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Abstract. Maclaurin’s inequality estimates the error bounds of a three-point open method named
as Maclaurin’s procedure. The current study aims to explore the error boundaries of Maclaurin’s
rule by utilizing the convexity of the mappings. We derive a new twice-differentiable Maclaurin’s
identity. Based on newly developed identity, the convexity of mappings, and the elementary
properties of inequalities, we derive some new Maclaurin’s type inequalities. Also, we apply the
obtained bounds to formulate the relation between means, composite quadrature bounds, and a
novel two-step iterative method with a cubic order of convergence. Lastly, we explore our major
findings and the iterative method through illustrative examples and visuals.

1. Introduction and preliminaries

The theory of inequalities is the core of mathematical analysis, and it has expe-
rienced exponential progression over the last few decades due to the dependency of
several other domains of physical sciences. It has studied from multiple aspects, for ex-
ample, to conclude novel refinements to evacuate the limitations, unify, and increase the
applicable domain of existing results. We have deployed several approaches, which in-
clude different generalizations of calculus, operator theory, and convex function theory.
Convex functions, such as Jensen’s inequality, the converse Jensen’s inequality, Jensen-
Mercer’s inequality, Hermite-Hadamard’s inequality, Hölder’s type inequalities, and
several error inequalities of quadrature and cubature procedures, can be used to prove
several classical inequalities. Both Jensen’s and the trapezium inequalities are corner-
stones to investigate the convexity of mappings. Let us revisit the notion of a convex
function.

DEFINITION 1. Let f : [a,b] → R be a convex mapping, then

f ((1− t)x+ ty) � (1− t) f (x)+ t f (y), ∀x,y ∈ [a,b] (1)

where t ∈ [0,1] .
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Let f : I = [a,b] ⊂ R → R be a convex mapping, then

(b−a) f

(
a+b

2

)
�
∫ b

a
f (x)dx � (b−a)

f (a)+ f (b)
2

. (2)

This inequality has gained valuable attention from mathematicians due to its geometri-
cal, analytical properties, and applicable aspects. It has been transformed and proved
in different frameworks through various approaches. One of the key strategies for ex-
ploring this inequality is to calculate both the left and right estimations of it. In [12],
Dragomir and Agarwal presented the right estimations of it in association with first-
order differentiable convex mappings, which have an immense number of applications.
In fact, they computed the error upper boundaries of the trapezoidal procedure and set a
new venue of thinking to explore the bounds of the remaining terms of quadrature and
cubature rules. For more detail, consult [10, 14, 18–20, 28, 29].

Observing that midpoint rules meet the constraints of closed Newton-Cotes sche-
mes, we cannot apply closed procedures to functions that exhibit discontinuities at their
end points. Now, we recollect the error inequalities of Simpson’s and Maclaurin’s pro-
cedures, respectively.

THEOREM 1. [13] If f : [a,b]→ R is a four times continuously differentiable on
(a,b) , and || f (4)||∞ = supx∈(a,b) | f (4)| < ∞ , then∣∣∣∣16

[
f (a)+4 f

(
a+b

2

)
+ f (b)

]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣� 1
2880

|| f (4)||∞(b−a)5.

THEOREM 2. Let f : [a,b] → R be a four times continuously differentiable on
(a,b) , and || f (4)||∞ = supx∈(a,b) | f (4)| < ∞ , then∣∣∣∣18

(
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

))
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� 7(b−a)4

51840
‖ f (4)‖∞.

Dragomir and Agarwal [13] investigated the Simpson’s inequality through sev-
eral classes of functions with applications and is still a gateway to conducting research
on these kinds of inequalities. Dragomir et al. [15] used the unified approach to look
into the error approximations of Ostrowski’s, Hermite-Hadamard’s, and Simpson’s-
like inequalities by using monotonic functions and finding interesting uses for them.
Yang and his coauthors [30] concluded some new refinements of Simpson’s inequal-
ity through (s,m)-convexity. Ujevac [27] analyzed the sharpness of both Simpson’s
and Ostrowski’s like inequalities. Alomari et al. [3] discussed the error boundaries of
Simpson’s rule, employing Breckner convexity. Awan et al. [5] came up with some new
weighted error inequalities for the three-point closed rule using generalised convexity
and showed how they could be used. In [22], Noor et al. studied the harmonic convexity
over a rectangular domain and developed trapezoid-like inequalities. Chu et al. [9] de-
fined a new class of functions by bridging the idea of n -polynomial and higher strongly
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convexity. Additionally, they demonstrated the strong bounds of Simpson’s inequality
using this class of functions.

Alomari and Dragomir [2, 4] looked at the error estimates of a number of closed
and open methods, such as the Euler procedure, using different types of differentiable
mappings and talked about Milne’s-like inequalities. Bin-Mohsin et al. [6] presented
the refinements of Milne’s-like inequalities, integrating both quantum calculus and the
Mercer approach. In [7], authors computed the fractional analogues of Milne’s-like
inequalities via bounded variation, Lipschitz, and convex functions. Pecaric et al. [23]
delivered novel generalizations of Maclaurin’s-like inequalities with potential applica-
tions. Meftah et al. [21] used Yang local fractional to look at the error limits of Maclau-
rin’s method using generalised local convexity. Hezenci and his fellows [17] explored
fractional analogues of Maclaurin’s inequality via convex mappings. For more details,
see [24, 26].

The primary focus of this study is to investigate the tight bounds of Maclaurin’s
inequalities involving convex mappings. First, we will establish a new Maclaurin’s
equation, which will act as an auxiliary result to produce our major findings leveraging
the convexity. We also validate our results using numerical and visual techniques. To
enhance the impact of the current study, we present some novel applications, especially
an iterative scheme. Our result will provide tight bounds as compared to first-order
differentiable convex functions.

2. Main results

This section presents significant advancements in Maclaurin’s inequality through
the use of twice differentiable convex functions. First, we construct an identity based
on two differentiable continuous mappings.

LEMMA 1. Let f : I → R be a differential mapping on Io,a,b ∈ Io with a < b
and f ∈ L[a,b] , then the following equality hold

1
8

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx (3)

=
(b−a)2

16

[∫ 1
6

0
(−8t2) f ′′((1− t)a+ tb)dt

+
∫ 1

2

1
6

(2t−1)(1−4t) f ′′((1− t)a+ tb)dt

+
∫ 5

6

1
2

(2t−1)(3−4t) f ′′((1− t)a+ tb)dt

+
∫ 1

5
6

(t−1)(8−8t) f ′′((1− t)a+ tb)dt
]
.
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Proof. Let

I1 =
∫ 1

6

0
(−8t2) f ′′((1− t)a+ tb)dt

I2 =
∫ 1

2

1
6

(2t−1)(1−4t) f ′′((1− t)a+ tb)dt

I3 =
∫ 5

6

1
2

(2t−1)(3−4t) f ′′((1− t)a+ tb)dt

I4 =
∫ 1

5
6

(t−1)(8−8t) f ′′((1− t)a+ tb)dt.

Implementing the integration by parts, we have

I1 =
∫ 1

6

0
(−8t2) f ′′((1− t)a+ tb)dt

=
∣∣∣∣−8t2 f ′((1− t)a+ tb)

b−a

∣∣∣∣
1

0
+

16
b−a

∫ 1
6

0
t f ′((1− t)a+ tb)dt

=
−2

9(b−a)
f ′
(

5a+b
6

)
+

8
3(b−a)2 f

(
5a+b

6

)
− 16

(b−a)3

∫ 5a+b
6

a
f (x)dx. (4)

Similarly, we obtain

I2 =
∫ 1

2

1
6

(2t−1)(1−4t) f ′′((1− t)a+ tb)dt

=
2

9(b−a)
f ′
(

5a+b
6

)
+

2
(b−a)2 f

(
a+b

2

)
+

10
3(b−a)2 f

(
5a+b

6

)

− 16
(b−a)3

∫ a+b
2

5a+b
6

f (x)dx, (5)

I3 =
∫ 5

6

1
2

(2t−1)(3−4t) f ′′((1− t)a+ tb)dt

= − 2
9(b−a)

f ′
(

a+5b
6

)
+

2
(b−a)2 f

(
a+b

2

)
+

10
3(b−a)2 f

(
a+5b

6

)

− 16
(b−a)3

∫ a+5b
6

a+b
2

f (x)dx, (6)

I4 =
∫ 1

5
6

(t−1)(8−8t) f ′′((1− t)a+ tb)dt

=
2

9(b−a)
f ′
(

a+5b
6

)
+

8
3(b−a)2 f

(
a+5b

6

)
− 16

(b−a)3

∫ b

a+5b
6

f (x)dx. (7)

Summing (4–7) and then taking the product of obtained result by (b−a)2
16 , we get (3). �
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THEOREM 3. Assume that all of the requirements of Lemma 1 are fulfilled. If | f ′′|
is a convex mapping on [a,b] , then∣∣∣∣18

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣ (8)

� (b−a)2

384
(| f ′′(a)|+ | f ′′(b)|).

Proof. Considering Lemma 1 and implementing the modulus characteristic and
the convexity of | f ′′| , we have∣∣∣∣18

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

[∫ 1
6

0
|(−8t2)|| f ′′((1− t)a+ tb)|dt

+
∫ 1

2

1
6

|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 5

6

1
2

|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 1

5
6

|(t−1)(8−8t)|| f ′′((1− t)a+ tb)|dt
]

� (b−a)2

16

[∫ 1
6

0
8t2((1− t)| f ′′(a)|+ t| f ′′(b)|)dt

+
∫ 1

2

1
6

|(2t−1)(1−4t)|((1− t)| f ′′(a)|+ t| f ′′(b)|)dt

+
∫ 5

6

1
2

|(2t−1)(3−4t)|((1− t)| f ′′(a)|+ t| f ′′(b)|)dt

+
∫ 1

5
6

|(t−1)(8−8t)|((1− t)| f ′′(a)|+ t| f ′′(b)|)dt
]

=
(b−a)2

16

[∫ 1
6

0
8t2((1− t)| f ′′(a)|+ t| f ′′(b)|)dt

+

(∫ 1
4

1
6

(1−2t)(1−4t)+
∫ 1

2

1
4

(1−2t)(4t−1)

)
((1− t)| f ′′(a)|+ t| f ′′(b)|)dt

+

(∫ 3
4

1
2

(2t−1)(3−4t)+
∫ 1

2

3
4

(2t−1)(4t−3)

)
((1− t)| f ′′(a)|+ t| f ′′(b)|)dt

+
∫ 1

5
6

(1− t)(8−8t)((1− t)| f ′′(a)|+ t| f ′′(b)|)dt
]

=
(b−a)2

384
(| f ′′(a)|+ | f ′′(b)|).

The proof is completed. �
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COROLLARY 1. Assuming | f |′′ � M in Theorem 3, we obtain∣∣∣∣18
[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� M(b−a)2

192
.

THEOREM 4. Assume that all of the requirements of Lemma 1 are fulfilled. If
| f ′′|q is a convex mapping on [a,b], q > 1 , then∣∣∣∣18

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

[(
8

62p+1(2p+1)

) 1
p
(

11
72

| f ′′(a)|q +
1
72

| f ′′(b)|q
) 1

q

+(A)
1
p

(
2
9
| f ′′(a)|q +

1
9
| f ′′(b)|q

) 1
q

+(B)
1
p

(
1
9
| f ′′(a)|q +

2
9
| f ′′(b)|q

) 1
q

+
(

8
62p+1(2p+1)

) 1
p
(

1
72

| f ′′(a)|q +
11
72

| f ′′(b)|q
) 1

q
]

,

where 1
p + 1

q = 1 .

∫ 1
6

0
8t2pdt =

∫ 1

5
6

((1− t)(8−8t))pdt =
8

62p+1(2p+1)
,

A =
∫ 1

2

1
6

|(2t−1)(1−4t)|p dt, B =
∫ 5

6

1
2

|(2t−1)(3−4t)|p dt.

Proof. Taking p > 1. Considering Lemma 1, and making the utility of notable
Hölder’s integral inequality and the convexity of | f ′′|q , we achieve∣∣∣∣18

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

[∫ 1
6

0
|−8t2|| f ′′((1− t)a+ tb)|dt

+
∫ 1

2

1
6

|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 5

6

1
2

|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 1

5
6

|(t −1)(8−8t)|| f ′′((1− t)a+ tb)|dt
]
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� (b−a)2

16

⎡
⎣
(∫ 1

6

0
8t2pdt

) 1
p
(∫ 1

6

0
| f ′′((1− t)a+ tb)|qdt

) 1
q

+

(∫ 1
2

1
6

|(2t−1)(1−4t)|p dt

) 1
p
(∫ 1

2

1
6

| f ′′((1− t)a+ tb)|qdt
) 1

q

+

(∫ 5
6

1
2

|(2t−1)(3−4t)|p dt

) 1
p
(∫ 5

6

1
2

| f ′′((1− t)a+ tb)|qdt
) 1

q

+
(∫ 1

5
6

|(t −1)(8−8t)|pdt
) 1

p
(∫ 1

5
6

| f ′′((1− t)a+ tb)|qdt
) 1

q
]

� (b−a)2

16

⎡
⎣
(∫ 1

6

0
8t2pdt

) 1
p
(∫ 1

6

0
((1− t)| f ′′(a)|q + t| f ′′(b)q)dt

) 1
q

+

(∫ 1
2

1
6

|(2t−1)(1−4t)|p dt

) 1
p
(∫ 1

2

1
6

((1− t)| f ′′(a)|q + t| f ′′(b)q)dt

) 1
q

+

(∫ 5
6

1
2

|(2t−1)(3−4t)|p dt

) 1
p
(∫ 5

6

1
2

((1− t)| f ′′(a)|q + t| f ′′(b)q)dt

) 1
q

+
(∫ 1

5
6

|(1− t)(8−8t)|pdt
) 1

p
(∫ 1

5
6

((1− t)| f ′′(a)|q + t| f ′′(b)q)dt
) 1

q
]

.

which ends the proof. �

THEOREM 5. Assume that all of the requirements of Lemma 1 are fulfilled. If
| f ′′|q is a convex mapping on [a,b] , q � 1 , then

∣∣∣∣18
[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

{(
1
81

)1− 1
q
[(

7
648

| f ′′(a)|q +
1

648
| f ′′(b)|q

) 1
q

+
(

1
648

| f ′′(a)|q +
7

648
| f ′′(b)q

) 1
q
]

+
(

19
648

)1− 1
q
[(

103
5184

| f ′′(a)|q +
49

5184
| f ′′(b)q

) 1
q

+
(

49
5184

| f ′′(a)|q +
103
5184

| f ′′(b)q
) 1

q
]}

.
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Proof. Considering Lemma 1, implementing the power-mean’s inequality and the
convexity of | f ′′|q , we get

∣∣∣∣18
[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

[∫ 1
6

0
|−8t2|| f ′′((1− t)a+ tb)|dt

+
∫ 1

2

1
6

|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 5

6

1
2

|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 1

5
6

|(t −1)(8−8t)|| f ′′((1− t)a+ tb)|dt
]

� (b−a)2

16

⎡
⎣(∫ 1

6

0
8t2dt

)1− 1
q
(∫ 1

6

0
8t2((1− t)| f ′′(a)|q + t| f ′′(b)q)dt

) 1
q

+

(∫ 1
2

1
6

|(2t−1)(1−4t)|dt
)1− 1

q

(∫ 1
2

1
6

|(2t−1)(1−4t)|((1− t)| f ′′(a)|q + t| f ′′(b)q)dt

) 1
q

+

(∫ 5
6

1
2

|(2t−1)(3−4t)|dt
)1− 1

q

(∫ 5
6

1
2

|(2t−1)(3−4t)|((1− t)| f ′′(a)|q + t| f ′′(b)q)dt

) 1
q

+
(∫ 1

5
6

|(t −1)(8−8t)|dt
)1− 1

q

(∫ 1

5
6

|(t−1)(8−8t)|((1− t)| f ′′(a)|q + t| f ′′(b)q)dt
) 1

q
]

.

Hence, we acquire our required result. �

THEOREM 6. Assume that all of the requirements of Lemma 1 are fulfilled. If
| f ′′|q is a convex mapping on [a,b] , q > 1 , then
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∣∣∣∣18
[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

{
6

[(
8p

62p+2(2p+1)(2p+2)

) 1
p
(

17
1296

| f ′′(a)|q +
1

1296
| f ′′(b)|q

) 1
q

+
(

8p

62p+2(2p+2)

) 1
p
(

1
81

| f ′′(a)|q +
1

648
| f ′′(b)|q

) 1
q
]

+3

[
(C)

1
p

(
13
324

| f ′′(a)|q +
5

324
| f ′′(b)|q

) 1
q

+(D)
1
p

(
11
324

| f ′′(a)|q +
7

324
| f ′′(b)|q

) 1
q
]

+3

[
(E)

1
p

(
7

324
| f ′′(a)|q +

11
324

| f ′′(b)|q
) 1

q

+(F)
1
p

(
5

324
| f ′′(a)|q +

13
324

| f ′′(b)|q
) 1

q
]

+6

[
(G)

1
p

(
1

648
| f ′′(a)|q +

1
81

| f ′′(b)|q
) 1

q

+(H)
1
p

(
1

1296
| f ′′(a)|q +

17
1296

| f ′′(b)|q
) 1

q
]}

,

where 1
p + 1

q = 1 .

C =
∫ 1

2

1
6

(
1
2
− t

)
|(2t−1)(1−4t)|p dt, D =

∫ 1
2

1
6

(
t− 1

6

)
|(2t−1)(1−4t)|p dt,

E =
∫ 5

6

1
2

(
5
6
− t

)
|(2t−1)(3−4t)|p dt, F =

∫ 5
6

1
2

(
t− 1

2

)
|(2t−1)(3−4t)|p dt,

G =
∫ 1

5
6

(1− t)|(t −1)(8−8t)|p dt, H =
∫ 1

5
6

(
t− 5

6

)
|(t −1)(8−8t)|p dt.

Proof. Considering Lemma 1, by implementing the improved Hölder’s inequality
and the convexity of | f ′′|q , we get∣∣∣∣18

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

[∫ 1
6

0
|−8t2|| f ′′((1− t)a+ tb)|dt
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+
∫ 1

2

1
6

|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 5

6

1
2

|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 1

5
6

(|t −1)(8−8t)|| f ′′((1− t)a+ tb)|dt
]

� (b−a)2

16

⎧⎨
⎩6

⎡
⎣(∫ 1

6

0
(8t2)p

(
1
6
− t

)
dt

) 1
p

(∫ 1
6

0

(
1
6
− t

)
| f ′′((1− t)a+ tb)|qdt

) 1
q

+

(∫ 1
6

0
8pt2p+1dt

) 1
p
(∫ 1

6

0
t| f ′′((1− t)a+ tb)|dt

)1
q
⎤
⎦

+3

⎡
⎣(∫ 1

2

1
6

(
1
2
− t

)
|(2t−1)(1−4t)|p dt

) 1
p

(∫ 1
2

1
6

(
1
2
− t

)
| f ′′((1− t)a+ tb)|qdt

) 1
q

+

(∫ 1
2

1
6

(
t − 1

6

)
|(2t−1)(1−4t)|p dt

) 1
p

(∫ 1
2

1
6

(
t− 1

6

)
| f ′′((1− t)a+ tb)|qdt

) 1
q
⎤
⎦

+3

⎡
⎣
(∫ 5

6

1
2

(
5
6
− t

)
|(2t−1)(3−4t)|p dt

) 1
p

(∫ 5
6

1
2

(
5
6
− t

)
| f ′′((1− t)a+ tb)|qdt

) 1
q

+

(∫ 5
6

1
2

(
t − 1

2

)
|(2t−1)(3−4t)|p dt

) 1
p

(∫ 5
6

1
2

(
t− 1

2

)
| f ′′((1− t)a+ tb)|qdt

) 1
q
⎤
⎦
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+6

[(∫ 1

5
6

(1− t)|(t−1)(8−8t)|p dt

) 1
p

(∫ 1

5
6

(1− t)| f ′′((1− t)a+ tb)|qdt
) 1

q

+
(∫ 1

5
6

(
t− 5

6

)
|(t−1)(8−8t)|p dt

) 1
p

(∫ 1

5
6

(
t− 5

6

)
| f ′′((1− t)a+ tb)|qdt

) 1
q
]}

.

Calculating the integrals presented in aforementioned inequality generate the required
outcome. �

THEOREM 7. Assume that all of the requirements of Lemma 1 are fulfilled. If
| f ′′|q is a convex mapping on [a,b] , q � 1 , then

∣∣∣∣18
[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

{
6

[(
1

1944

)1− 1
q
(

1
2160

| f ′′(a)|q +
1

19440
| f ′′(b)|q

) 1
q

+
(

1
648

)1− 1
q
(

13
9720

| f ′′(a)|q +
1

4860
| f ′′(b)|q

) 1
q
]

+3

[(
1

192

)1− 1
q
(

1181
311040

| f ′′(a)|q +
439

311040
| f ′′(b)|q

) 1
q

+
(

71
15552

)1− 1
q
(

293
103680

| f ′′(a)|q +
541

311040
| f ′′(b)|q

) 1
q
]

+3

[(
71

15552

)1− 1
q
(

541
311040

| f ′′(a)|q +
293

103680
| f ′′(b)|q

) 1
q

+
(

1
192

)1− 1
q
(

439
311040

| f ′′(a)|q +
1181

311040
| f ′′(b)|q

) 1
q
]

+6

[(
1

648

)1− 1
q
(

1
4860

| f ′′(a)|q +
13

9720
| f ′′(b)|q

) 1
q

+
(

1
1944

)1− 1
q
(

1
19440

| f ′′(a)|q +
1

2160
| f ′′(b)|q

) 1
q
]}

.
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Proof. Through Lemma 1, implementing the improved power-mean inequality
and the convexity of | f ′′|q , we get

∣∣∣∣18
[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣
� (b−a)2

16

[∫ 1
6

0
|−8t2|| f ′′((1− t)a+ tb)|dt

+
∫ 1

2

1
6

|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 5

6

1
2

|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|dt

+
∫ 1

5
6

|(t−1)(8−8t)|| f ′′((1− t)a+ tb)|dt
]

� (b−a)2

16

⎧⎨
⎩6

⎡
⎣(∫ 1

6

0
8t2
(

1
6
− t

)
dt

)1− 1
q

(∫ 1
6

0

(
1
6
− t

)
8t2| f ′′((1− t)a+ tb)|qdt

) 1
q

+

(∫ 1
6

0
8t3dt

)1− 1
q
(∫ 1

6

0
8t3| f ′′((1− t)a+ tb)|dt

)1
q
⎤
⎦

+3

⎡
⎣(∫ 1

2

1
6

(
1
2
− t

)
|(2t−1)(1−4t)|dt

)1− 1
q

(∫ 1
2

1
6

(
1
2
− t

)
|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|qdt

) 1
q

+

(∫ 1
2

1
6

(
t − 1

6

)
|(2t−1)(1−4t)|dt

)1− 1
q

(∫ 1
2

1
6

(
t− 1

6

)
|(2t−1)(1−4t)|| f ′′((1− t)a+ tb)|qdt

) 1
q
⎤
⎦

+3

⎡
⎣(∫ 5

6

1
2

(
5
6
− t

)
|(2t−1)(3−4t)|dt

)1− 1
q

(∫ 5
6

1
2

(
5
6
− t

)
|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|qdt

) 1
q
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+

(∫ 5
6

1
2

(
t − 1

2

)
|(2t−1)(3−4t)|dt

)1− 1
q

(∫ 5
6

1
2

(
t− 1

2

)
|(2t−1)(3−4t)|| f ′′((1− t)a+ tb)|qdt

) 1
q
⎤
⎦

+6

[(∫ 1

5
6

(1− t)|(t−1)(8−8t)|dt
)1− 1

q

(∫ 1

5
6

(1− t)|(t −1)(8−8t)|| f ′′((1− t)a+ tb)|qdt
) 1

q

+
(∫ 1

5
6

(
t− 5

6

)
|(t−1)(8−8t)|dt

)1− 1
q

(∫ 1

5
6

(
t− 5

6

)
|(t−1)(8−8t)|| f ′′((1− t)a+ tb)|qdt

) 1
q
]}

� (b−a)2

16

{
6

[(
1

1944

)1− 1
q
(

1
2160

| f ′′(a)|q +
1

19440
| f ′′(b)|q

) 1
q

+
(

1
648

)1− 1
q
(

13
9720

| f ′′(a)|q +
1

4860
| f ′′(b)|q

) 1
q
]

+3

[(
1

192

)1− 1
q
(

1181
311040

| f ′′(a)|q +
439

311040
| f ′′(b)|q

) 1
q

+
(

71
15552

)1− 1
q
(

293
103680

| f ′′(a)|q +
541

311040
| f ′′(b)|q

) 1
q
]

+3

[(
71

15552

)1− 1
q
(

541
311040

| f ′′(a)|q +
293

103680
| f ′′(b)|q

) 1
q

+
(

1
192

)1− 1
q
(

439
311040

| f ′′(a)|q +
1181

311040
| f ′′(b)|q

) 1
q
]

+6

[(
1

648

)1− 1
q
(

1
4860

| f ′′(a)|q +
13

9720
| f ′′(b)|q

) 1
q

+
(

1
1944

)1− 1
q
(

1
19440

| f ′′(a)|q +
1

2160
| f ′′(b)|q

) 1
q
]}

,

which ends the proof. �



1362 VIVAS-CORTEZ, ASIF, JAVED, AWAN, MEFTAH, DRAGOMIR AND NOOR

3. Applications

In the subsequent sections, we will explore numerous potential uses of our signifi-
cant developments. Initially, we set up a connection between means of nonnegative real
numbers by looking at specific outcomes acquired in the previous section. This section
also covers applications to composite numerical integration approaches.

3.1. The quadrature formula

Suppose a partition P : a = x0 < x1 < .. . < xi < xi+1 < xn−1 < xn = b of [a,b] ,
with i = 0,1, . . . ,n−1, then

∫ b

a
f (x)dx = T (x)+R(x).

Here

T (x) =
b−a

8

[
3 f

(
5a+b

6

)
+2 f

(
a+b

2

)
+3 f

(
a+5b

6

)]
,

and R(x) denotes the error term.

PROPOSITION 3.1. From Theorem 3, we have

|R(x)| �
n−1

∑
i=0

(xi+1 − xi)3

324
(| f ′′(xi)|+ | f ′′(xi+1)|).

Proof. Applying Theorem 3 over subinterval [xi,xi+1] and taking sum, we get
desired bound. �

PROPOSITION 3.2. From Theorem 6, we have

|R(x)| �
n−1

∑
i=0

(xi+1− xi)2

16

{
6

[(
8p

62p+2(2p+1)(2p+2)

) 1
p

(
17

1296
| f ′′(xi)|q +

1
1296

| f ′′(xi+1)|q
) 1

q

+
(

8p

62p+2(2p+2)

) 1
p
(

1
81

| f ′′(xi)|q +
1

648
| f ′′(xi+1)|q

) 1
q
]

+3

[
(C)

1
p

(
13
324

| f ′′(xi)|q +
5

324
| f ′′(xi+1)|q

) 1
q

+(D)
1
p

(
11
324

| f ′′(a)|q +
7

324
| f ′′(b)|q

) 1
q
]



ANALYSIS OF MACLAURIN’S INEQUALITY 1363

+3

[
(E)

1
p

(
7

324
| f ′′(xi)|q +

11
324

| f ′′(xi+1)|q
) 1

q

+(F)
1
p

(
5

324
| f ′′(a)|q +

13
324

| f ′′(b)|q
) 1

q
]

+6

[
(G)

1
p

(
1

648
| f ′′(xi)|q +

1
81

| f ′′(xi+1)|q
) 1

q

+(H)
1
p

(
1

1296
| f ′′(a)|q +

17
1296

| f ′′(b)|q
) 1

q
]}

.

Proof. Applying Theorem 6 over subinterval [xi,xi+1] and taking sum, we get
desired bound. �

3.2. Applications to means

We recall some notable means for non-negative real numbers.

1. The arithmetic mean:

A(a,b) =
a+b

2
.

2. The Weighted arithmetic mean:

wA(w1,w2;a,b) =
aw1 +bw2

w1 +w2
.

3. The log-mean:

Lr(a,b) =

[
br+1−ar+1

(r+1)(b−a)

] 1
r

; r ∈ ℜ\ {−1,0}.

PROPOSITION 3.3. From Theorem 4, we get∣∣∣∣ θ
8(r+2θ )

[
3A

r
θ +2
(

a,b,
5
6
,
1
6

)
+2A

r
θ +2 (a,b)+3A

r
θ +2
(

a,b,
1
6
,
5
6

)]
−3L

r
θ +2
r
θ +2 (a,b)

∣∣∣∣
� (b−a)2

16

[(
8

62p+1(2p+1)

) 1
p
(

r+ θ
36θ

A
(
11|a r

θ |q, |b r
θ |q
)) 1

q

+(A)
1
p

(
2(r+ θ )

9θ
A
(
|a r

θ |q, |b r
θ |q
)) 1

q

+(B)
1
p

(
2(r+ θ )

9θ
A
(
|a r

θ |q,2|b r
θ |q
)) 1

q

+
(

8
62p+1(2p+1)

) 1
p
(

r+ θ
36θ

A
(
|a r

θ |q,11|b r
θ |q
)) 1

q
]

.
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Proof. The statement of claim is directly followed by substitution f (t)= θ
r+2θ t

r
θ +2

in Theorem 4. �

PROPOSITION 3.4. From Theorem 5, we have∣∣∣∣ θ
8(r+2θ )

[
3A

r
θ +2
(

a,b,
5
6
,
1
6

)
+2A

r
θ +2 (a,b)+3A

r
θ +2
(

a,b,
1
6
,
5
6

)]
−3L

r
θ +2
r
θ +2 (a,b)

∣∣∣∣
� (b−a)2

16

{(
1
81

)1− 1
q
[(

r+ θ
324θ

A
(
7|a r

θ |q, |b r
θ |q
)) 1

q

+
(

r+ θ
324θ

A
(
|a r

θ |q,7|b r
θ |q
)) 1

q
]

+
(

19
648

)1− 1
q
[(

r+ θ
2592θ

A
(
103|a r

θ |q,49|b r
θ |q
)) 1

q

+
(

r+ θ
2592θ

A
(
49|a r

θ |q,103|b r
θ |q
)) 1

q
]}

.

Proof. By substituting f (t) = θ
r+2θ t

r
θ +2 in Theorem 5, we attain our desired re-

sult. �

3.3. Applications to probability theory

Let p : [a,b] → [0,1] be a probability density mapping over convex set X . Then
cumulative distribution is demonstrated as:

Pr(X � b) = F(b) =
∫ b

a
p(t)dt.

Utilizing the fact that

E(X) =
∫ b

a
tdF(t)

E(X) = b−
∫ b

a
F(t)dt.

PROPOSITION 3.5. Considering Theorem 3, we have∣∣∣∣18
[
3Pr

(
X � 5a+b

6

)
+2Pr

(
X � a+b

2

)
+3Pr

(
X � a+5b

6

)]
− b−E(X)

b−a

∣∣∣∣
� b−a

324
(|p′(a)|+ |p′(b)|),

and∣∣∣∣18
[
3Pr

(
X � 5a+b

6

)
+2Pr

(
X � a+b

2

)
+3Pr

(
X � a+5b

6

)]
− b−E(X)

b−a

∣∣∣∣
� M(b−a)

192
.

Proof. We conclude this result employing probability density function on Theo-
rem 3. �
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3.4. Graphical discussion of outcomes

We now give a graphical illustration of inequality presented in Theorem 3.

EXAMPLE 1. Since f (t) = θ
r+2θ t

r
θ +2 such that r � 1, θ > 1 defined on R+ and

its both first and second derivative are convex functions. They satisfy the hypothesis of
Theorem 3 and for a = 1 and b = 3, we have∣∣∣∣∣∣∣∣

θ
(

3
(

4
3

) r+2θ
θ +2(2

r+2θ
θ )+3

(
8
3

) r+2θ
θ

)
8(2θ + r)

−
θ 2
(
3

r+3θ
θ −1

)
2((r+2θ )(r+3θ ))

∣∣∣∣∣∣∣∣
� r+ θ

96θ

(
1+3

r
θ
)

.

(a)

2 3 4 5 6 7
r

10

20

30

40

50
f(r)

(b)

2 3 4 5
θ

0.02

0.04

0.06

0.08

f(θ)

(c)

Figure 1: Graphical visuals of left and right sides of Theorem 3.

We adjust r ∈ [1,5] and θ ∈ [1,5] to interpret the Fig 5(a), Fig 5(b) and Fig 5(c).
Clearly, these figures affirming the reliability of Theorem 3.

Below is the graphical illustration of Theorem 4.

EXAMPLE 2. Since f (t) = θ
r+2θ t

r
θ +2 such that r � 1, θ > 1 defined on R+ and

its both first and second derivative are convex functions. They satisfy the hypothesis of
Theorem 4 and for a = 1 and b = 3, we have∣∣∣∣∣∣∣∣

θ
(

3
(

4
3

) r+2θ
θ +2(2

r+2θ
θ )+3

(
8
3

) r+2θ
θ

)
8(r+2θ )

−
θ 2
(
3

r+3θ
θ −1

)
2((r+2θ )(r+3θ ))

∣∣∣∣∣∣∣∣
� 1

4

⎡
⎣√ 1

4860

⎛
⎝
√

11
72

(
r+ θ

θ

)2

+
1
72

(
r+ θ

θ
(3)

r
θ

)2
⎞
⎠

+

√
4

1215

⎛
⎝
√

2
9

(
r+ θ

θ

)2

+
1
9

(
r+ θ

θ
(3)

r
θ

)2
⎞
⎠
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+

√
4

1215

⎛
⎝
√

1
9

(
r+ θ

θ

)2

+
2
9

(
r+ θ

θ
(3)

r
θ

)2
⎞
⎠

+

√
1

4860

⎛
⎝
√

1
72

(
r+ θ

θ

)2

+
11
72

(
r+ θ

θ
(3)

r
θ

)2
⎞
⎠
⎤
⎦ .

(a)

2 3 4 5
r

2

4

6

8

f(r)

(b)

2 3 4 5
θ

0.02

0.04

0.06

0.08

f(θ)

(c)

Figure 2: Graphical visuals of left and right sides of Theorem 4.

We adjust r ∈ [1,5] and θ ∈ [1,5] to interpret the Fig 2(a), Fig 2(b) and Fig 2(c).
Clearly, these figures affirming the reliability of Theorem 4.

Here is the visual analysis of Theorem 5.

EXAMPLE 3. Since f (t) = θ
r+2θ t

r
θ +2 such that r � 1, θ > 1 defined on R+ and

its both first and second derivative are convex functions. They satisfy the hypothesis of
Theorem 5 and for a = 1 and b = 3, we have∣∣∣∣∣∣∣∣

θ
(

3
(

4
3

) r+2θ
θ +2(2

r+2θ
θ )+3

(
8
3

) r+2θ
θ

)
8(r+2θ )

−
θ 2
(
3

r+3θ
θ −1

)
2((r+2θ )(r+3θ ))

∣∣∣∣∣∣∣∣
� 1

4

⎡
⎣√ 1

81

⎛
⎝
√

7
648

(
r+ θ

θ

)2

+
1

648

(
r+ θ

θ
(3)

r
θ

)2

+

√
1

648

(
r+ θ

θ

)2

+
7

648

(
r+ θ

θ
(3)

r
θ

)2
⎞
⎠

+

√
19
648

⎛
⎝
√

103
5184

(
r+ θ

θ

)2

+
49

5184

(
r+ θ

θ
(3)

r
θ

)2

+

√
49

5184

(
r+ θ

θ

)2

+
103
5184

(
r+ θ

θ
(3)

r
θ

)2
⎞
⎠
⎤
⎦ .
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(a)

2 3 4 5
r

2

4

6

8

f(r)

(b)

2 3 4 5
θ

0.02

0.04

0.06

0.08

f(θ)

(c)

Figure 3: Graphical visuals of left and right sides of Theorem 5.

We adjust r ∈ [1,5] and θ ∈ [1,5] to interpret the Fig 3(a), Fig 3(b) and Fig 3(c).
Clearly, these figures affirming the reliability of Theorem 5.

EXAMPLE 4. Since f (t) = θ
r+2θ t

r
θ +2 such that r � 1, θ > 1 defined on R+ and

its both first and second derivative are convex functions. They satisfy the hypothesis of
Theorem 6 and for a = 1 and b = 3, we have

∣∣∣∣∣∣∣∣
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Figure 4: Graphical visuals of left and right sides of Theorem 6.

We adjust r ∈ [1,5] and θ ∈ [1,5] to interpret the Fig 4(a), Fig 4(b) and Fig 4(c).
Clearly, these figures affirming the reliability of Theorem 6.
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Figure 5: Graphical visuals of left and right sides of Theorem 7.

We adjust r ∈ [1,5] and θ ∈ [1,5] to interpret the Fig 5(a), Fig 5(b) and Fig 5(c).
Clearly, these figures affirming the reliability of Theorem 7.

4. Iterative scheme

Now, we provide a new cubic order iterative scheme based on Maclaurin’s method.

ALGORITHM 4.1. Suppose we have a non-linear equation f (x) = 0, then

xn+1 = xn − 8 f (xn)

3 f ′
(

5xn+yn
6

)
+2 f ′

( xn+yn
2

)
+3 f ′

(
xn+5yn

6

) , (9)

where

yn = xn− f (xn)
f ′(xn)

.

Proof. The proof directly follows from Theorem 3. �

4.1. Numerical analysis

The following part has some physical examples and their computational analysis
of Algorithm 4.1.
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1. The blood rheology and fractional non-linear equations model is used to exam-
ine the plug flow of Casson fluids, taking into account a non-linear fractional
equation to assess a flow rate decline and which is given as:

�(x) = 1− 16
7

√
x+

4
3
x− 1

21
x4−G,

where the fall rate is approximated based on G = 0.4. With an initial guess
of x0 = 0.1, then proposed Algorithm 4.1 approximate the desired solution x =
0.10469865153654822812 in four iterations.

2. The second issue discussed is fluid permeability in biogels ( [16]), which corre-
sponds to both pressure gradient and fluid velocity in media with pores such as
agarose gel or extracellular microfibre matrix:

f (x) = ℜex
3−20κ(1− x)2,

where ℜe = 10× 10−9 and κ = 0.3655. Algorithm 4.1 computes the approxi-
mate solution x = 1.0000369883881891758 in 20 iterations with initial guess of
x0 = 2.

3. The 3rd model is discussed in ( [25]) as:

�(x) =
x

1− x
−5log

[
0.4(1− x)
0.4−0.5x

]
+4.45977, (10)

Conversion of specie A in reactor is described by x and ω ∈ [0,1] . Algorithm
4.1 predicts the approximate solution with initial guess 0.75 in 4 iterations.

Next, we discuss the comparative study of algorithm 4.1 with classic methods such as
Newton method (NM) [8], Abbasbandy’s method (AM) [1], Halley’s method (HM) [8],
Chun’s method (CM) [11] through non-linear equations.

1. �(x) = x3 +4x2−15,

2. �(x) = xex2 − sin2 x+3cosx+5,

3. �(x) = 10xe−x2 −1,

4. �(x) = e−x + cosx .

We select tolerance ε = 10−15 and

1. |xn+1− xn| < ε ,

2. |�(xn+1)| < ε .

Numerical evaluations were carried out on an Intel(R) Core(TM) i5 processor running
at 1.60 GHz and 16GB of RAM. Maple 2020 served as the tool for software develop-
ment, whereas visual analysis was carried out via Matlab 2021. After executing numer-
ical evaluation on the program, we supply both tabular and graphic representations of
Algorithm 4.1 for the scenarios above.
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Table 1: Comparison of Different Methods for Various Examples
Methods x0 IT xn f (xn) δ
NM 2 6 1.6319808055660635175 0 0
AM 2 4 1.6319808055660635175 0 0
HM 2 4 1.6319808055660635175 0 0
CM 2 4 1.6319808055660635175 0 0
ALG 2 4 1.6319808055660635175 0 0
NM −1 6 −1.2076478271309189270 4.0×10−19 7.58×10−17

AM −1 5 −1.2076478271309189270 4.0×10−19 0
HM −1 4 −1.2076478271309189270 4.0×10−19 0
CM −1 5 −1.2076478271309189270 4.0×10−19 0
ALG −1 5 −1.2076478271309189270 4.0×10−19 0
NM 1.8 5 1.6796306104284499407 −9×10−20 4.7395×10−15

AM 1.8 4 1.6796306104284499407 −9×10−20 1.0×10−19

HM 1.8 4 1.6796306104284499407 −9×10−20 0
CM 1.8 4 1.6796306104284499407 2.0×10−19 0
ALG 1.8 4 1.6796306104284499407 −9×10−20 0
NM 2 5 1.7461395304080124176 6.0×10−20 1.0×10−19

AM 2 4 1.7461395304080124176 −6×10−20 1.0×10−19

HM 2 4 1.7461395304080124176 6.0×10−20 1.0×10−19

CM 2 3 1.7461395304080124176 −6×10−20 4.63×10−17

ALG 2 4 1.7461395304080124176 6×10−20 1.0×10−19

Here, we give the visual comparison of Algorithm 4.1 with classical methods
based on number of iterations.
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Figure 6: Graphical visuals
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5. Conclusion

Recently, researchers have concentrated on analyzing errors in quadrature and cu-
bature rules using a variety of analytical strategies. The main concern is to calculate the
novel rectified forms of existing results. This work assessed some sharp inequalities of
Maclaurin’s type via twice differentiable convex functions. One of the most important
parts of this study is that it figures out lower bounds for Maclaurin’s inequalities for
first-order differentiable functions and uses them to look at means, the error inequali-
ties of Maclaurin’s composite rule, and iterative schemes in non-linear analysis. The
identity found in this study can also be used to look into strong limits for strong con-
vexity, superquadraticity, uniform convexity, and non-convex mappings. To check this
inequality in the future, we plan to change it into quantum, symmetric quantum calcu-
lus, fractional calculus, and interval-valued frameworks, using a variety of convex and
non-convex mappings. We hope the strategy and findings of this paper will create new
insights for carrying out further research.

Acknowledgement. The authors are thankful to the editor and the anonymous re-
viewers for their valuable comments and suggestions.
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