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Abstract. In this paper, we give a novel method for proving inequalities and determining mini-
max approximants of the stratified families of functions. In the theory of analytic inequalities,
there are numerous inequalities based on which one can form a family of functions that is strati-
fied, i.e. monotonic with respect to the introduced parameter. The introduced method is based on
identifying those functions from the family that have a stationary point on the observed interval.
The applications of this method are demonstrated to the Cusa-Huygens, Mitrinovi¢-Adamovi¢-
type and Jordan-type inequalities.

1. Introduction and preliminaries

In the theory of analytic inequalities, the concept of stratified families of functions
was recently introduced [28,31]. Let {@,(x)},cp be a family of functions that we
consider for values of the argument x€SCR and values of the parameter p € PCR.
The family of functions {@,(x)} ,ep is increasingly stratified at the point xo €S with
respect to the parameter p € P if it holds that

(Vp1,p2€P) p1 < p2 <= @y, (x0) < @p, (x0),

i.e. decreasingly stratified at the point xo €S with respect to the parameter p € P if it
holds that

(Vp1,p2€P) p1 < p2 <= @p,(x0) > Qp, (x0).

The family of functions {@,(x)},cp is increasingly (i.e. decreasingly) stratified on
the set S with respect to the parameter p € P if it is increasingly (i.e. decreasingly)
stratified at every point in the set S with respect to the parameter p €P.
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It has been shown in [5, 24,26-33] that many inequalities could be proved, im-
proved and generalised using the concept of stratification.

According to [31], it is also significant to determine, if it exists, the minimax ap-
proximant @p,(x), for some po €P, as a function with the following property

inf sup ¢, ()| = sup gy, (3)].
pePxeS x€S

The function dP) = SUP, s |<pp(x) , we call the error function. The approximation
¢p, (x) = 0, we call the minimax approximation on the set S for a given family, and the

number dy = d (Po) = SUPyes !‘Ppo (x)

, we call the approximation error.
In the following, we consider the case when S is a bounded real interval.

A parametric method. The method for proving some analytic inequalities from
[28] is based on the introduction and analysis of the function g : S — P such that

gx)=p <= @p(x)=0,

if such a function exists. In particular, in [28], the cases when the function g is strictly
monotonic or when it has exactly one local extremum on the observed interval were
analysed.

In this paper, we consider families {¢,(x)},cp of differentiable functions with
respect to x and we give one method for proving some analytic inequalities that is
based on the introduction of the function g; : S — P such that

d@p(x)
ox

gilx)=p <= =0,

if such a function exists. We show that based on the monotonicity of the function
g1, some inequalities could be proved and the minimax approximant of the family
{®p(x)}pep could be determined.

Compression at the point. Let S be a bounded interval with endpoints ¢ € R and
beR, a <b. We say that the family of functions {@,(x)},cp is compressed at the
point a if @,(a+) =0 for each p€P, i.e. that the family of functions {¢,(x)},cp is
compressed at the point b if ¢,(b—) =0 for each peP.

Determination of the minimax approximant. To determine the minimax ap-
proximants in [5,24,31,32], Theorem 1 and Theorem 1’ from [31] were used. Based
on those theorems, the following theorem holds.

THEOREM 1.1. Let {@y(x)},cp, for x€S = [a,b] and p P = [c,d], be a family
of continuous functions with respect to the argument x, which is compressed at the point
a and increasingly (i.e. decreasingly) stratified on the interval (a,b] with respect to
the parameter p € [c,d]. If it holds:
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(@) @.(x) <0 (ie. Pc(x)>0) and @ (x) >0 (i.e. Pz(x) <0) foreach x€(a,b)
and @:.(b) =0 (le 0i(b)=0),

(b) the functions @,(x) are continuous with respect to p € (c,d) for each x€ (a,b),

(c) for each p € (c,d), there exists a right neighbourhood of the point a in which
¢p(x) <0 holds,

(d) for each p € (c,d), the function @,(x) has exactly one extremum 1) on the
interval (a,b), which is a minimum,

then there exists exactly one solution p = po € (¢,d) of the following equation
o0 ()| = 0o0)
and for dy = "Ppo <t<1’0>) ‘ = @p,(b), we have

dy = inf sup |@,(x)|.
peP xe(ab)

In the given theorem, (compared to Theorem 1 and Theorem 1’ from [31]) we
additionally require the stratification of the family at the point b, which ensures that the
functions @(x) and @, (x) are determined uniquely.

A method for proving MTP inequalities. In applications of the novel parametric
method in this paper, to prove the monotonicity of the function g;, we will use the
method for proving mixed trigonometric polynomial (MTP) inequalities from [5, 25].
MTP function is a function of the form

n
f(x) =" oixP cosixsin”x,
i=1

where o; € R\ {0}, pi,qi,ri €Ng and n €N, for x€ R. MTP inequality is an inequality
of the form f(x) > 0 for x€8, see [5,8-10, 19,21-23,25,29,38,45].

According to the method for proving MTP inequalities from [5,25], we first trans-
form the MTP function f(x) in the form f(x) = Y/, Bxitrig;(kix), where f; € R\
{0}, si,kieNp, meN, trig; = cos or trig; = sin. Then, by approximating each function
trig; with the corresponding Taylor expansion of that function, we determine a down-
ward polynomial approximation P(x) of the function f(x). If P(x) > 0 for xS, then
the MTP inequality f(x) > 0 for x€S is proved. To prove polynomial inequalities, we
use Sturm’s theorem [14,44].

2. Main results

If there exists a function g; : S — P such that

d@p(x)
Jx

gix)=p <= =0, (*)
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then the function g; determines values of the parameter p € P for which functions
¢p(x) have a stationary point on the observed interval S. Therefore, on the interval
S, the functions ¢, (x) for p € gi(S) have a stationary point, while all other functions
from the family {¢,(x)} ,cp are monotonic.

In Theorems 2.1, 2.2 and 2.3, based on the monotonicity of the function g; and
based on the properties of stratification of the family {¢,(x)} ,cp, we form correspond-
ing inequalities for p € P and determine the minimax approximant of the family.

THEOREM 2.1. Let {@,(x)}pep, for x€S = [a,b] and pcPCR (P#0), be a
family of functions that are continuous with respect to p and with respect to x for each
X€[a,b] and for each p €P such that the following conditions hold:

(1) the family of functions {@,(x)} pep is compressed at the point a and increasingly
(i.e. decreasingly) stratified on the interval (a,b] with respect to the parameter
peP,

(2) the functions @,(x), for p€P, are differentiable on the interval (a,b) and there
exists a continuous monotonically decreasing function g : (a,b) — P that sat-

isfies (*),
(3) there exist limits lim+g1 (x) =C€R and lim g;(x) = A€R such that (A,C)CP,

x—a x—b—
(4) there exists a value of the parameter p = B€ (A,C) such that @g(b) =0,

(5) there exist a right neighbourhood of the point a in which it holds that ¢p,(x) <0
(i.e. @p(x) >0) foreach pe(A,C).

Then, it holds:
@) If p < B, it holds that
(Vx€(a,b)) @p(x) < @p(x) <O (ie. (Vxe(a,b)) @p(x) = @p(x) > 0)
and the constant B is the best possible.

@) If pe(B,C), then the equation @,(x) =0 has a unique solution xép) € (a,b) and
it holds that

(Vxe (a,x(()p))) ¢p(x) <0 (i.e. (Vxe (a,x(()p))) ¢p(x) > 0)
and
(Vxe (x(()m,b)) ©p(x) >0 (i.e. (Vxe (x(()m,b)) op(x) < O) .
@) If p > C, it holds that
(Vxe(a,b)) ¢p(x) = @c(x) >0 (i.e. (Vxe(a,b)) @p(x) < @c(x) <0)

and the constant C is the best possible.
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(@) Each function @,(x), for p€(B,C), has exactly one local extremum, which is a

minimum (i.e. maximum), on the interval (a,b) at the point (t(p),(pp (t(”)>) .

(v) There exists exactly one solution p = po € (B,C) of the equation

‘(Pp (t(p))‘ =@y(b) (i.e. Pp (t(p)) = !‘pp(b)D :

The function @p,(x) is the minimax approximant of the family on the interval
(a,b). The approximation error is

do = “Pm(t(m))’ = Ppy (D) (i‘e' do = (pp"(t(m)) - |(p”°(b)|) '

Proof. Letus consider the case when {¢,(x)} ,cp is an increasingly stratified fam-
ily of functions. The case when {@,(x)},cp is a decreasingly stratified family of func-
tions could be considered analogously.

Based on conditions (2) and (3), the functions ¢@,(x), for p€(A,C), have exactly
one stationary point on the interval (a,b), while the functions ¢,(x), for peP\(A,C),
are monotonic on the interval (a,b).

(i) The function @g(x) has exactly one stationary point on the interval (a,b). Since
¢p(a) =0 (condition (1)), @g(x) <0 in a right neighbourhood of the point a
(condition (5)) and ¢@p(b) =0 (condition (4)), we conclude that the function
¢p(x) has exactly one minimum on the interval (a,b). Additionally, we conclude
that @p(x) < 0 on the interval (a,b) and that, based on the stratification, the
stated inequalities hold.

0.01

Figure 1: Some functions from the family {@p(x)}pep (see Application 1) that satisfy the
conditions of Theorem 2.1 and the corresponding function g .
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(@v) Since @p(b) =0 (condition (4)) and the family is increasingly stratified at
the point b, it holds that (Vp e (B,C)) ¢,(b) > 0. Additionally, from ¢,(a) =0
for pe(B,C) (condition (1)) and the fact that ¢,(x) <0, for p€ (B,C), in a
right neighbourhood of the point @ (condition (5)), it follows that the functions
¢p(x), for p € (B,C), are decreasing and negative in a right neighbourhood of
the point a. Hence, we conclude that the functions ¢, (x), for p € (B,C), have
exactly one local extremum, which is a minimum, and exactly one zero on the
interval (a,b) and that the stated inequalities hold.

The function @¢(x) is monotonic on the interval (a,b). Since @p(b) =0 (condi-
tion (4)), based on the increasing stratification of the family, we conclude that
¢@c(b) > 0. Additionally, since it holds that ¢¢c(a) =0 (condition (1)), we con-
clude that @c(x) > 0 on the interval (a,b) and that, based on the stratification,
the stated inequalities hold.

Based on Theorem 1.1. [

THEOREM 2.2. Let {@,(x)}pep, for x€S = [a,b] and pcPCR (P#0), be a

family of functions that are continuous with respect to p and with respect to x for each
x€la,b] and for each p €P such that the following conditions hold:

(1)

(2)

(3)

(4)
(3)

Then
@

@)

the family of functions {@p(x)} pcp is compressed at the point a and increasingly
(i.e. decreasingly) stratified on the interval (a,b] with respect to the parameter
peP,

the functions @p(x), for p€P, are differentiable on the interval (a,b) and there
exists a continuous monotonically increasing function g : (a,b) — P that sat-

isfies (),
there exist limits lim g1 (x) = A€R and lim g|(x) = CER, such that (A,C)CP,

x—a+ x—b—
there exists a value of the parameter p = B€ (A,C) such that @g(b) =0,

there exist a right neighbourhood of the point a in which it holds that ¢p,(x) >0
(i.e. @p(x) <O0) foreach pe(A,C).

, it holds:

If p <A, it holds that
(Vxe(a,b)) @p(x) <@alx) <O (ie. (Vx€(a,b)) ¢p(x) = @a(x) >0)
and the constant A is the best possible.

If pe (A, B), then the equation @,(x) =0 has a unique solution x(()p) € (a,b) and
it holds that

(Vxe (mxép))) ¢0p(x) >0 (i.e. (Vxe (mxém)) op(x) < O)
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and
(Vxe (xép),b)) Pp(x) <0 (i.e. (Vxe (xép),b)) ¢p(x) > 0) .
Gid) If p > B, it holds that
(e (@) 0p0) > (1) >0 (i (WxE (b)) 9p(x) < a(x) < O)

and the constant B is the best possible.

@) Each function @,(x), for p€(A,B), has exactly one local extremum, which is a

maximum (i.e. minimum), on the interval (a,b) at the point (t<1’),(pp (t(”)>) .

(v) There exists exactly one solution p = po € (A, B) of the equation

®p (t<1’)) = |@p(b)| (i.e. ‘(pp (t(”))‘ = (pp(b)) )

The function @p,(x) is the minimax approximant of the family on the interval
(a,b). The approximation error is

do = (Pm(’(m)) = [@p ()] (i'e' do = ‘(pp"(tw))‘ - (pp"(b)) '

Proof. Tt is analogous to the proof of Theorem 2.1. [

In the case when the family of functions is compressed only at the point b, the
corresponding theorems could be formulated analogously. For example, Theorem 2.3
is one such theorem (and it is used in Application 3).

THEOREM 2.3. Let {@,(x)}pep, for x€S = [a,b] and pcPCR (P#0), be a
family of functions that are continuous with respect to p and with respect to x for each
X€[a,b] and for each p €P such that the following conditions hold:

(1) the family of functions {@,(x)} pep is compressed at the point b and increasingly
(i.e. decreasingly) stratified on the interval [a,b) with respect to the parameter
peP,

(2) the functions @,(x), for p P, are differentiable on the interval (a,b) and there
exists a continuous monotonically decreasing function g, : (a,b) — P that sat-

isfies (),
(3) there exist limits lim+g1 (x) =CeR and liIlIJl g1(x) =A€R, suchthat (A,C)CP,
x—a X—b—
(4) there exists a value of the parameter p = B€ (A,C) such that @g(a) =0,

(5) there exist a left neighbourhood of the point b in which it holds that ¢@,(x) >0
(i.e. @p(x) <0) foreach pe(A,C).
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Then, it holds:
@) If p<A, it holds that
(Vx€(a,b)) @p(x) < @alx) <O (ie. (Vx€(a,b)) ¢p(x) = @a(x) >0)
and the constant A is the best possible.

(@) If pe(A,B), then the equation @,(x) =0 has a unique solution x(()p) € (a,b) and
it holds that

(vee (@) oo <0 (ie (¥re(ax’)) opl)>0)
and
(vee (s.0)) o) >0 (i (¥re (x0)) @pl) <0).
(iii) If p > B, it holds that
(Vxe(a,b)) @p(x) = @p(x) >0 (ie (Vxe(ab)) @p(x) < @p(x) <0)
and the constant B is the best possible.

@) Each function @,(x), for p€(A,B), has exactly one local extremum, which is a

maximum (i.e. minimum), on the interval (a,b) at the point (t<1’),(pp (t(”)>) .
(v) There exists exactly one solution p = py € (A, B) of the equation

|(Pp(a)| =¢p (t(p)) (i.e. Ppla) = ‘(pp (t(p)) D '

The function @p,(x) is the minimax approximant of the family on the interval
(a,b). The approximation error is

do = |<Pp0 (a)| = (PPO(I(PO)) (i.e. do = @p,(a) = "Ppo(f(p‘))) D '

Proof. Tt is analogous to the proof of Theorem 2.1. [

3. Applications

In this section, we illustrate applications of the novel parametric method on the
Cusa-Huygens inequality, Mitrinovié¢-Adamovié-type inequality from [17] and Jordan-
type inequality from [20,33].
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3.1. Application 1 (Cusa-Huygens inequality)

The inequality
3sinx

x> —
2+cosx

for xe (0, %) , is called the Cusa-Huygens inequality [1-3,7,27,35,39,41,48].
In [28,31], the Cusa-Huygens inequality was considered by introducing the family
of functions {¢,(x)},cp, where

(p+1)sinx

e n
X bt cosx ,x6(072],

Pp(x) =
0, x=0,

which is defined for x€ [0, %] and peP =R\ (—1,0).

LEMMA 3.1. (Lemma 1 [28]) The family of functions {@py(x)} pep is

@) increa[singly)stratiﬁed on the interval (O, %] with respect to the parameter p €
Pl = 0,+°° s

@iQ) increasingly stratified on the interval (O7 %] with respect to the parameter p €

Py = (—eo,—1].

REMARK 3.1. The family {(,(x)}pcp is not stratified on the interval (0, %] with
respect to the parameter p € P = P;UP,. Moreover,

(Vx€ (0, Z]) (Vp1 €P1)(Vp2 €P2) @p, (x) < @p, (x).

By applying the novel parametric method (Theorem 2.1), we provide a simpler
proof of the following statement from [28,31].

THEOREM 3.1. Let

1 2
+2\/§:1.61803..., B:m:1.75193... and C=2.

A=

Then, it holds:

@) If p(0,B), it holds that

(Vxe (075)) e (B+1)sinx - (p+1)sinx
2 B+ cosx p+cosx

and the constant B is the best possible.
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(@) If pe(B,C), the equation ¢p(x) =0 has a unique solution xép ) and it holds that

(e (o)) v o

and
(Vxe (x(m E)) x> M

09 p+cosx

ii) If p € (—o0,—1]U(C, ), it holds that

(Vx€(0,5>) . (C+1)sinx - (p+1)sinx
2 C+cosx p+cosx

and the constant C is the best possible.

(@) Each function @p(x), for p € (A,C), has exactly one stationary point on the
interval (0,%). Moreover, for p € (B,C), each function @,(x) has exactly one

local minimum on the interval (0, %) at the point (t<1’), 0y (t(”))) .

There exists exactly one solution of the equation ‘(pp <t<1’))‘ = @p (%) with

respect to the parameter p € (B,C), which is numerically determined as
po=1.78114....
The minimax approximant of the family {@p(x)}pep on the interval (0,%) is

(po+ 1)sinx

‘Ppo(x) =X—= Do+ cosx

which determines the corresponding minimax approximation

278114 sinx
Y 178114 .. +cosx

with the approximation error

do = |0 (7)) = <pp0(g) = 0.0093601 ...

Proof. Based on Lemma 3.1, we distinguish the following two cases:

Case 1. peP| =[0,4o0):

We will show that for the family of functions {¢,(x)} cp, , the conditions of The-
orem 2.1 are satisfied.

Condition (1) of Theorem 2.1 holds based on Lemma 3.1 and the fact that the
family {@,(x)},cp, is compressed at the point 0.
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For xc (O, %) , the following equivalence holds:

09p) _ | (p+ (i +peosy) p=g ()= 3 (1- V5T dco)

dx (p+cosx)?
(1++/5+4cosx).

Vp=gl(x)=

NI'—‘

The function g, (x) is monotonically increasing on the interval (O,%) and

g ((0,%)) = ( 1,= \[) ¢ Py. Thus, we do not consider the function g; (x) in
the following.

The function gf“( ) is monotonically decreasing on the interval (0,%) and
g ((0,%)=@A,0) = (H‘f ) C PPy. Thus, the function g (x) satisfies conditions

(2) and (3) of Theorem 2.1.

For the value 5

-2’
it holds that @p (%) = 0, which means that condition (4) of Theorem 2.1 is satisfied.

Condition (5) of Theorem 2.1 follows from the Taylor expansion of ¢,(x) in a
neighbourhood of the point 0, which is given by

p:B:

-2
Pp(x) = 76(1294— 1)x3 +o ().

Hence, all conditions for the application of Theorem 2.1 are satisfied, from which
parts (i), (iF) and (iv), as well as part (ii£) for p € (2,+o0), follow.

Case 2. pePy = (—oo, —1]:

Part (iii) for p € (—eo, —1] follows from Remark 3.1. [

p=po=1.78114...
2

- B =
/[I T™—2

Figure 2: Some functions from the family {@,(x)},cp and the function g .
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3.2. Application 2 (Mitrinovi¢-Adamovié-type inequality)

: 3

sinx

— | >cosx
X

for x€ (0,%), is called the Mitrinovié-Adamovi¢ inequality [4,11,17,36,41,47,49].
In [17], the following Mitrinovi¢-Adamovié-type inequality is given.

The inequality

THEOREM 3.2. For x€(0,%), it holds that

| 1+n3—16 ) 2 sinx3<l 1+7 _ L
— | = Sin sin _— — | = —XSIn Sin
2 7'[,'4 XSinx 1 X X 2 120)(3 X X

3 .
and the constants = 7;416 and 17% are the best possible.

Based on the previous inequality, let us introduce the family of functions
{@p(x)} pep, where

K
1

<%> —1+ (5 —|—pxsinx) sin®x, x€ (0, %],

Pp(x) = .

0, x=0,
which is defined for x€ [0,5] and peP =R.

LEMMA 3.2. The family of functions {@,(x)} pep is increasingly stratified on the
interval (0, %] with respect to the parameter pcP =R.

99p(x)
dp
By applying the novel parametric method (Theorem 2.2), we give the following
improvement of Theorem 3.2.

Proof. 1t holds that

=xsin’x >0 for x€ (0,%]. O

THEOREM 3.3. Let

n3—16

- 4
A =0.0583, B=——— =0.15405... and c=—§:0.49276....
T T

T 120
Then, it holds:
@) If pe(—oo,A), it holds that

. 3
1 1
(Vxe(O,E>> St <1—( =+Axsinx | sinx< 1 — = + pxsinx | sin’x
2 X 2 2

and the constant A is the best possible.
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(@) If p€(A,B), the equation @,(x) =0 has a unique solution xép ) and it holds that

(Vxe (O,xép))) <¥>3 >1-— (% —|—pxsinx) sin® x
(Vxe (x(()p), g)) (Slxﬂ)3 <1- (% +pxsinx> sin’x.

(@) If p€(B,+o0), it holds that

. 3
1 1
(Vx€<0,5>) S >1—( = +Buxsinx | sinx> 1 — | = + pxsinx | sin’x
2 X 2 2

and the constant B is the best possible.

and

@) Each function @p(x), for p € (A,C), has exactly one stationary point on the

interval (0,%). Moreover, for p € (A,B), each function @,(x) has exactly one
local maximum on the interval (0, %) at the point (t(p), ®p (t(”))) .

There exists exactly one solution of the equation @, (t(”)) = !(pp (%)| with

respect to the parameter p € (A, B), which is numerically determined as
po=0.13306....

The minimax approximant of the family {@p(x)}pep on the interval (0,%) is

)
sinx\ 1
<Pp0(x) = (T) —1+ (E —i—poxsinx) sinzx,

which determines the corresponding minimax approximation

. 3
1
(%) ~l— (5 40.13306. .. xsinx) sinx
X

with the approximation error

do = 9y (1)) = ’(pp()(g)’ —0.032963....

Proof. We will show that for the family of functions {¢,(x)} ep. the conditions
of Theorem 2.2 are satisfied.

Condition (1) of Theorem 2.2 holds based on Lemma 3.2 and the fact that the
family {@,(x)},cp is compressed at the point 0.
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We now show that condition (2) of Theorem 2.2 is satisfied. For x€ (0,%), the
following equivalence holds:

d@,(x)  sinx(3px’ sinxcosx—px* cos® xx? cosx+px+3 xsinxcosx+3 cos’ x—3)
ox x4
—x*cosx — 3xsinxcosx -+ 3sin®x

x*sinx(3xcosx+ sinx)

= p=gix) =

The first derivative of the function g;(x) is

dgi(x) _ m()
dx x5sin® xhy(x)

where
hyi(x) = 3x0cos x + 4x7 sinxcos? x 4 x7 sinx — 36x% cos* x 4 24x? cos? x +
+36xsinxcos® x — 36xsinxcosx — 12cos* x + 24 cos?x + 12x% — 12

and
hy(x) = 9x? cos® x 4 6xsinxcosx — cos”x + 1.

It is evident that /(x) > 0 on the interval (0,%) since cos?x < 1.
Let us prove that h;(x) > 0 on the interval (0, %) by applying the method for
proving MTP inequalities. It holds that

hi(x) = 3x5cosx + 2x8cos3x+ 27 sinx +x° sin 3x — 9xsin (2x) +

—i—gxsm4x 6 (x* —1)c052x——(3x +1)cos4x+21 2 g'

Let 7,0 denote the Taylor expansion of order n of a function ¢ in a neighbourhood
of the point a. One downward polynomial approximation of the function %;(x) on the
interval (0,%) is

P(x) =220 ()4 30T (30) + 26575 (1) 45T (3x) x5 (2x) +

+ Qfo;n’O (4x)+ 6T (2x) 62T (2x0) —3 (3x%+1) TS (4x)+ S
————
(<0)
=x'90(x),

where
o) = — 46172263 |6 3049559 A 661 2 62

~ 2270268000 45405360 1575 63
By applying Sturm’s theorem to the polynomial Q(x), we conclude that this polyno-
mial does not have zeros on the segment [0, %] . Thus, the polynomial P(x) does not
have zeros on the interval (0,%). Since P (%) =0.066627... > 0, we conclude that

P(x) > 0 on the interval (0,%). Therefore, % > 0 and thus the function g;(x) is
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monotonically increasing on the interval (O, %) . Hence, condition (2) of Theorem 2.2
is satisfied.
There exist limit values
7 48
li =A=— d 1 =C=—
Jim. 81(x) o MRS (x) P
and thus condition (3) of Theorem 2.2 is satisfied.
For the value
16
==

p=B ;
it holds that ¢p (%) = 0, which means that condition (4) of Theorem 2.2 is satisfied.

Condition (5) of Theorem 2.2 follows from the Taylor expansion of ¢,(x) in a
neighbourhood of the point 0, which is given by

0p(x) = (p— 17%))5‘4—0 ().

Hence, all conditions for the application of Theorem 2.2 are satisfied, which con-
cludes the proof. [

™~ 16
=
p = po = 0.13306...

Figure 3: Some functions from the family {@,(x)}pep and the function g .

3.3. Application 3 (Jordan-type inequality)

In this section, we consider one family of functions to which the parametric method
from [28] could not be applied, but the novel parametric method could.
The inequality

2  sinx
—_ g -
T X
for x € (O, %] , is called the Jordan’s inequality [20, 33, 35, 40,43, 46]. In [20], the

following Jordan-type inequality is given.
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THEOREM 3.4. For x€ (0,%] and n€N, it holds that

2 2 sinx . 2 m—2
S22 > —>= -2
n+7r2(ﬂ *) X 7r+ 2 (= 2x)
and
2 2 sinx 2 mw—2
7t (7 () S TE S g (@) {forn > 2).

Based on the left sides of the inequalities from the previous theorem, according
to [33], we introduce the family of functions {¢,(x)} cp, where

sinx 2 2
(- (20), xe (03]

1—g<l+l), x=0,
n p

which is defined for x€ [0, %] and peP = R\{0}. Let us notice that

% (3)=0

for each pcP, i.e. the family {¢,(x)},cp is compressed at the point J.

In [33], it was proved that the family {¢,(x)} ,cp is stratified on the interval (0, %)
with respect to the parameter p € R™ (Lemma 3 [33]). Analogously to that proof, the
following statement could be proved.

LEMMA 3.3. The family of functions {®,(x)} pcp is increasingly stratified on the

interval [0,%) with respect to the parameter p €P = R\{0}.

Since the equation

sinx 2 2
Pp(x) = ~ =7 Pr (n” —(2x)") =0
is not directly solvable with respect to p, in [33], the parametric method was not ap-
plied.

The minimax approximant of the family {¢,(x)},cp and the corresponding in-
equalities for p€R™ in [33] were obtained based on the analysis of the function g that
satisfies (). In this paper, by applying the novel parametric method (Theorem 2.3), we
consider the corresponding inequalities for p R\ {0} and prove the following theorem.

THEOREM 3.5. Let

n? 2
AZZ—1=1.46740..., B=—2:1.75193... and C=2.

Then, it holds:
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(@) If pe(—=,0)U(0,A), it holds that

(vxe (og)) % < %+[# (nA— (2x)A) < %+ #(n”— (20)7)

and the constant A is the best possible.

(@) If p€(A,B), the equation @,(x) =0 has a unique solution xép ) and it holds that
(») sinx 2 2
(VXE (07)60 )) T < E + W (n-p — (2)6)[’)
and . 5 5
(p) E)) smx 2 P (25)P
(Vxe (xo '3 < +p7rl’+1 (n? — (2x)7).

(@) If p€(B,+o0), it holds that

T sinx _ 2 2 B B 2 2 » p
(we(03)) 5> 5+ gmr (- @07) > 24 o (27— (20))
and the constant B is the best possible.

@) Each function @p(x), for p € (A,C), has exactly one stationary point on the
interval (0,%). Moreover, for p € (A,B), each function @,(x) has exactly one

local maximum on the interval (0, %) at the point (t(”), 0y <t<1’))) .

There exists exactly one solution of the equation |(p,, (0)} =Qp <t<1’)) with

respect to the parameter p € (A, B), which is numerically determined as
po=1.72287....
The minimax approximant of the family {@p(x)}pep on the interval (0,%) is

B sinx 2 2

Ppy(x) = 7 pomnol (70 — (2x)7),

which determines the corresponding minimax approximation

sin 2
xx -~ 2 10.051415... (n14722874.4 _ (zx)1.72287.,.>
with the approximation error

do = |@p, (0)] = @y, (r%)) —0.006129. ..

Proof. We will show that for the family of functions {¢,(x)} cp. the conditions
of Theorem 2.3 are satisfied.
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Condition (1) of Theorem 2.3 holds based on Lemma 3.3 and the fact that the
family {@,(x)},cp is compressed at the point 7.
For x€ (0, %), the following equivalence holds:

. 2x\P 1 2x

a,(x) FEOSX - SInx i In 7(sinx — xcosx)
) _ : S0 = pmg)= .
X X In =
2x

By applying L’Hopital’s rule for monotonicity [16,42] and the method for prov-
ing MTP inequalities, in [33], it was proved that the function g;(x) is monotonically
decreasing on the interval (O, %) .

There exist limit values

lim gi(x)=C=2 and lim g(x)=A=——1

x—0+ X— 75— 4

and thus conditions (2) and (3) of Theorem 2.3 are satisfied.

For the value 5

-2’
it holds that @z (0) = 0, which means that condition (4) of Theorem 2.3 is satisfied.

Condition (5) of Theorem 2.3 follows from the Taylor expansion of ¢,(x) in a
neighbourhood of the point Z, which is given by

o) = P (T o (- 3)))

Hence, all conditions for the application of Theorem 2.3 are satisfied, which con-
cludes the proof. [

p:B:

0.01

Figure 4: Some functions from the family {@,(x)}pep and the function g1 .
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4. Conclusion

The novel method for proving some analytic inequalities and determining minimax
approximants, introduced in this paper, could be applied to numerous inequalities [1, 2,
4-6,12,13,15,17,18,20,24,28,31-35,37,43,48,49]. By using this method, the best
constants for the corresponding inequalities are obtained.

The minimax approximants are, in [5,24,31,32], determined using Nike theorem
(Theorem 3 [31]) and Theorem 1, i.e. Theorem 1’ from [31]. Determining the minimax
approximant using the novel parametric method is often significantly simpler, as shown
in Application 1. In Application 2, a generalisation and improvement of the Mitrinovié-
Adamovié-type inequality was obtained. In Application 3, the novel parametric method
is applied to a family of functions to which the parametric method from [28] could not
be applied.

It is to be expected that the application of the novel parametric method will enable
the improvement of the existing inequalities and discovering new ones, as well as deter-
mining the corresponding minimax approximations. The subject of future research will
be the analysis of the cases when the function g; that satisfies (x) has local extrema
and/or an infinite limit on the observed interval.
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