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DISTORTION INEQUALITIES FOR RUSCHEWEYH DERIVATIVES

SHIGEYOSHI OWA AND H. M. SRIVASTAVA

(communicated by J. Pecaric)

Abstract. Let </ denote the class of functions f(z) which are analytic in the open unit disk
% with f(0) = 0 and f/(0) = L. For f(z) € </, the Ruscheweyh derivative of order A is
denoted by 9}“)‘ (z) . The object of the present paper is to derive several distortion inequalities

involving 7+ f(z) for certain classes of univalent functions f (z) by applying known properties
of generalized hypergeometric functions.

1. Introduction

Let <7 be the class of functions f (z) of the form:

f(Z)=z+iakz", (1.1)
k=2

which are analytic in the open unit disk
U ={z:z€C and |z <1}.

Let . denote the subclass of .o/ consisting of all univalent functions in % .
Further, let .*(a) and ¢ () be the subclasses of o/ consisting, respectively,
of functions which are starlike of order oo (0 < a < 1) and convex of order o
O<a<l)inz.

It is well-known (cf. Robertson [1]) that

k
[16-20)

fey*(a);qak\g’zkﬁ (keN\{1}; N:={1,2,3,---}) (1.2)
and .
EU—2G)
fe%(a);»\aHg’*T (ke N\ {1}). (1.3)
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240 S. OWA AND H. M. SRIVASTAVA

For f(z) € </ given by
Z):Z+Z(1k,jzk (]:1’2)7 (14)
k=2
the Hadamard product (or convolution) (f1 * f2)(z) of f1(z) and f»(z) is defined by

(f1=f2)(z _Z+Zaklak2Z (1.5)

Using the convolution (1.5), Ruscheweyh [2] introduced what is now referred to as the
Ruscheweyh derivative 2*f (z) of order A of f(z) € </ by

7' (z) =

ufw*f(z) (A >—1). (1.6)
It follows that

2% () =f(2), 2'F(z) =f"(2),

and, in general,

P"f(z) = — (n € Ny := NU {0})
Furthermore, we have .
P () =z+ Y CA k) ac, (1.7)
where -
G+2)
qk**ZTFTBT (ke N\ {1}). (1.8)

The generalized hypergeometric function ,F,(z) is given by

b17 ! 7bq;
p
w 1T(@) (19)
=0 TT (b
j=1
where p and ¢ are non-negative integers, a; (j = 1,---,p) and b; (j=1,---,q)
are complex numbers with b; # 0, —1,—2,---. Here (A); denotes the Pochhammer
symbol defined by
A +k 1 (k=0)
un_i__l_{ (1.10)
I'(4) AA+1)--(A+k—1) (keN).
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If we set

S b Y {n

J=1 J=1

we see that the series qu(z) ,withp=g+1,is
(i) absolutely convergent for |z| = 1,if Re (w) > 0,
(ii) conditionally convergentfor |z] =1 (z# 1) if —1 < Re (w) < 0, and
(iif) divergentfor |z] = 1 if Re (w) < —1.

If p < g+1 and Re (w) > 0, thenthe ,F,(z) series (1.9) is absolutely convergent
for |z] < co.

2. Distortion Inequalities for Starlike Functions

Our first distortion inequality involving Ruscheweyh derivatives is contained in

THEOREM 1. If a function f (z) given by (1.1) belongs to the class .*(a), then

|2 f (2)] < M(n, A, 0z |2])

(1+A)1(2=2a),-1 o] SF n+A,n+1-2a,l; " (2.1)
-y 5 mom )
where n € N\ {1,2} and
Ak—1(2 =2
M(n, A, a; |2]) = Iz\+z L+ A )l}za)k o 22)
Proof. We begin by noting that
H(l+ )
Cl k) = = L+ A 23)
T E
and
k .
[10 —2a)

\ak|<j:2k_1)! =(2(kfoi))’<!l (f € 7). (2.4)
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It follows from (2.3) and (2.4) that

24 @1 < |+ Y C(A, k) a2

k=2

+/1k 1(2 = 20)k—1
\|\+Z J2[*

-y
n—1
. (1+)t)k_1(2—2a)k_1 k
_{ZH; (k=17 Z'} .

+i 1+Ak12 2(X)k1‘|k
k=n 1)'}

> +/1 ne1(2 =20k
n l o |Z‘ +Z k+ 1 )k+ 1 | ‘k+n_
k=0

-y’
Since
(14 Akgn—1 = (1 +A)p1(n+ A)i, (2.6)
(2=2a)kin—1=2=20)p—1(n+1—-200),
and
(k+n—1)=m—-D!{n), (2.8)
we see that

12°f ()] < M(n, A, 0 [2])

T+ 1)1 (2 =201 | = (B+A(n+1 =20
PENTEPY TN

=M(n, A, a; |2])

(2.9)

(14 A1 (2 — 20001
{(n—1)1}?

2" 3F>

<n+)t,n+1 2a, 1; |)

COROLLARY 1. If a function f(z) given by (1.1) belongs to the class /*(ct),
then

(Lt ma @ =20y,
{(n—1)1y?

. " Im (n+1—=20)(1)x |2 200—1, n—1;
{Z (%) (a2 T Z')}’

(2.10)

|7"f (2)] < M(n,m, 0t; [2]) +
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where m € N,

Proof. Note that (cf. Srivastava [3])

by+m, ay---,a;
()

b17 bZa bq’
8 (2.11)
m m jl;[z(a])k ) a +k7 ,Clp—l-k;
2\ ) e e e ks
R (O 2k btk
j=1
for m € N, and
ay, an; by —ay, by — ay;
2F1< ! z> = (1 =g 2F1< RS z>. (2.12)
bl; bl;

Therefore, we have

n+m, n+1-2a, 1;
3F2< . Z|)

n, n;

= — 200 n+1+k—2a, 1+k
> () ettt e 1)

prd (n)k} n+k;

NS (=200 Jf 201, n-1;
- ; ( ) (n)k}2 (1— ‘Z|)k+272a 2F1 ( Nt ke |Z> .
(2.13)

The assertion of Corollary 1 follows from (2.13).

COROLLARY 2. If a function f(z) given by (1.1) belongs to the class /* (%),

then
24 @ < M (2,35
(14 A)n1 |z|" —A, n—1; (2.14)
e g ).
where
M (n,A, L |2]) = Iz +H % |z|*. (2.15)

k=2

Further, taking o« = 0 in Theorem 1, we have
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COROLLARY 3. If a function f (z) given by (1.1) belongs to the class ./*, then

74 ()] < M (n,2,05 |2])
n(l+ At o, 1 A, on—1
* (n—1)! 4 {(1_|Z)1+)L 2F1( n; |Z> (2.16)
n+A |2 (&nl; )
+ F ,
(1) ntt;
where
n—1
k(1 /l
M (n,2,0; |z]) = |2] + + k Lt (2.17)
k=1

3. Distortion Inequalities for Convex Functions

For the Ruscheweyh derivatives of convex functions belonging to the class ¢ (),
we have

THEOREM 2. If a function f (z) given by (1.1) belongs to the class J# (ct), then

241 ()| <N (0,2, 04 [2])
3.1
(L4 A2 =200t . (At n+1-20,1; (3.1)
+ |2|" 3F> H
n!(n—1)! n, n+1;
where n € N\ {1,2} and
+/1 Yie—1(2 — 200)5—
N(n 2t (32)
Proof. Using the fact that
k .
HZ(/ —2a)
<=
aul < = (3.3)
(2—205)k_

:Tl (ke N\ {1}; f €A (a)),

we readily arrive at the inequality (3.1) by applying the proof of Theorem 1 mutatis
mutandis.
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COROLLARY 4. If a function f(z) given by (1.1) belongs to the class # (),
then

(I 4+m)p—1(2 —20t),—1
n! (n—1)!

) “ m (n+1—2a)k(1)k |Z‘k 20(, n;
{,; (k) (M (n+ D) (1 — [g])cH 2 2 <n+k+1; Z)}

where m € N,

|7"f ()] <N (n, )+

Setting o = 5 in Theorem 2, we have

COROLLARY 5. If a function f(z) given by (1.1) belongs to the class  (3),

then
7@ <N (2. 55 1)
T4+ A)r 2" 1= 2, n 3
+ ! 0 ‘Z|)A 2F < nt s |Z>
where L
N fl) =+ 3 LA g (6)
k=2 :

Finally, letting o« = O in Theorem 2, we have

COROLLARY 6. If a function f (z) given by (1.1) belongs to the class ¥, then

P @) <N (1 2,0: [2])

N (1+A)nt EE - S ! (3.7)
(=D (1= m )
where
n—1
1
N (n,1,0; |z|) = |z| + +)L k © gt (3.8)
k=2
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