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Abstract. In this paper, we give a novel method for proving inequalities and determining mini-
max approximants of the stratified families of functions. In the theory of analytic inequalities,
there are numerous inequalities based on which one can form a family of functions that is strati-
fied, i.e. monotonic with respect to the introduced parameter. The introduced method is based on
identifying those functions from the family that have a stationary point on the observed interval.
The applications of this method are demonstrated to the Cusa-Huygens, Mitrinović-Adamović-
type and Jordan-type inequalities.

1. Introduction and preliminaries

In the theory of analytic inequalities, the concept of stratified families of functions
was recently introduced [28, 31]. Let {p(x)}p∈P be a family of functions that we
consider for values of the argument x∈S⊆R and values of the parameter p∈P⊆R .
The family of functions {p(x)}p∈P is increasingly stratified at the point x0∈S with
respect to the parameter p∈P if it holds that

(∀p1, p2∈P) p1 < p2 ⇐⇒ p1(x0) < p2(x0),

i.e. decreasingly stratified at the point x0∈S with respect to the parameter p∈P if it
holds that

(∀p1, p2∈P) p1 < p2 ⇐⇒ p1(x0) > p2(x0).

The family of functions {p(x)}p∈P is increasingly ( i.e. decreasingly) stratified on
the set S with respect to the parameter p∈P if it is increasingly ( i.e. decreasingly)
stratified at every point in the set S with respect to the parameter p∈P .
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It has been shown in [5, 24, 26–33] that many inequalities could be proved, im-
proved and generalised using the concept of stratification.

According to [31], it is also significant to determine, if it exists, the minimax ap-
proximant p0(x) , for some p0∈P , as a function with the following property

inf
p∈P

sup
x∈S

|p(x)| = sup
x∈S

∣∣p0(x)
∣∣ .

The function d(p) = supx∈S

∣∣p(x)
∣∣ , we call the error function. The approximation

p0(x) ≈ 0, we call the minimax approximation on the set S for a given family, and the
number d0 = d(p0) = supx∈S

∣∣p0(x)
∣∣ , we call the approximation error.

In the following, we consider the case when S is a bounded real interval.

A parametric method. The method for proving some analytic inequalities from
[28] is based on the introduction and analysis of the function g : S −→ P such that

g(x) = p ⇐⇒ p(x) = 0 ,

if such a function exists. In particular, in [28], the cases when the function g is strictly
monotonic or when it has exactly one local extremum on the observed interval were
analysed.

In this paper, we consider families {p(x)}p∈P of differentiable functions with
respect to x and we give one method for proving some analytic inequalities that is
based on the introduction of the function g1 : S −→ P such that

g1(x) = p ⇐⇒ p(x)
x

= 0 ,

if such a function exists. We show that based on the monotonicity of the function
g1 , some inequalities could be proved and the minimax approximant of the family
{p(x)}p∈P could be determined.

Compression at the point. Let S be a bounded interval with endpoints a∈R and
b∈R , a < b . We say that the family of functions {p(x)}p∈P is compressed at the
point a if p(a+) = 0 for each p∈P , i.e. that the family of functions {p(x)}p∈P is
compressed at the point b if p(b−) = 0 for each p∈P .

Determination of the minimax approximant. To determine the minimax ap-
proximants in [5, 24, 31, 32], Theorem 1 and Theorem 1’ from [31] were used. Based
on those theorems, the following theorem holds.

THEOREM 1.1. Let {p(x)}p∈P , for x∈S = [a,b] and p∈P = [c,d] , be a family
of continuous functions with respect to the argument x , which is compressed at the point
a and increasingly ( i.e. decreasingly) stratified on the interval (a,b] with respect to
the parameter p∈ [c,d] . If it holds :
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(a) c(x) < 0 ( i.e. c(x) > 0 ) and d(x) > 0 ( i.e. d(x) < 0 ) for each x∈(a,b)
and c(b) = 0 ( i.e. d(b) = 0 ) ,

(b) the functions p(x) are continuous with respect to p∈(c,d) for each x∈(a,b] ,

(c) for each p∈ (c,d) , there exists a right neighbourhood of the point a in which
p(x) < 0 holds,

(d) for each p∈ (c,d) , the function p(x) has exactly one extremum t(p) on the
interval (a,b) , which is a minimum,

then there exists exactly one solution p = p0∈(c,d) of the following equation∣∣∣p

(
t(p)

)∣∣∣ = p(b)

and for d0 =
∣∣∣p0

(
t(p0)

)∣∣∣ = p0(b) , we have

d0 = inf
p∈P

sup
x∈(a,b)

|p(x)| .

In the given theorem, (compared to Theorem 1 and Theorem 1’ from [31]) we
additionally require the stratification of the family at the point b , which ensures that the
functions c(x) and d(x) are determined uniquely.

A method for proving MTP inequalities. In applications of the novel parametric
method in this paper, to prove the monotonicity of the function g1 , we will use the
method for proving mixed trigonometric polynomial (MTP) inequalities from [5, 25].
MTP function is a function of the form

f (x) =
n


i=1

ix
pi cosqixsinrix ,

where i∈R\{0}, pi,qi,ri∈N0 and n∈N , for x∈R . MTP inequality is an inequality
of the form f (x) > 0 for x∈S , see [5, 8–10, 19, 21–23, 25, 29, 38, 45].

According to the method for proving MTP inequalities from [5,25], we first trans-
form the MTP function f (x) in the form f (x) = m

i=1ixsi trigi(ki x) , where i ∈R\
{0},si,ki∈N0 , m∈N , trigi = cos or trigi = sin . Then, by approximating each function
trigi with the corresponding Taylor expansion of that function, we determine a down-
ward polynomial approximation P(x) of the function f (x) . If P(x) > 0 for x∈S , then
the MTP inequality f (x) > 0 for x∈S is proved. To prove polynomial inequalities, we
use Sturm’s theorem [14, 44].

2. Main results

If there exists a function g1 : S −→ P such that

g1(x) = p ⇐⇒ p(x)
x

= 0 , (∗)
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then the function g1 determines values of the parameter p∈ P for which functions
p(x) have a stationary point on the observed interval S . Therefore, on the interval
S , the functions p(x) for p∈g1(S) have a stationary point, while all other functions
from the family {p(x)}p∈P are monotonic.

In Theorems 2.1, 2.2 and 2.3, based on the monotonicity of the function g1 and
based on the properties of stratification of the family {p(x)}p∈P , we form correspond-
ing inequalities for p∈P and determine the minimax approximant of the family.

THEOREM 2.1. Let {p(x)}p∈P , for x∈S = [a,b] and p∈P⊆R (P 
= /0) , be a
family of functions that are continuous with respect to p and with respect to x for each
x∈ [a,b] and for each p∈P such that the following conditions hold :

(1) the family of functions {p(x)}p∈P is compressed at the point a and increasingly
( i.e. decreasingly) stratified on the interval (a,b] with respect to the parameter
p∈P ,

(2) the functions p(x) , for p∈P , are differentiable on the interval (a,b) and there
exists a continuous monotonically decreasing function g1 : (a,b) −→ P that sat-
isfies (∗) ,

(3) there exist limits lim
x→a+

g1(x) = C∈R and lim
x→b−

g1(x) = A∈R such that (A,C)⊆P ,

(4) there exists a value of the parameter p = B∈(A,C) such that B(b) = 0 ,

(5) there exist a right neighbourhood of the point a in which it holds that p(x) < 0
( i.e. p(x) > 0 ) for each p∈(A,C) .

Then, it holds :

(i) If p � B, it holds that

(∀x∈(a,b)) p(x) � B(x) < 0 (i.e. (∀x∈(a,b)) p(x) � B(x) > 0)

and the constant B is the best possible.

(ii) If p∈(B,C) , then the equation p(x) = 0 has a unique solution x(p)
0 ∈ (a,b) and

it holds that(
∀x∈

(
a,x(p)

0

))
p(x) < 0

(
i.e.

(
∀x∈

(
a,x(p)

0

))
p(x) > 0

)

and (
∀x∈

(
x(p)
0 ,b

))
p(x) > 0

(
i.e.

(
∀x∈

(
x(p)
0 ,b

))
p(x) < 0

)
.

(iii) If p � C, it holds that

(∀x∈(a,b)) p(x) � C(x) > 0 (i.e. (∀x∈(a,b)) p(x) � C(x) < 0)

and the constant C is the best possible.
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(iv) Each function p(x) , for p∈(B,C) , has exactly one local extremum, which is a

minimum ( i.e. maximum) , on the interval (a,b) at the point
(
t(p),p

(
t(p)

))
.

(v) There exists exactly one solution p = p0∈(B,C) of the equation

∣∣∣p

(
t(p)

)∣∣∣ = p(b)
(
i.e. p

(
t(p)

)
=

∣∣p(b)
∣∣) .

The function p0(x) is the minimax approximant of the family on the interval
(a,b) . The approximation error is

d0 =
∣∣∣p0

(
t(p0)

)∣∣∣ = p0(b)
(
i.e. d0 = p0

(
t(p0)

)
=

∣∣p0(b)
∣∣) .

Proof. Let us consider the case when {p(x)}p∈P is an increasingly stratified fam-
ily of functions. The case when {p(x)}p∈P is a decreasingly stratified family of func-
tions could be considered analogously.

Based on conditions (2) and (3), the functions p(x) , for p∈(A,C) , have exactly
one stationary point on the interval (a,b) , while the functions p(x) , for p∈P\(A,C) ,
are monotonic on the interval (a,b) .

(i) The function B(x) has exactly one stationary point on the interval (a,b) . Since
B(a) = 0 (condition (1)) , B(x) < 0 in a right neighbourhood of the point a
(condition (5)) and B(b) = 0 (condition (4)) , we conclude that the function
B(x) has exactly one minimum on the interval (a,b) . Additionally, we conclude
that B(x) < 0 on the interval (a,b) and that, based on the stratification, the
stated inequalities hold.

Figure 1: Some functions from the family {p(x)}p∈P (see Application 1) that satisfy the
conditions of Theorem 2.1 and the corresponding function g1 .
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(ii), (iv) Since B(b) = 0 (condition (4)) and the family is increasingly stratified at
the point b , it holds that (∀p∈(B,C)) p(b) > 0. Additionally, from p(a) = 0
for p∈ (B,C) (condition (1)) and the fact that p(x) < 0, for p∈ (B,C) , in a
right neighbourhood of the point a (condition (5)) , it follows that the functions
p(x) , for p∈ (B,C) , are decreasing and negative in a right neighbourhood of
the point a . Hence, we conclude that the functions p(x) , for p∈ (B,C) , have
exactly one local extremum, which is a minimum, and exactly one zero on the
interval (a,b) and that the stated inequalities hold.

(iii) The function C(x) is monotonic on the interval (a,b) . Since B(b) = 0 (condi-
tion (4)) , based on the increasing stratification of the family, we conclude that
C(b) > 0. Additionally, since it holds that C(a) = 0 (condition (1)) , we con-
clude that C(x) > 0 on the interval (a,b) and that, based on the stratification,
the stated inequalities hold.

(v) Based on Theorem 1.1. �

THEOREM 2.2. Let {p(x)}p∈P , for x∈S = [a,b] and p∈P⊆R (P 
= /0) , be a
family of functions that are continuous with respect to p and with respect to x for each
x∈ [a,b] and for each p∈P such that the following conditions hold :

(1) the family of functions {p(x)}p∈P is compressed at the point a and increasingly
( i.e. decreasingly) stratified on the interval (a,b] with respect to the parameter
p∈P ,

(2) the functions p(x) , for p∈P , are differentiable on the interval (a,b) and there
exists a continuous monotonically increasing function g1 : (a,b) −→ P that sat-
isfies (∗) ,

(3) there exist limits lim
x→a+

g1(x) = A∈R and lim
x→b−

g1(x) = C∈R , such that (A,C)⊆P ,

(4) there exists a value of the parameter p = B∈(A,C) such that B(b) = 0 ,

(5) there exist a right neighbourhood of the point a in which it holds that p(x) > 0
( i.e. p(x) < 0 ) for each p∈(A,C) .

Then, it holds :

(i) If p � A, it holds that

(∀x∈(a,b)) p(x) � A(x) < 0 (i.e. (∀x∈(a,b)) p(x) � A(x) > 0)

and the constant A is the best possible.

(ii) If p∈(A,B) , then the equation p(x) = 0 has a unique solution x(p)
0 ∈ (a,b) and

it holds that(
∀x∈

(
a,x(p)

0

))
p(x) > 0

(
i.e.

(
∀x∈

(
a,x(p)

0

))
p(x) < 0

)
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and (
∀x∈

(
x(p)
0 ,b

))
p(x) < 0

(
i.e.

(
∀x∈

(
x(p)
0 ,b

))
p(x) > 0

)
.

(iii) If p � B, it holds that

(∀x∈(a,b)) p(x) � B(x) > 0 (i.e. (∀x∈(a,b)) p(x) � B(x) < 0)

and the constant B is the best possible.

(iv) Each function p(x) , for p∈(A,B) , has exactly one local extremum, which is a

maximum ( i.e. minimum) , on the interval (a,b) at the point
(
t(p),p

(
t(p)

))
.

(v) There exists exactly one solution p = p0∈(A,B) of the equation

p

(
t(p)

)
=

∣∣p(b)
∣∣ (

i.e.
∣∣∣p

(
t(p)

)∣∣∣ = p(b)
)

.

The function p0(x) is the minimax approximant of the family on the interval
(a,b) . The approximation error is

d0 = p0

(
t(p0)

)
=

∣∣p0(b)
∣∣ (

i.e. d0 =
∣∣∣p0

(
t(p0)

)∣∣∣ = p0(b)
)

.

Proof. It is analogous to the proof of Theorem 2.1. �
In the case when the family of functions is compressed only at the point b , the

corresponding theorems could be formulated analogously. For example, Theorem 2.3
is one such theorem (and it is used in Application 3).

THEOREM 2.3. Let {p(x)}p∈P , for x∈S = [a,b] and p∈P⊆R (P 
= /0) , be a
family of functions that are continuous with respect to p and with respect to x for each
x∈ [a,b] and for each p∈P such that the following conditions hold :

(1) the family of functions {p(x)}p∈P is compressed at the point b and increasingly
( i.e. decreasingly) stratified on the interval [a,b) with respect to the parameter
p∈P ,

(2) the functions p(x) , for p∈P , are differentiable on the interval (a,b) and there
exists a continuous monotonically decreasing function g1 : (a,b) −→ P that sat-
isfies (∗) ,

(3) there exist limits lim
x→a+

g1(x) = C∈R and lim
x→b−

g1(x) = A∈R , such that (A,C)⊆P ,

(4) there exists a value of the parameter p = B∈(A,C) such that B(a) = 0 ,

(5) there exist a left neighbourhood of the point b in which it holds that p(x) > 0
( i.e. p(x) < 0 ) for each p∈(A,C) .
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Then, it holds :

(i) If p � A, it holds that

(∀x∈(a,b)) p(x) � A(x) < 0 (i.e. (∀x∈(a,b)) p(x) � A(x) > 0)

and the constant A is the best possible.

(ii) If p∈(A,B) , then the equation p(x) = 0 has a unique solution x(p)
0 ∈ (a,b) and

it holds that(
∀x∈

(
a,x(p)

0

))
p(x) < 0

(
i.e.

(
∀x∈

(
a,x(p)

0

))
p(x) > 0

)

and (
∀x∈

(
x(p)
0 ,b

))
p(x) > 0

(
i.e.

(
∀x∈

(
x(p)
0 ,b

))
p(x) < 0

)
.

(iii) If p � B, it holds that

(∀x∈(a,b)) p(x) � B(x) > 0 (i.e. (∀x∈(a,b)) p(x) � B(x) < 0)

and the constant B is the best possible.

(iv) Each function p(x) , for p∈(A,B) , has exactly one local extremum, which is a

maximum ( i.e. minimum) , on the interval (a,b) at the point
(
t(p),p

(
t(p)

))
.

(v) There exists exactly one solution p = p0∈(A,B) of the equation

∣∣p(a)
∣∣ = p

(
t(p)

) (
i.e. p(a) =

∣∣∣p

(
t(p)

)∣∣∣) .

The function p0(x) is the minimax approximant of the family on the interval
(a,b) . The approximation error is

d0 =
∣∣p0(a)

∣∣ = p0

(
t(p0)

) (
i.e. d0 = p0(a) =

∣∣∣p0

(
t(p0)

)∣∣∣) .

Proof. It is analogous to the proof of Theorem 2.1. �

3. Applications

In this section, we illustrate applications of the novel parametric method on the
Cusa-Huygens inequality, Mitrinović-Adamović-type inequality from [17] and Jordan-
type inequality from [20, 33].
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3.1. Application 1 (Cusa-Huygens inequality)

The inequality

x >
3sin x

2+ cos x

for x∈(
0, 2

)
, is called the Cusa-Huygens inequality [1–3, 7, 27, 35, 39, 41, 48].

In [28,31], the Cusa-Huygens inequality was considered by introducing the family
of functions {p(x)}p∈P , where

p(x) =

⎧⎪⎨
⎪⎩

x− (p+1)sin x
p+ cos x

, x∈(
0, 2

]
,

0 , x = 0 ,

which is defined for x∈[
0, 2

]
and p∈P = R\(−1,0) .

LEMMA 3.1. (Lemma 1 [28]) The family of functions {p(x)}p∈P is

(i) increasingly stratified on the interval
(
0, 2

]
with respect to the parameter p∈

P1 = [0,+) ,

(ii) increasingly stratified on the interval
(
0, 2

]
with respect to the parameter p∈

P2 = (−,−1] .

REMARK 3.1. The family {p(x)}p∈P is not stratified on the interval
(
0, 2

]
with

respect to the parameter p∈P = P1∪P2 . Moreover,

(∀x∈(
0, 

2

])
(∀p1∈P1)(∀p2∈P2) p1(x) < p2(x).

By applying the novel parametric method (Theorem 2.1), we provide a simpler
proof of the following statement from [28, 31].

THEOREM 3.1. Let

A =
1+

√
5

2
= 1.61803 . . . , B =

2
−2

= 1.75193 . . . and C = 2 .

Then, it holds :

(i) If p∈(0,B) , it holds that

(
∀x∈

(
0,

2

))
x <

(B+1)sinx
B+ cosx

<
(p+1)sinx

p+ cosx

and the constant B is the best possible.
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(ii) If p∈(B,C) , the equation p(x) = 0 has a unique solution x(p)
0 and it holds that

(
∀x∈

(
0,x(p)

0

))
x <

(p+1)sinx
p+ cosx

and (
∀x∈

(
x(p)
0 ,


2

))
x >

(p+1)sinx
p+ cosx

.

(iii) If p∈(−,−1]∪ (C,+) , it holds that

(
∀x∈

(
0,

2

))
x >

(C+1)sinx
C+ cosx

>
(p+1)sinx

p+ cosx

and the constant C is the best possible.

(iv) Each function p(x) , for p∈ (A,C) , has exactly one stationary point on the
interval

(
0, 2

)
. Moreover, for p∈ (B,C) , each function p(x) has exactly one

local minimum on the interval
(
0, 2

)
at the point

(
t(p),p

(
t(p)

))
.

There exists exactly one solution of the equation
∣∣∣p

(
t(p)

)∣∣∣ = p
(

2

)
with

respect to the parameter p∈(B,C) , which is numerically determined as

p0 = 1.78114 . . . .

The minimax approximant of the family {p(x)}p∈P on the interval
(
0, 2

)
is

p0(x) = x− (p0 +1)sinx
p0 + cosx

,

which determines the corresponding minimax approximation

x ≈ 2.78114 . . . sinx
1.78114 . . . + cosx

with the approximation error

d0 =
∣∣∣p0

(
t(p0)

)∣∣∣ = p0

(
2

)
= 0.0093601 . . . .

Proof. Based on Lemma 3.1, we distinguish the following two cases:

Case 1. p∈P1 = [0,+) :

We will show that for the family of functions {p(x)}p∈P1 , the conditions of The-
orem 2.1 are satisfied.

Condition (1) of Theorem 2.1 holds based on Lemma 3.1 and the fact that the
family {p(x)}p∈P1 is compressed at the point 0 .
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For x∈(
0, 2

)
, the following equivalence holds:

p(x)
x

= 1− (p+1)(1+ p cosx)
(p+ cosx)2 = 0 ⇐⇒ p = g−1 (x) =

1
2

(
1−√

5+4cosx
)

∨ p = g+
1 (x) =

1
2

(
1+

√
5+4cosx

)
.

The function g−1 (x) is monotonically increasing on the interval
(
0, 2

)
and

g−1
((

0, 2
))

=
(
−1, 1−√

5
2

)

⊂ P1 . Thus, we do not consider the function g−1 (x) in

the following.
The function g+

1 (x) is monotonically decreasing on the interval
(
0, 2

)
and

g+
1

((
0, 2

))
= (A,C) =

(
1+

√
5

2 ,2
)
⊂ P1 . Thus, the function g+

1 (x) satisfies conditions

(2) and (3) of Theorem 2.1.
For the value

p = B =
2

−2
,

it holds that B
(

2

)
= 0, which means that condition (4) of Theorem 2.1 is satisfied.

Condition (5) of Theorem 2.1 follows from the Taylor expansion of p(x) in a
neighbourhood of the point 0 , which is given by

p(x) =
p−2

6(p+1)
x3 +o

(
x3) .

Hence, all conditions for the application of Theorem 2.1 are satisfied, from which
parts (i), (ii) and (iv), as well as part (iii) for p∈(2,+) , follow.

Case 2. p∈P2 = (−,−1] :

Part (iii) for p∈(−,−1] follows from Remark 3.1. �

Figure 2: Some functions from the family {p(x)}p∈P and the function g+
1 .
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3.2. Application 2 (Mitrinović-Adamović-type inequality)

The inequality (
sinx
x

)3

> cosx

for x∈ (
0, 2

)
, is called the Mitrinović-Adamović inequality [4, 11, 17, 36, 41, 47, 49].

In [17], the following Mitrinović-Adamović-type inequality is given.

THEOREM 3.2. For x∈(
0, 2

)
, it holds that

1−
(

1
2

+
3−16
4 xsinx

)
sin2 x <

(
sinx
x

)3

< 1−
(

1
2

+
7

120
xsinx

)
sin2 x

and the constants 3−16
4 and 7

120 are the best possible.

Based on the previous inequality, let us introduce the family of functions
{p(x)}p∈P , where

p(x) =

⎧⎪⎪⎨
⎪⎪⎩

(
sinx
x

)3

−1+
(

1
2

+ pxsinx

)
sin2 x , x∈(

0, 2
]
,

0 , x = 0 ,

which is defined for x∈[
0, 2

]
and p∈P = R .

LEMMA 3.2. The family of functions {p(x)}p∈P is increasingly stratified on the
interval

(
0, 2

]
with respect to the parameter p∈P = R .

Proof. It holds that
p(x)
 p

= xsin3 x > 0 for x∈(
0, 2

]
. �

By applying the novel parametric method (Theorem 2.2), we give the following
improvement of Theorem 3.2.

THEOREM 3.3. Let

A =
7

120
= 0.0583 , B =

3−16
4 = 0.15405 . . . and C =

48
4 = 0.49276 . . . .

Then, it holds :

(i) If p∈(−,A) , it holds that

(
∀x∈

(
0,

2

)) (
sinx
x

)3

< 1−
(

1
2

+Axsinx

)
sin2 x< 1−

(
1
2

+ pxsinx

)
sin2 x

and the constant A is the best possible.
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(ii) If p∈(A,B) , the equation p(x) = 0 has a unique solution x(p)
0 and it holds that

(
∀x∈

(
0,x(p)

0

)) (
sinx
x

)3

> 1−
(

1
2

+ pxsinx

)
sin2 x

and (
∀x∈

(
x(p)
0 ,


2

)) (
sinx
x

)3

< 1−
(

1
2

+ pxsinx

)
sin2 x .

(iii) If p∈(B,+) , it holds that

(
∀x∈

(
0,

2

)) (
sinx
x

)3

> 1−
(

1
2

+Bxsinx

)
sin2 x> 1−

(
1
2

+ pxsinx

)
sin2 x

and the constant B is the best possible.

(iv) Each function p(x) , for p∈ (A,C) , has exactly one stationary point on the
interval

(
0, 2

)
. Moreover, for p∈ (A,B) , each function p(x) has exactly one

local maximum on the interval
(
0, 2

)
at the point

(
t(p),p

(
t(p)

))
.

There exists exactly one solution of the equation p

(
t(p)

)
=

∣∣p
(

2

)∣∣ with

respect to the parameter p∈(A,B) , which is numerically determined as

p0 = 0.13306 . . . .

The minimax approximant of the family {p(x)}p∈P on the interval
(
0, 2

)
is

p0(x) =
(

sinx
x

)3

−1+
(

1
2

+ p0 xsinx

)
sin2 x ,

which determines the corresponding minimax approximation

(
sinx
x

)3

≈ 1−
(

1
2

+0.13306 . . . xsinx

)
sin2 x

with the approximation error

d0 = p0

(
t(p0)

)
=

∣∣∣p0

(
2

)∣∣∣ = 0.032963 . . . .

Proof. We will show that for the family of functions {p(x)}p∈P , the conditions
of Theorem 2.2 are satisfied.

Condition (1) of Theorem 2.2 holds based on Lemma 3.2 and the fact that the
family {p(x)}p∈P is compressed at the point 0 .
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We now show that condition (2) of Theorem 2.2 is satisfied. For x∈ (
0, 2

)
, the

following equivalence holds:

p(x)
x

=
sinx(3px5 sinxcosx−px4 cos2 x+x4 cosx+px4+3xsinxcosx+3cos2 x−3)

x4 =0

⇐⇒ p = g1(x) =
−x4 cosx−3xsinxcosx+3sin2 x

x4 sinx(3xcosx+ sinx)
.

The first derivative of the function g1(x) is

dg1(x)
dx

=
h1(x)

x5 sin2 xh2(x)
,

where

h1(x) = 3x6 cos3 x+4x5 sinxcos2 x+ x5 sinx−36x2 cos4 x+24x2 cos2 x+

+36xsinxcos3 x−36xsinxcosx−12cos4 x+24cos2 x+12x2−12

and
h2(x) = 9x2 cos2 x+6xsinxcosx− cos2 x+1.

It is evident that h2(x) > 0 on the interval
(
0, 2

)
since cos2 x < 1.

Let us prove that h1(x) > 0 on the interval
(
0, 2

)
by applying the method for

proving MTP inequalities. It holds that

h1(x) = 9
4x6 cosx+ 3

4x6 cos3x+2x5 sinx+ x5 sin3x−9xsin(2x)+

+ 9
2xsin4x−6

(
x2−1

)
cos2x− 3

2

(
3x2 +1

)
cos4x+ 21

2 x2 − 9
2 .

Let T  ,a
n denote the Taylor expansion of order n of a function  in a neighbourhood

of the point a . One downward polynomial approximation of the function h1(x) on the
interval

(
0, 2

)
is

P(x)= 9
4x6T cos,0

10 (x)+ 3
4x6T cos,0

10 (3x)+2x5T sin,0
11 (x)+x5T sin,0

11 (3x)−9xT sin,0
13 (2x)+

+ 9
2xT sin,0

15 (4x)+6T cos,0
14 (2x)−6x2T cos,0

12 (2x)− 3
2

(
3x2+1

)
︸ ︷︷ ︸

(<0)

T cos,0
12 (4x)+ 21

2 x2− 9
2

=x10Q(x) ,

where

Q(x) = − 46172263
2270268000

x6 +
3049559
45405360

x4 − 661
1575

x2 +
62
63

.

By applying Sturm’s theorem to the polynomial Q(x) , we conclude that this polyno-
mial does not have zeros on the segment

[
0, 2

]
. Thus, the polynomial P(x) does not

have zeros on the interval
(
0, 2

)
. Since P

(
4

)
= 0.066627 . . . > 0, we conclude that

P(x) > 0 on the interval
(
0, 2

)
. Therefore, dg1(x)

dx > 0 and thus the function g1(x) is
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monotonically increasing on the interval
(
0, 2

)
. Hence, condition (2) of Theorem 2.2

is satisfied.
There exist limit values

lim
x→0+

g1(x) = A =
7

120
and lim

x→ 
2 −

g1(x) = C =
48
4

and thus condition (3) of Theorem 2.2 is satisfied.
For the value

p = B =
3−16
4 ,

it holds that B
(

2

)
= 0, which means that condition (4) of Theorem 2.2 is satisfied.

Condition (5) of Theorem 2.2 follows from the Taylor expansion of p(x) in a
neighbourhood of the point 0 , which is given by

p(x) =
(

p− 7
120

)
x4 +o

(
x4) .

Hence, all conditions for the application of Theorem 2.2 are satisfied, which con-
cludes the proof. �

Figure 3: Some functions from the family {p(x)}p∈P and the function g1 .

3.3. Application 3 (Jordan-type inequality)

In this section, we consider one family of functions to which the parametric method
from [28] could not be applied, but the novel parametric method could.

The inequality
2


� sinx
x

for x∈ (
0, 2

]
, is called the Jordan’s inequality [20, 33, 35, 40, 43, 46]. In [20], the

following Jordan-type inequality is given.
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THEOREM 3.4. For x∈(
0, 2

]
and n∈N , it holds that

2


+
2
2 (−2x) � sinx

x
� 2


+
−2
2 (−2x)

and

2


+
2

nn+1 (n− (2x)n) � sinx
x

� 2


+
−2
n+1 (n− (2x)n) (for n � 2).

Based on the left sides of the inequalities from the previous theorem, according
to [33], we introduce the family of functions {p(x)}p∈P , where

p(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinx
x

− 2

− 2

p p+1 ( p− (2x)p) , x∈(
0, 2

]
,

1− 2


(
1+

1
p

)
, x = 0 ,

which is defined for x∈[
0, 2

]
and p∈P = R\{0} . Let us notice that

p

(
2

)
= 0

for each p∈P , i.e. the family {p(x)}p∈P is compressed at the point 
2 .

In [33], it was proved that the family {p(x)}p∈P is stratified on the interval
(
0, 2

)
with respect to the parameter p∈R+ (Lemma 3 [33]). Analogously to that proof, the
following statement could be proved.

LEMMA 3.3. The family of functions {p(x)}p∈P is increasingly stratified on the
interval

[
0, 2

)
with respect to the parameter p∈P = R\{0} .

Since the equation

p(x) =
sinx
x

− 2


+
2

p p+1 ( p− (2x)p) = 0

is not directly solvable with respect to p , in [33], the parametric method was not ap-
plied.

The minimax approximant of the family {p(x)}p∈P and the corresponding in-
equalities for p∈R+ in [33] were obtained based on the analysis of the function g1 that
satisfies (∗) . In this paper, by applying the novel parametric method (Theorem 2.3), we
consider the corresponding inequalities for p∈R\{0} and prove the following theorem.

THEOREM 3.5. Let

A =
2

4
−1 = 1.46740 . . . , B =

2
−2

= 1.75193 . . . and C = 2 .

Then, it holds :
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(i) If p∈(−,0)∪(0,A) , it holds that

(
∀x∈

(
0,

2

)) sinx
x

<
2


+
2

AA+1

(
A− (2x)A

)
<

2


+
2

p p+1 ( p− (2x)p)

and the constant A is the best possible.

(ii) If p∈(A,B) , the equation p(x) = 0 has a unique solution x(p)
0 and it holds that

(
∀x∈

(
0,x(p)

0

)) sinx
x

<
2


+
2

p p+1 ( p− (2x)p)

and (
∀x∈

(
x(p)
0 ,


2

)) sinx
x

>
2


+
2

p p+1 ( p− (2x)p) .

(iii) If p∈(B,+) , it holds that

(
∀x∈

(
0,

2

)) sinx
x

>
2


+
2

BB+1

(
B− (2x)B

)
>

2


+
2

p p+1 ( p− (2x)p)

and the constant B is the best possible.

(iv) Each function p(x) , for p∈ (A,C) , has exactly one stationary point on the
interval

(
0, 2

)
. Moreover, for p∈ (A,B) , each function p(x) has exactly one

local maximum on the interval
(
0, 2

)
at the point

(
t(p),p

(
t(p)

))
.

There exists exactly one solution of the equation
∣∣p (0)

∣∣ = p

(
t(p)

)
with

respect to the parameter p∈(A,B) , which is numerically determined as

p0 = 1.72287 . . . .

The minimax approximant of the family {p(x)}p∈P on the interval
(
0, 2

)
is

p0(x) =
sinx
x

− 2

− 2

p0 p0+1 ( p0 − (2x)p0) ,

which determines the corresponding minimax approximation

sinx
x

≈ 2


+0.051415 . . .
(
1.72287...− (2x)1.72287...

)

with the approximation error

d0 =
∣∣p0 (0)

∣∣ = p0

(
t(p0)

)
= 0.0061296 . . . .

Proof. We will show that for the family of functions {p(x)}p∈P , the conditions
of Theorem 2.3 are satisfied.
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Condition (1) of Theorem 2.3 holds based on Lemma 3.3 and the fact that the
family {p(x)}p∈P is compressed at the point 

2 .
For x∈(

0, 2
)
, the following equivalence holds:

p(x)
x

=
xcosx− sinx+

(
2x


)p+1

x2 = 0 ⇐⇒ p = g1(x) =
ln

2x
(sinx− xcosx)

ln

2x

.

By applying L’Hôpital’s rule for monotonicity [16, 42] and the method for prov-
ing MTP inequalities, in [33], it was proved that the function g1(x) is monotonically
decreasing on the interval

(
0, 2

)
.

There exist limit values

lim
x→0+

g1(x) =C = 2 and lim
x→ 

2 −
g1(x) = A =

2

4
−1

and thus conditions (2) and (3) of Theorem 2.3 are satisfied.
For the value

p = B =
2

−2
,

it holds that B (0) = 0, which means that condition (4) of Theorem 2.3 is satisfied.
Condition (5) of Theorem 2.3 follows from the Taylor expansion of p(x) in a

neighbourhood of the point 
2 , which is given by

p(x) =
4p−2 +4

3

(
x− 

2

)2
+o

((
x− 

2

)2
)

.

Hence, all conditions for the application of Theorem 2.3 are satisfied, which con-
cludes the proof. �

Figure 4: Some functions from the family {p(x)}p∈P and the function g1 .
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4. Conclusion

The novel method for proving some analytic inequalities and determining minimax
approximants, introduced in this paper, could be applied to numerous inequalities [1,2,
4–6, 12, 13, 15, 17, 18, 20, 24, 28, 31–35, 37, 43, 48, 49]. By using this method, the best
constants for the corresponding inequalities are obtained.

The minimax approximants are, in [5, 24, 31, 32], determined using Nike theorem
(Theorem 3 [31]) and Theorem 1, i.e. Theorem 1’ from [31]. Determining the minimax
approximant using the novel parametric method is often significantly simpler, as shown
in Application 1. In Application 2, a generalisation and improvement of the Mitrinović-
Adamović-type inequality was obtained. In Application 3, the novel parametric method
is applied to a family of functions to which the parametric method from [28] could not
be applied.

It is to be expected that the application of the novel parametric method will enable
the improvement of the existing inequalities and discovering new ones, as well as deter-
mining the corresponding minimax approximations. The subject of future research will
be the analysis of the cases when the function g1 that satisfies (∗) has local extrema
and/or an infinite limit on the observed interval.
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trigonométriques, Publ. Elektrotehničkog Fak. Ser. Mat. Fiz. 149 (1965), 23–34.



A NOVEL PARAMETRIC METHOD 1347

[37] C. MORTICI, The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl. 14, 3
(2011), 535–541.
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University of Belgrade

School of Electrical Engineering
Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia

e-mail: mihailovicb@etf.bg.ac.rs

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


