»-1 2 _ el
/0 t (1 t) [1 d — A <1 ¢ )] dr

CTeoi 212 D@5 B =44 —b - %) v -4
=C [Qv(pﬂ)} B(a,c—a) B(b’,d’—b’) l_d/—l

1 A A
/ ta+K—d—2 (1 _t)c—a—z—ldt
0

<< [Qﬁ (p,q)}

b/ A

1 A gt
+ 7 2 lu+K7d7 > (1 o t)cfuf 5 —1 e|y|t dl}
0

—A
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_ A 2 F(d) (b’_&,d/_b/_&)
=C [Qv(p#])} B(a,c—a) B(;/’d/—b/) 2

~B(a+K—d—%+l,c—a—%)

b/_& b/ A
. 1_—+ 2®(a+1< d— +1'c+K—d—)L+1'M)
A d = B ’

e [0ty o] DN B/~ 5. —b' - 3)
=c [Qv(p#])} B(a7c—a) B(b/,d/—b/)

-B(a—l—K—d—%—i—Lc—a—%)

d—A

Than, inserting (€,x) € {(1/[27'I'(d)],d — 1), (cL,—%),(do,—%)} . respectively, we
get the bounds affiliated to the Minakshisundaram and Szdsz, the second Landau’s and
Olenko’s estimates. [

I_ A
.{1—b > (1—CD(a—H(—d—%—I—l;c—f—K—d—)L‘H;y))}'

THEOREM 16. Following bounded inequalities hold true:

1—d 1-d'
X[ 2 |yl 2 T(@)I'(d)

1:0;0 - e < OF
)Xlll[c did |~ y,@” S (p.g) B(a,c—a)
B<a—d dl*%*,c—a—%)
by b |x|=* |y| =" T(a) T(d)
1:0;0 ) . < Ot L
’Xlll[c dd/ x7 y,@)”\QV(P#]) 3/—d_ /—d,_ B(a7c—a)

Bla—d-24=c-a-%), (429
asa,c>0;d,d >1;2(a—d)+3>d +A, 2(c—a) > A. For min{a,c—a} > % >0
it is

0; — = B(a—& c—a—&)
Loofat —; A 2 2
H v e <
‘Xltl;l |:Cld;d/ X y,@” \Qv(p7Q) B(a,c—a)

whilst when 2(a—d) >d +A —2,2(c—a) — A > 0, we have

)

2-3d 3d 2-3d’
—i= D(@)T(d") cjlx| 7 Iy[ 75—
1:0;0 B A L
oy <
‘X“l{c did |~ y,@H\QV(p7q) B(a,c—a) V4

B(a—d—d,%l—kl,c—a—%),
and min{4(a —d) —2(d'+ 1) +3,2(c —a) — A} > 0 implies the bound
2 ! /
dpT(d)T(d") |x|11l 12d
2B(a,c—a)
-B(a—d—%—i—%,c—a—%).

In this theorem throughout min{a,c —a},d,d' > 0, unless otherwise stated.

1:0;0
‘Xlll

; e A
|:C dd/ — X, y7®:|‘<g2v(paq)
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Proof. Taking modulus of the both side on the integral representations (3.15), we

obtain
g dl4a—1
- P(@) b # / o
9| < B(a,c—a) o (l_t)afc+%+l

(0K, 1 (ho (1)) a1 (2Vt) Jg—1 (24/30)] dr. (4.26)

1:0;0 —b
‘X”l{c d:d'

Now estimating %, (¢) and hy(¢) in the integrand similarly to Theorem 13 and substi-
tuting (4.18) and (4.19) in (4.26), writing shorthand

we obtain

roofa:—b
'X“;l [c cdyd’

P(d)T () [ 7y 2
B(a,c—a)

./01 o= 4 F(—ne 3 a1 (2vt) Jg—y (2y/30)| de. - (4.27)

Using the first one of von Lommel’s bounds in (4.9) we find that

D(d)0(d) x| 2 [y 5
B(a,c—a)

d-A 3 A
B(ﬂl—d—T+§,C—a—7>.

1:0:0 34
)X“l[c dd’

Next, by utilizing the first Landau’s result (4.9) we deduce the inequality (4.25) in a
similar manner.

Now, re-calling that the estimates of Bessel function in (4.10), (4.12) and (4.14)
have magnitude |J;_1(¢)] < €¢|*, |Jy_1(t)| < €, [¢t|*' where

¢ e {RU(@)]  sendo}: € € {27 T(@)] Y erdo);
and
KG{d—l,—%,—%}, Kle{d/_la_%v_zlt}7
respectively. Now, the application of these estimates (4.10) to the integral (4.27) results

gives

() (') x| 7 y| 3
B(a,c—a)

! a—d—du’%_l c—a-t_1
: /0 =TT (1= ) T g (23 Ty (24/5) | dr
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K v
l—d+k 1 a+r<+7'—d—d+§ 1

r(d")|x t
ST i T SRS RN
) 0 (l _t)a—C+§+l

~dix ! d+'<1

D(d)0(d) x| 5 ]
B(a,c—a)

Bla+k+5 —a- L2l g cq-2).

=¢e,Ql(p,q)

Than, taking either € = [2¢-'T(d)]~!, ¢, = [2¢-'T(d")] ™", ¢z or dp and k € {d —
1, —%7 —%}, ki € {d —1, —%, —%} mutually, we realize the bounds affiliated to the
Minakshisundaram and Szdsz, the second Landau’s and Olenko’s estimates, respec-
tively. [

5. Applications to statistical distribution

Special functions are important in studying probability distribution and statisti-
cal inference (see for instance [2, Chapter 17], [18, Chapters 6 and 8], [4,7-9, 11]).
Recently, researchers have been studying McKay Bessel-type distributions, which are
related to special functions, such as Horn’s confluent functions (see [4, 7, 8, 16]). The
extended Exton’s double hypergeometric function (3.16) is expected to have many ap-
plications, similar to the generalized Beta and Gamma functions. One potential appli-
cation is in statistics, and it can also be applied in inequality theory to derive novel
a:bb
—:d;d

bilateral bounds for the generalized Exton’s function Xéfllfll[ X, y;@] using

probabilistic methods.

Consider the random variable & defined on a standard probability space (Q,3F,P),
where Q is a sample space, § is the related sigma algebraon Q, and P is a probability
function characterized by the following probability density function throughout (abbr.
density):

folw) = Cpq(ic,a) ut™le " % (bidixu?) @, (b:d'syu), u>0
0 elsewhere,
where it is assumed that R(x) > 0, R(a) > 0, the positive arguments (x,y), and the

parameters p,q,V,A and u,v,V are suitably constrained so that fe(u) remains non-
negative. By the Theorem 7, that is, Eq. (3.17) the normalization constant reads

KH
CPJI(Kva):
’ gl a:bb Xy
[ L]

We define the generalized Horn’s gamma distribution of the random variable (abbr. r.v.)
& as GHG(0), where 0 = (p,q,v,A;a,b,b';—.d,d’,k;x,y) is the parameter vector.
Alternatively, we denote this as & ~ fe(u). Hereafter, we will derive some statistical
functions for the r.v. & ~ GHG(0).
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5.1. Raw moments and Turin inequalities

The sth fractional-order moments m;, s > 0 equal

prfats:bb | x oy
- w0 Clad e el
mszEész/ W fe(u) du = . (5.1
é s A
0 K Xl:ll[a b,b X X@}
0:1;1 | _ d;d/ K2’K’

As the first application of (5.1), we derlve a Turdn-type inequality for the extended
Exton’s double hypergeometric function X;), 1111[ -] by virtue of the moment inequality,
which holds for the nonnegative r.v. & ~ f;( u). Lukacs reported on the moment in-
equality [16, p. 28, Equation (1.4.6)]

m§+, < mgmgyoy, min{s,r} > 0. (5.2)

By inserting the expression (5.1) in (5.2), we obtain for all 2s > —a, s+ 2r > —a the
bounding inequality

F(a+s)F(a+s—|—2r) 1 1.
1:1:1 1:1:1 1:1:1
{X01 [S"'r]} S (atstr) Xo1:1 [s]'Xo:l;l [s +27],
where the shorthand
1:1:1 pifa+o:ibb | x y
Xora [0] = Xo1 { —dd %% (9]

is used. Also, another statement by Lukacs [16, p. 393, a)] asserts that for 0 < r <s
the moment inequality ms » < mogmy, holds, which can be inferred using the Cauchy—
Bunyakovsky—Schwarz inequality. This inequality implies a variant of the Turdn-type
inequality, viz.

F(a +2s)T(a+2r)
(a+s+r)

{X s+ ]} < Xolfll;;ll [2s] -Xolllll[2r} 2min{s,r} > —a.

5.2. Characteristic function

The Fourier transform of the density fg(¢) is the characteristic function (ch.f.)
@¢(t) of the r.v. . Hence,

0:(1) = Ee* = [ e/ (u)du
:c,,ﬂ(x,a)/o e Tyt (bydsxt) D, (b3d s yu)du.

Therefore, again by virtue of Theorem 7, the ch.f. becomes

avlni[a:bb X y o }
I i 63
Pelt) = iyax il a:bb | x y. ' ’
(K —it)* X —dd e
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The next summation result establishes a connection between the density and the ch.f.
through the corresponding integer-order moments. For this result we need the definition

of the multiple Srivastava—Daoust generalized Lauricella Fl()") series [30, p. 37, Eq.

(2D]
1@ 00, 8O () g () 0]
FCD(I)’..;]_)(H) X1,y.eesXp
[(e) sy sy o (@) 8] [(@) - 5]
A B (1) B (n
,l;[l(aj)ml@_()+ “+mn0; l;[(b )ml(’);l) ..jl;ll(bj )mn(o_gn) ’1”1 _x’r?n
_m>o C D( ) (1 D(") (n) m—1'~.. mn' ’
jl;ll(c )mlw(>+ —" ,l;ll(dj >m15}1> "Jl;ll(d, )mna]@
(5.4)
where m := (my,---,m,) and the parameters satisfy
1) 1 n n)
o),.0D e 6. 5
We write (a) for the sequence of A parameters ajy,---,a4, with similar interpretations

for (b1)),---,(c),---,(d™). Empty products should be interpreted as unity.
The transformation formula of the specific Srivastava—Daoust triple generalized

Lauricella hypergeometric function into the Exton’s double hypergeometric series fol-
lows.

THEOREM 17. For any positive parameter vector ©® = (p,q,v,A;a,b,b';d,d’
X,y) it is
K¢ 1:1 a: b b/ X y
— X [ T ;9}
(k—it)a OB L —did | (k —it)? " Kk —it

v la:1,2,1) (b 1) [ 1] |
= Fora ( —:d:1];]d 1]

where Folfll;;ll stands for the Srivastava—Daoust triple generalized Lauricella hypergeo-
metric F function.

Proof. The Maclaurin series of the ch.f. reads [16, p. 41]
ir)"

(pé (Z) = 2 my Q .

>0 n.

Inserting (5.1) into this expansion routine steps lead to the assertion. Indeed, we have

L[ @b | x oy (@n yrpafatnibb | x y ()"
9e (1) Xo1 {— d;d K2’_®} 2 e Ko [ —:d;d )Kz’E’G)} n!

n
n=0 K

_ (@@t 1)em D)) (£)" ()" (2)"
n,km=>0 (d)i(d)m n! k! m!
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s @raen U () () ()"

n,k,m=0 (d)k(d/)m n! k! m!
_ gl la:1.2,1]:[p: 1[0/ 1] |it x y
“h |\ U ey ek )

where we applied the property (a);(a+ j); = (a) j+; of the product of two Pochhammer
symbols. Putting (5.3) into the left-hand-side expression, we complete the proof. [

6. Concluding remarks and observations

Present research outcomes introducing the four parametric extension of certain Ex-

“R-R/
ton’s double hypergeometric function Xég;’g, [x,y,0]; © = (p,q,Vv,A) by utilizing the
definition of extended Beta function B;}%v (s,7) in (1.2) which involves the Macdonald

kernel K 1 in the kernel of integral. Then we systematically developed the associated

integral representations including Euler’s and Laplace-Mellin type, as well as certain
integral representations involving Bessel J,(z) and modified Bessel functions I(z)
along with some recurrence formulae. By applying several functional upper bounds
such as Luke’s, von Lommel’s, Minakshisundaram and Szdsz and Olenko bounds, we
derived several bounds for defined extended Exton’s double hypergeometric functions

Xég;gl, [x,y;©]. Finally, as an application, we introduced a new probability distribution
building the density function in terms of specific extended Exton’s function and studied
moments and characteristic function. Using related extended Kummer and Horn func-
tions moment inequalities of Turdn type are also proved. It is worth to mention here the
recent articles by Jankov MaSirevi¢ and Pogany [10] and Pogédny [27] in which another
type functional inequality results are presented for the Exton’s X functions, inferred by

probabilistic considerations.

We observe that for Exton’s double hypergeometric function Xllfﬂ‘f [x,y;0], we
can derive similar results parallel to Theorem 16 for (3.15) involving product of modi-
fied Bessel function of the first kind I;_; ; however, this study we left to the interested
readers. Further, for above defined certain Exton’s double hypergeometric function
X‘C“fg;gl, [x,y,©], monotonicity properties, log convexity and generating function are un-
der investigations.
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