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FUNCTIONS AND THEIR APPLICATIONS
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Abstract. This paper presents a comprehensive generalization of the recent work by Yang and
Zhang [J. Math. Inequal., 19 (2) (2025), 441-459]. We extend their piecewise interpolation
approach originally developed for specific power-type functions to a broader setting involving
general convex functions on the unit interval. By introducing new refinement and reverse in-
equalities, we establish sharper bounds for convex combinations and derive improved versions
of classical results such as Jensen’s inequality and Young-type inequalities. Our methods in-
corporate convex analysis, interpolation theory, and weak submajorization techniques, leading
to new applications in real and matrix analysis. In particular, we obtain refined inequalities for
various matrix means, unitarily invariant norms, and numerical radius bounds, offering enhanced
tools for use in operator theory, functional analysis, and quantum information theory.

1. Introduction

Convexity is a fundamental concept in mathematics with broad applications in
optimization, functional analysis, and matrix theory. A function f:/ C R — R is said
to be convex if for all x,y € I and n € [0,1], we have:

S((L=n)x+ny) <(1—=n)f(x)+nf(y).

If the inequality is strict for x # y, then f is strictly convex.

By analyzing the convexity of the function g(¢) = f((1 —¢)x+zy) for z € [0,1],
where f is a convex function defined on the interval [x,y], the convexity condition is
equivalent to the following inequality:

fm) <(1=n)f(0)+nf(1). (1.1)

Moreover, a positive function f is said to be log-convex if log f is convex. This
property can be expressed through the inequality:

ST =m)x+ny) < f)TFO)". (1.2)

Convex functions enjoy several useful properties, such as continuity on the inte-
rior of their domain, subdifferentiability, and the fact that any local minimum is also
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a global minimum. These properties make convexity a powerful tool in analysis and
optimization.

In matrix analysis, convexity plays a critical role through the theory of operator
convex functions and matrix inequalities. Let .77,.%” be Hermitian matrices of the same
size. A function f: I — R is said to be matrix convex if:

f(1=n)T+n) (1= f(T)+nf(),

forall n € [0, 1], where < denotes the L wner partial order.
An important application arises in Jensen’s inequality for matrices: if f is operator
convex and W is a unital positive linear map, then

J¥(T)) 2Y(f(T).

Moreover, convexity is central in defining entropy, divergence measures, and opti-
mization problems in machine learning and economics. Thus, its role in both pure and
applied mathematics is indispensable.

In mathematics, refining an inequality involves adding a strictly positive term to
make the inequality sharper and more informative. This approach is particularly im-
portant in the study of convex functions, where the classical convexity inequality can
sometimes be too general. By quantifying the deviation from linearity, refined inequal-
ities provide deeper insight into the structure and behavior of functions. In certain
contexts, inequalities can also be reversed especially for concave functions or under
specific assumptions leading to meaningful lower bounds. Both refinement and reverse
enrich the original inequality, offering more precise estimations, tighter bounds, and
greater applicability. These techniques play a crucial role in optimization, functional
analysis, and matrix theory, where they help assess convergence, stability, and error
margins. Ultimately, they transform inequalities from simple comparative tools into
powerful analytical instruments.

One particularly noteworthy contribution we would like to emphasize is the re-
sult established by D. Choi et al. [4], which introduces two refined inequalities that
significantly enhance our understanding of convex functions. These refinements pro-
vide sharper bounds than the classical convexity inequality and represent a meaningful
development in the field of inequality theory.

THEOREM 1.1. [4] Ler f:[0,1] — R be a convex function and let 1 € [0,1].
Then

4%4(%)) < (1-m)F(0) + nf(1)— £(n)

(1230 )

where r =min{n,1 —n} and R = max{n,1—n}.

The inequality presented in Theorem 1.1 has important applications in refining
operator and matrix inequalities. Specifically, it can be employed to sharpen classical
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results such as the Jensen operator inequality and the Heinz mean inequality. In ma-
trix analysis, many inequalities involving convex (or operator convex) functions, such
as those of the form f(A) < f(B), benefit from tighter bounds obtained via scalar
refinements. By applying this refined inequality entrywise or through trace function-
als, more accurate estimations can be established. For instance, when f(z) =t with
p > 1, improved versions of matrix power means can be derived. Moreover, such in-
equalities play a role in quantum information theory, where convex trace functionals
govern entropy bounds and quantum divergences. These refinements thus bridge scalar
inequalities with matrix and operator-level precision.

For further results on convexity inequalities and their applications in means and
matrix inequalities, the readers are encouraged to consult the following references: [8,
9,10, 11, 18, 20, 21, 22, 23, 24, 25].

Additionally, if we consider the convex function f(n) = x'~"y", the refined in-
equality in Theorem 1.1 allows us to recover an important refinement and reverse of the
classical Young’s inequality, as established by Kittaneh and Manasrah in [14, 15]. This
result provides sharper bounds for the convex combination of positive numbers and has
significant implications in matrix and operator theory:

r(Va— 3 < (L=m)x+ny—x'"N SR(Vx—5)%, (1.3)

where x,y >0, 0<n <1, r=min{n,1 —n}, and R = max{n,1 —n}. This re-
fined form captures the difference between the arithmetic and geometric means more
precisely and has been widely applied in the study of norm inequalities and quantum
entropy bounds.

Very recently, Yang et al.[28] introduced a significant refinement and generaliza-
tion of inequality (1.3), offering a more precise estimation framework within the context
of the Young-type inequalities. Their result establishes a piecewise linear interpolation
approach depending on the value of the parameter 1 € [0, 1], divided into m uniform
subintervals.

THEOREM 1.2. ([28]) Let x,y >0, n € [0,1], and let m be a positive integer.
Ifne [k qul] for some k € {0,1,...,m— 1}, then the following refined inequalities

hold:
_ k+1 k+1 kel kel
x! ”y”+(mn—k)<<1——m )x ——y—x mym>

k k :
+ ((k+1) —mn) ((1 - —) x+ —y—xl‘f’ﬁ) (I—=n)x+ny,
m m
and the reverse bound as follows

“"”HW@I”y”+(mn—k)<<1_k;1)x kjr_zl Mlkﬂ)

+((k+1) —mn) ((1 —%)H%yﬂﬁ%yl—r’é) —2AY.
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These inequalities offer a refined approximation of the convex combination (1 —
n)x + Ny, incorporating weighted interpolations of arithmetic and geometric means.
Their structure makes them applicable in further sharpening matrix inequalities and
improving operator norm bounds in functional analysis and quantum information the-
ory. For further results on Young’s inequality, the reader is encouraged to consult the
following interesting papers: [2, 7, 13, 16, 19, 26, 27].

The main objective of this paper is to extend Theorem 1.2, originally established
for specific power-type functions, to the broader class of convex functions defined on
the unit interval. This generalization not only preserves the structure of the original
result but also provides a more flexible framework for deriving refined inequalities. By
working within the general setting of convexity, we introduce a new refinement of The-
orem 1.1 that leads to tighter bounds and improved estimates. Our approach builds upon
the interpolation techniques introduced by Yang et al., while incorporating additional
convexity-based arguments to ensure broader applicability. The refined inequalities
presented in this work enhance the classical Jensen-type and Young-type inequalities
by offering sharper control over the convex deviation. Moreover, these results open the
door to further applications in matrix analysis, operator theory, and related fields, where
convex functions play a central role. Overall, this contribution deepens the theoretical
understanding of convex inequalities and enriches the available toolbox for future de-
velopments in mathematical analysis.

This paper is organized as follows. In Section 2, we introduce several new in-
equalities involving convex functions, including refined versions of the classical con-
vexity inequality and their reverses. These results generalized earlier work and es-
tablish sharper bounds for convex combinations. Section 3 is devoted to inequalities
derived from weak submajorization, which allow us to formulate powerful results for
both scalars and vector valued convex functions. In Section 4, we present applications
of our results to classical means, including arithmetic, geometric, harmonic, and power
means, highlighting the strength of our approach in various settings. Section 5 explores
applications to matrix inequalities, such as those involving unitarily invariant norms
and trace norms. In Section 6, we focus on refinements of numerical radius inequalities
using convexity and log-convexity, providing new insights relevant to operator theory
and functional analysis.

2. New inequalities for convex functions

In this section, we investigate generalized refinements of classical convexity in-
equalities, including their reverses. We begin by sharpening Theorem 1.1, proposing a
more precise version. This approach allows us to derive tighter bounds and extend the
scope of the original inequality. The results obtained lay the groundwork for broader
applications to convex and log-convex functions. Our analysis thus contributes to a
deeper understanding of structured inequalities in real analysis.
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THEOREM 2.1. Let f:]0,1] = R, be a convexfunctlon, 0<n <1, andlet m be
a positive integer. If N € [k k 1] for some k=0,1,.. — 1, then

s+ om0 ((1-52) 0+ 2y - (K21

m m

+ (k1) —mm) (1 - %) £0)+ %f(l)—f<%))
< (1=m)f(0)+nf(1).

In particular:
(i) If n € [0,1], then
s+ n (L0 £ (2))
(221 +(2)
< (=) f(0)+ns).
(ii) If n € [1— L 1], then

) +2(1-1) (07

|
(-2 ) o (-2)

< (1=m)f(0) +ns(1).

Proof. The convexity of the function f leads to

UﬂW@MN%W%@«F%%m)H%m#G%»

m

— (k1) = mm) ((1 —%) f(0)+%f(1)_f<£)>

= (mn —k)f (%) +((k+1) —mn)f (%)

=fm).

For inequality (i), we take k = 0, and for the second inequality, we choose k =
m—1. O
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REMARK 2.1. Note that the convexity of the function f ensures that

(1= o+ s - () >0

m

(1 —%)f(0)+%f(l)—f<£> >0,

m

and

which implies Theorem 2.1 is a further refinement of (1.1).

REMARK 2.2. By considering the function (1) =x'~"1y" for x,y >0 and n €
[0,1], we are able to recover Theorem 1.2 as a special case of our general framework.
This highlights not only the consistency of our approach with known results but also
underscores the strength and broad applicability of the new inequalities presented in
this work.

The following result provides a refined upper bound for convex functions defined
on a closed interval [x,y], incorporating a piecewise correction term that depends on the
partition index m € N. By evaluating the function at affine combinations of the end-
points and interpolating values, this inequality improves the classical convexity inequal-
ity f(1—=n)x+ny) <(L—n)f(x)+nf(y). In particular, the refinement takes into
account the deviation of f from linearity over subintervals of [x,y], and includes spe-
cific improved estimates for the boundary cases when 1 € [0, 2] and n € [1—1 1].
This enhancement reflects the local behavior of convex functions and is useful in appli-
cations where sharper bounds are needed over discretized domains.

THEOREM 2.2. Let f: [x,y] — R be a convex function, where x <y, and let m

be a positive integer. For 1 € [0,1], define the affine point zy = (1 —n)x+ny. If

ne [fq,k#] for some k=0,1,... . m—1, then

)+ om0 ((1-50) g0+ L 10 -7 (21 )

m

+((k+1)—mn) <<1 —%> f(x)J“Zf(y)_f(Z%))
<A =mFf@)+nf).

In particular:

(i) Ifne[ ,m] then

Flzn) +2m (f(x) Y1 (o)
oo ((1-2) 194 21(2) - 1c2))
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(ii) If n € [1— L 1], then
e+ 201-m) (F05 70D (o))

2 2
+ (m—mn) ((1 - %) o) +—f (g) —-f (Zl_%)>
<= f(x)+nf).
Proof. The result follows by applying a change of variable. Define the function

g:[0,1] — R by
8(1) = f((1=1)x+1y),

where f: [x,y] — R is convex. Since g is the composition of a convex function f with
an affine map, it is convex on [0, 1]. Moreover, the converse also holds: f is convex on
[x,y] if and only if g is convex on [0,1]. Now, the theorem is a direct consequence of
the previous theorem. [

For the specific case m = 3, we derive the following corollary. It serves as a direct
consequence of Theorem 2.1.

COROLLARY 2.1. Ler f:[0,1] = R, be a convex function and 0 <n < 1.

(i) If n € [0, 1], then

sny+n (FOFHp (1)) won (300437 (5) -1 (5))
< (1=m)f(0) +ns(1).
(ii) If n € [§.3], then

7)) +(2—-31) (%f(o) + %f(l) y (%)) +(3n-1) (%f(0)+ 2r) - f (E))

3 3
< (I =n)f(0)+nsf(1).
(iii) If n € [3,1], then
ro+201-m) (LG8 p (3))+ e-3m (50437 (3) -1 (3))
< (I =n)f(0)+nsf(1).

REMARK 2.3. It is obvious that the first and third inequalities in Corollary 2.1
provide sharper bounds than the left-hand side of the inequalities presented in Theo-
rem 1.1. However, the second inequality in Corollary 2.1 and the left-hand side of the
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inequalities in Theorem 1.1 are not comparable in general. To illustrate this, let us con-
sider the convex function f(z) = ¢* on the interval [0, 1], and choose 1 = 1 € [4,3].
We first compute the refined bound given by Corollary 2.1:

2-3n) <§f(o)+ %f(l) —f G)) +(3n-1) (%f(o) + %f(l) —f (%))

2 2
~(05) <§<o>+§<1>— (%) ) +(05) <§<o>+§<1> - (%) )

Now we compute the corresponding refinement from Theorem 1.1:

£(0)+ £(1) 1\ ., [0+1 [1)\*) _ 3
2r< 5 f 5 =1 5 5 =(0.5-0.25)=0.25,
where r=min{n,1-n}=1.

Thus, in this case, the second inequality provides a tighter bound. However, for
other values of 1, suchas N = % , the first inequality will be sharper. This confirms that

the two inequalities are not universally comparable; their relative performance depends
on the specific value of 1 and the convex function under consideration.

Next, we focus on refined versions of the reverse convexity inequality. These re-
finements aim to sharpen the gap between the convex combination and the function’s
value. Such improvements allow for tighter bounds, particularly in applications involv-
ing operator and matrix inequalities.

THEOREM 2.3. Let f:[0,1] — R, be a convex function, and let m be a positive
integer. If N € [5 k*—l] for some k=0,1,....,m—1, then

m’ m

(1—n)f(0)+nf(1)
< f(n)+ (mn —k) ((1 - k:;—l> f(0)+%f(1)+f<1 - k:;—l)>

+ (k1) —mn) ((1 —5> f(0)+£f(l)+f<l—£>) _zfe).

In particular:
(i) If n € [0, L], then

‘m

(L= m)£(0) + A1) < f(m) +2(1— ) (M f (1))

(-2 3(2) (o-2)

3
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(ii) If n € [1— L 1], then

2.2)

Proof. Utilizing the convexity of the function f,if n € [£ &L] (k=0,1,...,
m— 1), we have

s (15 0+ £ g (1-£21))

(k4 1) —m) ((1—£)f(0)+£f(1)+f<1—%>> _2f<%)

—((1=m)f(0)+nf(1))
=g+ m =07 (1= 52 ) @y —mmiy (1-1) <21 (3)
0

m
1
> g+ =) =21 (3 ) 0.
This completes the proof. [l

REMARK 2.4.

(1) When n € [0, %] U [1 — %, 1] , where m is a positive integer, inequalities (i) and
(ii) are sharper than the second inequality in Theorem 1.1.

(2) For m =2, Theorem 2.3 coincides with the second inequality in Theorem 1.1.

Let m =3 in Theorem 2.3, we derive the following corollary.

COROLLARY 2.2. Let f:[0,1] = R, be a convex function and 0 <n < 1.
(i) If n € [0,%], then

(1= n)(0)+nf(1) < f(n)+2(1-n) (M _f@)

- 0)-o()

(L= m)F(0)+nf(1) < £m)+ (30 — 1) (1f<o> 254 s (1))

(ii) If n € [§.3], then

3 3
-3 (3o rmr(3)) -2 (3).
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(iii) If n € [3,1], then

(1—m)f(0)+ 1 (1) < f(n)+2n (M—f(&))

1 2 (1 1
a-am(3r0+37(3)-(3))-

REMARK 2.5. As we explained in Remark 2.4: the first and third inequalities in
Corollary 2.2 provide sharper bounds than the right-hand side of the inequalities pre-
sented in Theorem 1.1. However, we should reminder readers that the second inequality
in Corollary 2.2 and the right-hand side of the inequalities in Theorem 1.1 are not com-
parable in general. To illustrate this, consider the convex function f(z) = > on the
interval [0,1], andlet n = 1 € [1,2].

We compute the following quantity:

a1 (370 +370+7(3))
=3 (Groe 3w +r(3)) -2 (5

oofgodon () oo (oo G)) > ()

2 1 1 4
_0.5-<§+§)+0.5-<§+§>—0.5
7 7 7 7 1 5
=05 = S5.1=-1—-05=— — - —=—~0.2778.
0.5 <9>+05 (9) 05= ot 15~ 5= 15 02778

Now we compute the corresponding bound from Theorem 1.1:

NUUOE) (0_()) 02

In this case, the quantity from Corollary 2.2 gives a slightly weaker bound com-
pared to the corresponding refinement from Theorem 1.1.

However, if we take n = 15—2 and f(x) = 2!7*3*, then we get the opposite conclu-
sion, that is

o (b0 () o o o (2) ()

N——

1/1 2 N\ 3/2 1 L2

- (z2)+2 2333 |+ 2 (Z(2)+ = 2335 | =2
4<3()+3(3)+ 3>+4<3()+3(3)+ 3) V6
~0.0556

and

zze(M—f(l)) :2-%-(?—%) ~ 0.0589,
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which confirming that the bound of Corollary 2.2 is stronger than the corresponding
conclusion in Theorem 1.1.

3. Convex and log-convex inequalities derived from weak submajorization

In many areas of applied mathematics and optimization theory, the concept of
majorization plays a crucial role in comparing vectors in R” based on the ordering of
their components. In particular, weak submajorization is a partial ordering that captures
the idea that one vector is, in a certain sense, more spread out or less concentrated than
another.

Let U = (U;,Us,...,U,) and V = (V},Va,...,V,) be vectors in R”. Denote by
U' and V' the vectors obtained by rearranging the components of U and V in non-
increasing order, respectively.

We say that U is weakly submajorized by V , denoted U <,, V , if:

k k
Sul<Y v, forallk=1,2,...,n.
i=1 i=1

This concept is particularly useful when analyzing inequalities involving convex
functions and vector arguments.

LEMMA 3.1. (Fundamental Inequality for Weak Submajorization [17, pp. 13])
Let U = (U;)._,,V = (Vi)i_; € R", and let J C R be an interval containing all compo-
nentsof U and V. If U <,V and ¥ : J — R is a continuous, increasing, and convex
function, then the following inequality holds:

i\y(ui)gi\y(v,-).

i=1

LEMMA 3.2. Let f:]0,1] — R" be a convex function and U = (Uy,U,) and
V = (V1,V») € R? be two vectors with components defined as follows:

Ur=f(n), Vi=(1=n)f0)+nf(1), U2=n((m—1)f(0)+f(1)) and Va=mn f (5,),

where m is a positive integer;, 1 € [0, %] . Let Ky =max{U,,U,} and K, = min{U,,U,}.
If K = (K1,K3), then we have
K=<, V.
that is,
K <K <V, Vo <Vy; and Ki+ K <V + Vs

Proof. Observe that

Vi—Ux=(1-1)f(0)+nf(1) —n((m—1)f(0)+ f(1)) = (1 —mn)f(0) >0,
that is V| > U,. Based on convexity of the function f, we deduce that U; < V| and
U, > V,,sowehave Kr < Ky <VyandV, < V.

On the other hand, U; 4+ U, = K + K> < V| 4V, follows from the second inequal-
ity in Theorem 2.1 directly. [J
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LEMMA 3.3. Let [ :[0,1] — R" be a convex function and U = (Uy,U,) and
V = (V1,Vs) € R? be two vectors with components defined as follows: We consider the
following expressions:

U = (1-n)£0)+nf(1),
=2f(3),

Vo= f(n),

Vi=(1=n)f0)+(1—(m—1)n)f(1)+mnf(1-1),

where 1 € [0,1]. Let Ky = max{U,,U>} and K> = min{U,U,}. If K = (Ki,K>),
then we have
K =<, V.

that is,
K <K <V, <Vy; and Ki + K <V + V.

Proof. First, by applying Jensen’s inequality for three variables, we conclude

vi=2(U5 0+ =0y 20 (1 L)) s ()~

Moreover, by the convexity of the function f, we have

Vi—U; =(1—mn)f(1)+mnf<1—l) >0 and U; > Vs,
m

sowe have K, < K; <Vjand V, <
On the other hand, Uy + U, = Kl + K> <V +V, follows from the second part of
Theorem 2.3 directly. [J

LTy [1—1L.1] and m is a positive

Next, we discuss the situations when 1 € [0, P

integer, based on Theorems 2.1 and 2.3.

THEOREM 3.1. Ler f:[0,1] — R, be a convex function, ¥ : J — R is a con-
tinuous, increasing and convex function, and m a positive integer, and 1 € [O, %] U

(=51

(i) If n € [0, L], then

>+
—n)f(0)+(1 (m )n)f()+mnf(1—%))—‘1’(2f(%))-(3.1)
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(ii) If n € [1—L1], then
(L=) (f(0)+ (m— 1) (1)) =¥ ((m—mn) £ (1= 3))
)

¥ (
w((1- ><>+nf<>> ¥ (f(n)
¥ ((1-

Y(L=m)FO)+nf(1)+(m—mn)f (%)) —¥(2f(3))
(32)

Proof. Let us consider the vectors V = (V},V,) and K = (K;,K;) as defined in
Lemma 3.2, we have K <,, V.
Then, by applying Lemma 3.1, it follows that

Y(V)+¥(V2) =Y (K))+Y(Ka),
which implies
Y (Vi) —-Y(U,) =¥ U,) —¥(Va).

A similar argument applies to the reverse inequality.

The second inequality follows by observing that if the function x — f(x) is con-
vex, then so is x — f(1—x). Moreover,if 1 € [1— L 1], then 1—n € [0, 1]. There-
fore, by replacing f(x) with f(1—x) and n with 1 — 1, the desired inequality follows
directly. [

By selecting the function ¥(x) = x* with A > 1, we derive an intriguing refine-
ment as well as a reversed form of the convexity inequality (1.1). This approach reveals
deeper insights and extends the classical results.

THEOREM 3.2. Let f:[0,1] — R+ be a convex function, and let A > 1, m be a

positive integer, and 1 € [ i] [l - ]

‘m

(i) If n €[0,1], then

[ ((m—1)£(0) + F())* — [mnf (£)]*
< [(1=n)£0) +nf)* = [Fm)*
< [(1=m)FO)+ (1= (m— 1)) (1) +mnf(1- 1)) = 2 ()]

(ii) If n € [1— 1 1], then

[(1=1) (£(0) + (m— 1) () = [(m—mm)f (1-1)]*
< [(1=m)f0) +nfW)* = [t
< [(1= (m—1)(1=m)F©O) +nf(1) + (m—mm) £ ()" = [2£ (1)]"

By choosing the function ¥(x) = exp(x), we obtain the following interesting re-
finement and reverse of the log-convexity inequality (1.2).



1388 Y. REN

THEOREM 3.3. Let f:[0,1] — (0,40) be a log-convex function, m € N, and
letne [0, L]u[1—411].

(i) If n €[0,1], then

(Ot r)" = £ (5™
< A = £(m)
< [y (1= Ay - (3)°

4. Application to some classical means

Means are fundamental mathematical tools used to represent central tendencies
or averages of numbers. Among the most common are the arithmetic, geometric, and
harmonic means, which have extensive applications in analysis, statistics, optimization,
and operator theory.

(1). Arithmetic mean

The arithmetic mean (AM) of two positive numbers x and y with weight n € [0,1]
is defined as:

xVyy = (1—=n)x+ny.

(2). Geometric mean

The geometric mean (GM) captures multiplicative relationships and is defined (for
x,y > 0) by:
iy = x My,

(3). Harmonic mean

The harmonic mean is defined as the reciprocal of the arithmetic mean of the
reciprocals:

_ RIS
xlpy = ((l—n)x 1—H‘ly 1) , x,y>0.
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(4). Power means

More generally, the power mean (or Holder mean) of order p € R is defined by:

1
Xt py = ((L=mx”+ny?)?, p#0,

and
l-nn

Xfipoy i =x "yl

Special cases of power mean include:

e p = 1: Arithmetic mean

o p = 0: Geometric mean

e p = —1: Harmonic mean

® p— e, xinpy — max{x,y}; and p — —eo, xity py — min{x, y}.

It is well known that the function
F) =ty = (L= +my?)7  for p< 1

is convex. As an application of Theorem 2.1, we obtain the following inequality, which
provides a refinement of the classical inequality between the power means and the arith-
metic mean.

THEOREM 4.1. Let x,y >0, 0< n < 1, and let m be a positive integer. If N €
[k ]il] for some k=0,1,...,m—1, then

mr m
k+1 k+1
Xin,py + (mn — k) ((1 - 7)*" 7y—xﬁkn+ll7p}’>

+ ((k+1) —mmn) <<1 - %)x—i— %y—xﬁ;ﬁy)
< (L=m)x+ny.

In particular:

(i) If n €[0,1], then

2

2 2
+mn ((1 — E) X+ Zxﬁl/pr_xﬁl/m,py)
< (I=n)x+ny.

x+y
Xfn,py +21 <— —xﬁ1/27pY)
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(ii) If n € [1— L 1], then

X+
Xtnpy+2(1-n) (Ty —Xﬁl/z,p}’>

2 2
+ (m—mn) ((1 - Z) y+ thh/z,py —xﬁll/m,pY)
< (T=m)x+ny.

If we take p = —1, we obtain the following inequality, which provides a refine-
ment of the classical inequality relating the harmonic and arithmetic means.

THEOREM 4.2. Let x,y >0, 0< n < 1, and let m be a positive integer. If N €
[5 ]il] for some k=0,1,..., m—1, then

m’ m
k+1 k+1
x!r,y+(mn—k) ((1——))64-7)1—)6!@)1)

m

+ (k1) —mn) ((1 —%)x—k%y—x!%y)
< (L=m)x+ny.

In particular:

(i) If n €[0,1], then

x+y
xlpy+2n (T —x!1/2y>

2 2
+mn ((1 — —)x+ —x!l/zy—x!l/my)
m m

< (I=n)x+ny.

(i) If n € [1— 1 1], then
X+
xlpy+2(1—mn) (Ty —X!l/z)’)

2 2
+m—mn)((1—=|y+—=xlypy—x!i_1/my
m m
< (I=n)x+ny.
As p approaches zero, we obtain the following inequality, which provides a refine-

ment of the classical Young’s inequality. This refinement is precisely stated in Theorem
1.2 and serves as a key illustration of the strength and scope of our results.
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THEOREM 4.3. Let x,y >0, 0< n < 1, and let m be a positive integer. If N €
[k ]il] for some k=0,1,...,m—1, then

k+1 k+1
Xiny + (mn —k) ((1 S >x+—+ y—xtikﬂy>
m m m

+((k+1)—mn) ((1 —%)x—k%y—xﬁ%y)
<(=m)x+ny.

In particular:

(i) If n € [0, L], then
x—+
xfny+2n (Ty —xth/zy)

2 2
+mn ((1 - Z) X+ Zxﬁ1/2y_xﬁl/my>
< (I=n)x+ny.

(ii) If n € [1— L 1], then
+
XMy+2U—4D<£EX—Wuw>

2 2
+ (m—mn) ((1 - —> y+—xti 2y —xﬁl—l/my>
m m
< (L=m)x+ny.

5. Application to matrix inequalities

Matrix inequalities offer valuable tools for analyzing linear transformations, par-
ticularly in understanding the interplay between norms, spectra, and matrix structures.
A central theme in this field is enhancing classical results such as norm comparisons
and inequalities involving matrix means and extending them within broader mathemat-
ical contexts. Investigations into convexity and log-convexity are especially influential,
facilitating the development of sharper inequalities and generalized frameworks. These
advancements not only deepen our theoretical understanding but also find applications
in disciplines such as quantum theory, numerical analysis, and optimization. As a re-
sult, matrix inequalities remain a vibrant area of mathematical research with significant
analytical and practical relevance.

Before delving into our main results, we introduce some notational conventions.
Let M,, denote the algebra of all complex n x n matrices. A matrix .7 € M,, is said
to be Hermitian if 7 = 7", where 7" represents the conjugate transpose (adjoint)
of 7. We write .7 >0 (or 7 > 0) to signify that .7 is positive semi-definite (or
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positive definite). For Hermitian matrices .77 ,.% € M,,, the inequality 7 > .¥ means
that .7 — .7 is positive semi-definite.
We define the set of positive semi-definite matrices as

M, :={7 €M, : (Fu,u) >0forallucC"},
and the set of positive definite matrices by
M, " :={T7 €M, : (Zu,u) > 0 for all nonzerou € C"}.

The singular values of a matrix .7 € M,, are defined as the eigenvalues of the
positive semi-definite matrix |7 | := (7*7)"/2. These values are denoted by s;(.7)

for j=1,...,n, and are ordered from largest to smallest.
Anorm || || on M, is called unitarily invariant if it satisfies
[wavi=I17l

for all unitary matrices U,V € M,, and any .7 € M,,. Two common examples are:
e Trace norm: ||.7 |, :=u]T|=3%"_5;(T),
o Hilbert-Schmidt norm:

1/2
|72 = (w(T7 T*)? = <2|r,2> :

where .7 = (1;;).

For all &, € M,,, any positive real number r, and every unitarily invariant
norm, Horn and Mathias [5, 6] established the following matrix version of the Cauchy-
Schwarz inequality:

7117 < IT* 7)) -

Bhatia and Davis extended this result in [3] to a more generalized setting. Specif-
ically, forall 7,.% € M}, any X € M,,, and r > 0, they established:

7" x| < |7 T X[IIX 7]
This is equivalent to the following inequality:
l l r r r
72X 72> < NT XX (5.1)

For all 7, € M;| and ¢ € [0,1], a Holder-type inequality has been derived in
[12]:

7 =X < 7X - 1IX T (5.2)
Given 7,.7 € M,} © and X € M,,, the function f(¢) = |||.7''X.7"|"|| with r >0
is log-convex on the interval [0,1] for every unitarily invariant norm ||-|| on M, (see

[12]). Utilizing Theorem 3.3, we obtain a novel refinement and reverse of the Holder-
type inequality (5.2).
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THEOREM 5.1. Let 7, e M!T and 0 £X € M,, r >0, m € N, and let
ne 0, i]u1—2L11]. Then:
(i) If n € [ ,m] then

lzxr= i) ||| 7 -mxss] ™

< [zxri=mixzrn) - ||l x|

rmn ri2
< [ern“”|Xf|“‘<'"—“"m%xylnﬂ ]—(H%m%
(ii) Ifne[ ] then
m—mn
[zxr ] - || 7xs
ryl— r —
<X X = ||| x|
rym—mn r2
< x| e=a=myx. H\yl—%xﬁ - ‘Hy%xy%
For every 7,. € M/t and X € M,,, the function
fO=7"x7
with r > 0 is log-convex on [0,1], for any unitarily invariant norm | - || on M,, (see

[12]).

THEOREM 5.2. Let 7, e M/T and 0 £X € M,, r >0, m € N, and let
nef0,L]uft—L1]. Then:
(i) If n € [ ,m] then

lixri = nzxsri]” ||| 7=x.e s ™

< [IXFI XTI - 17X |

r

< [ || e

mrl] B H‘ﬂ%xyﬁ r

(ii) If n € [1— L 1], then
m— _1 m—m
ixrinzxar=] " - |7t hxst
S Ee gy L [Eab el
rjm—mn

<P x| 7 A x

_H’g%xy% '
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REMARK 5.1. Notice that Theorem 5.2 provides both a refinement and a reverse
form of the Holder-type inequalities for unitarily invariant norms. In particular, by
setting X = I, we obtain refinement and reverse of the classical inequality.

N7z = 7 1|,
for0<r<1.

It is established in [23] that for two matrices 7,. € M,", the function f(r) =
tr(711.7") is log-convex on the interval [0, 1]. Utilizing Theorem 3.3, we derive the
following theorem, which provides a refinement and reverse of the classical Holder’s
type inequality for the trace of matrices.

THEOREM 5.3. Let 7,/ €M;;, meN, andlet n € [0, ] U[1— L 1]. Then:

(i) If n €[0,1], then

‘m

(ii) If n € [1— 1 1], then

(7)) = (ﬁyl—%)
<u() (L)~ (TN
m—mn

2
<tr(9)1—<m—1><1—">tr(5ﬂ)"tr(9“#%) —tr(y%y%) .

6. Application to refined numerical radius inequalites
The numerical radius of an operator .7 € M,,, denoted by w(.7), is defined as

w(7) = sup (T u,u)l,

flufl=1

and serves as a fundamental tool for measuring the size or “magnitude” of an operator.
This quantity not only provides valuable information about the spectral behavior of .7,
but also plays a central role in many areas of operator theory and functional analysis.
Over the years, numerous inequalities have been established that connect the numerical
radius with classical operator norms, spectral properties, and various matrix means,
thus highlighting its wide applicability.
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To broaden this framework, Abbas et al. [1] introduced a generalization based
on an arbitrary norm N(-) on M,,. The resulting generalized numerical radius of .7,
denoted by wy(.7), is defined as

wy () = S?RN(Re(ef"yD :

where the real part of an operator Z is given by Re(Z) = Z+—2Z* This generalization
provides a flexible framework that accommodates different choices of norms, thereby
extending the scope of classical numerical radius inequalities.

Moreover, for a matrix X € M,, with Cartesian decomposition
X =Re(X) +iIm(X),
one has

X+X* X—-X
= m .

Re(X
e(X) 2 2

These decompositions play a crucial role in analyzing the structure of matrices and in
deriving inequalities involving the generalized numerical radius.

It follows that when N is the usual operator norm derived from the Hilbert space
inner product, wy(-) coincides with the classical numerical radius w(-).
Building on the results in [1], the function
f6)=wy (T"'XT' + T'XxT')
is convex on the interval [0,1] for any unitarily invariant norm N(-) on M, , where

7 €M, and X € M,,. This convexity property allows us to invoke Theorem 3.2 to
establish Heinz-type inequalities involving the generalized numerical radius.

THEOREM 6.1. Let 7 € M} and X € M,,. Then, for A > 1, meN, and n €
[0,L1U[1—L1], the following hold:

(i) If n € [0, L], then
A 1_L 1 1 1_L A
[mnwn(TX +XT))" — [mnwy(T" mX T+ Tux T "m))
<[ (TX+X ) = [wn(Z7 X 71 4 g 7]
Lo 1 1 1 qh
<[(2—mn)wN(yx+xy)+man(y mXTm+ TnXT m)]

~ 2wy (T 2x 7))
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(ii) If n € [1— L. 1], then

1 1 1 1
[m(1 =) wi(TX +X T = [(m—mn)wy (T mX T+ Tux 7" m)]

< [wn(TX+X )" = [wn (T X 71+ gix 7-m))

1 1 1 1 71
< [(2_m(1 — N wn(TX+XT)+ (m—mn)wy (T " mX Tm + 9@(91%)}

1/2 1/2\12
N .
— 2w (ﬁ/Xﬁ/)]

As stated in [1],if 7,.# € M;| and X € M,,, the function f(¢) = wy (7 7'X.7")
is convex on the interval [0, 1] for any unitarily invariant norm N(-) on M,,. Hence, by
applying Theorem 3.2 to this function, we obtain the following generalized refinement
with multiple terms of the Young-type inequality for the numerical radius.

THEOREM 6.2. Let 7, e M} and X e M, andlet A > 1, meN, and 1 €
[0,2]u[1=L1]. Then:

(i) If n € [0,L], then
M ((m— Dwy(TX) +wy (X)) — [mn Wy (91*%xy%)r
< [(1=n)wn(ZX) + nun (X)) = [wy (7 1x77))*
< [(1—17)WN(9*X)+(1—(m—1)n)wN(xy)+man(ﬁ){&ﬂl—%)]A
1 1\ 14
- [2WN (%xyz)} .
(ii) If n € [1— 1 1], then

[(1=1) (o (FX) + (m— D (X)) = [(m—mm)wn (ﬁéxyl—%ﬂl

< (1= mwn(TX) + oy (X))~ [y (7171
< [0 = 1)1 = )wn(7X) + mn (X + - mwy (7 Hx %)
~ [2wn (ﬂ%xy%)r.
It has been shown (see [1] and [22, Proposition 2.5]) that for any matrices .7 ,. €
M, and X € M,,, the mapping
£) = wn(T'XS")

is log-convex over the interval [0, 1], where N(-) denotes any unitarily invariant norm
on M,,. Consequently, by utilizing Theorem 3.3 on this function, one can derive
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Holder-type inequalities involving the numerical radius within the framework of uni-
tarily invariant norms.

THEOREM 6.3. Let 7,/ € M,f, X €M, andlet n € [0, L] U[1— L 1]. Then:
(i) If n € [0 1], we have

[y (X)" Mwon (7X.)]" —w (ﬁxy%)’”"
< [wN(X)I*"wN(ﬂXf)”] —wy (T1XSM)
m 2
< [WN(X)1_nWN(=7Xy)1_(m_l)nWN <91_%Xy1_%> Tl} — Wy (9%Xy%> .

(ii) If n € [ — L 1], we have

m—mn

[wy (X)wn (Z7X7)" ] =1 ow <<71_%X<71—%)
<wy () MWy (TX.S) —wy (T1X.9M)

m—mn

1= (n-1)(1-n) n L.k by
<wy(X) wy(TXS)Twy <9’”X§ﬂm> —WN(<72X<5”2> .

In particular, for X = I, we obtain the following theorem, which presents a refine-
ment and reverse of the classical inequality:

wy(ZS) Zwn(T' ),
for 7 € 0, 1].

7. Conclusions

In this paper, we have presented a comprehensive generalization of classical con-
vexity-based inequalities, extending recent developments such as those by Yang and
Zhang to a wider class of convex and log-convex functions. By employing interpolation
techniques and weak submajorization, we established novel refinements and reverses
of Jensen-type and Young-type inequalities, yielding sharper bounds and more flexible
analytical tools.

Our results demonstrate the versatility of convexity in both scalar and matrix set-
tings, with applications ranging from inequalities for classical means to refined matrix
norm and numerical radius inequalities. In particular, we have shown how these in-
equalities enhance the precision of operator bounds and open up new avenues in func-
tional analysis and quantum information theory.
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