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INEQUALITIES OF FURUTA AND MOND–PEČARIĆ

JADRANKA MIĆIĆ, YUKI SEO, SIN-EI TAKAHASI AND MASARU TOMINAGA

(communicated by J. Pečarić)

Abstract. Furuta gives extensions of inequalities due to Ky Fan and Mond-Pečarić which are
associated with Hölder-McCarthy and Kantorovich type inequalities. In this paper, inspired
by Furuta’s idea, we shall generalize a theorem by Mond-Pečarić on the converse of Jensen’s
inequality. It explains us Furuta’s generalizations well. As applications, we shall show general
difference and ratio inequalities that can be given for several positive operators on a Hilbert space
and give the explicit expressions in their estimations.

1. Introduction

Jensen’s inequality is one of the most important inequalities for convex functions.
Recently one of the authors et al. [16] discuss an inverse type of Jensen’s inequality.
They show that if f is a nonnegative real valued strictly convex function defined on
the interval [m, M] and ϕ is a measurable function on a probability measure space
(Ω, F ,μ) with ϕ(Ω) ⊆ [m, M] , then for each α > 0 there exists a constant β such
that ∫

f (ϕ)dμ � αf (
∫

ϕdμ) + β , (1)

and moreover consider the conditions under which the equality in (1) holds, which
induces an interesting family of operator means including the logarithmic mean, see
also [4].

On the other hand, Furuta [5], [6], [7] and [8] recently discusses operator inequalities
associated with Hölder-McCarthy and Kantorovich inequalities and moreover gives
both extensions of Ky Fan and Mond-Pečarić generalizations of Kantorovich type
inequalities. Very recently a closely related result is shown in Fujii, Izumino, Nakamoto
and Seo in [3]. For instance, Furuta shows that if A1, · · · , Ak are positive operators on a
Hilbert space H and x1, x2, · · · , xk ∈ H with

∑k
j=1 ‖xj‖2 = 1 , then for each p, q > 1

there exists an α > 0 such that
k∑

j=1

(Ap
j xj, xj) � α

( k∑
j=1

(Ajxj, xj)
)q

(2)
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under some assumptions. The original idea in (2) of Furuta is to give the estimation
by using a function g(t) = tq which is independent of f (t) = tp . The idea urges us
toward an extension of a theorem by Mond-Pečarić [9], [11].

In this paper, inspired by Furuta’s idea, we shall present an extension of a theorem
by Mond-Pečarić on the converse of Jensen’s inequality [9, Theorem 4]. It gives an op-
erator theoretic interpretation to (1), and moreover explains us Furuta’s generalizations
stated in the next section well. As applications, we shall show general difference and
ratio inequalities that can be given for several positive operators on a Hilbert space and
give the explicit expressions in their estimations.

2. Preliminaries

Let C be a positive operator on a Hilbert space H. We say that

mI � C � MI

where I is the identity operator if

m(x, x) � (Cx, x) � M(x, x)

for all x ∈ H .
To the real valued function z(λ ) , defined and continuous on [m, M] , there is

associated in a natural way a self-adjoint operator on H denoted by z(C) , such that
z(C) =

∫ M
m−0 z(λ )dEλ , in the sense of convergence in the norm of sums of Riemann-

Stieltjes type and (Eλ , λ ∈ R) is a spectral resolution coresponding to C. For functions
of the form F(t) = f (h(t), g(t)) , we write f (h(C), g(C)) instead of the operator F(C) .

We shall make use of the following [15, p. 265-273]:

LEMMA. If z(λ ) � 0 for m � λ � M , then z(C) � 0 , i.e. z(C) is a positive
operator.

The celebrated Kantorovich inequality asserts that if A is a positive operator on H
satisfying mI � A � MI where 0 < m < M , then:

(Ax, x)(A−1x, x) � (M + m)2

4mM
, (3)

and well known inequality related to the Kantorovich one:

(A2x, x) � (M + m)2

4mM
(Ax, x)2 (4)

holds for every unit vector x in H .
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We use Hn to denote the space of n × n Hermitian matrices and use � to denote
the positive definite partial order, so that A � B means that A − B is positive definite,
i.e. X∗(A − B)X � 0 for every n-vector X.

If A ∈ Hn , then there exists a unitary matrix U such that

A = U∗ΛU,

where Λ = diag(λ1, λ2, . . . , λn) and the λi are the eigenvalues of A . Assume now
that f (λi) ∈ C, i ∈ {1, 2, . . . , n} is well defined. Then f (A) may be defined by

f (A) = U∗diag(f (λ1), f (λ2), . . . , f (λn))U.

If F(t) = F(f (t), g(t)) , we will write F(f (A), g(A)) for the operator F(A) ,
while the function F(A, B) denotes the matrix function of two variables when it is
well-defined.

We have the matrix version of the Kantorovich inequality:

X∗A−1X � (M + m)2

4mM
(X∗AX)−1 , (5)

and well known inequality related to the Kantorovich one:

X∗A2X � (M + m)2

4mM
(X∗AX)2 (6)

holds for every unit n-vector X.

Now, we state a series of inequalities of Furuta which is extensions of inequalities
due to Ky Fan and Mond-Pečarić associated with Hölder-McCarthy and Kantorovich
type inequalities. Furuta’s original idea is to give the estimation of the expectation of
f (A) by using a functionwhich is independentof f (t) , and to give an explicit expression
in his estimation. More precisely, he observed the following inequality associated with
Kantorovich inequality in [8]. Here, we introduce the following constant by Furuta [8]
and it will be used in the sequel:

Cf (m, M; q) =
mf (M) − Mf (m)
(q − 1)(M − m)

(
(q − 1)(f (M) − f (m))
q(mf (M) − Mf (m))

)q

,

where q is a real number such that q > 1 or q < 0 . It is denoted simply by C(q) .

THEOREM A. Let A be a positive operator on a Hilbert space H satisfying mI �
A � MI where 0 < m < M . Let f (t) be a real valued continuous convex function on
[m, M] . Then the following inequality holds for every unit vector x and for any real
number q depending on (i) or (ii) under below;

(f (A)x, x) � C(q)(Ax, x)q
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under any one of the following conditions (i) and (ii) respectively:

(i) f (M) > f (m),
f (M)

M
>

f (m)
m

and
f (m)

m
q � f (M) − f (m)

M − m
� f (M)

M
q

holds for any real number q > 1 .

(ii) f (M) < f (m),
f (M)

M
<

f (m)
m

and
f (m)

m
q � f (M) − f (m)

M − m
� f (M)

M
q

holds for any real number q < 0 .

REMARK 1. As a special case of Theorem A, we have the following Ky Fan-
Furuta inequality on a complementary inequality of Hölder-McCarthy and Kantorovich
inequalities: If we put f (t) = tp and q = p , then the constant C(p) coincides with the
constant defined by Ky Fan [1] and it follows that for any real number p > 1 or p < 0
the following inequality

(Apx, x) � C(p)(Ax, x)p

holds for every unit vector x in H because the conditions in Theorem A are automati-
cally satisfied in this case.

The following theorem is an extension of the Ky Fan-Mond-Pečarić generalizations
of Hölder-McCarthy and Kantorovich inequalities in [6] and [7]:

THEOREM B. Let Aj be positive operators on a Hilbert space H satisfying mI �
Aj � MI ( j = 1, 2, · · · , k ) where 0 < m < M . Let f (t) be a real valued continuous
convex function on [m, M] and x1, x2, · · · , xk ∈ H with

∑k
j=1 ‖xj‖2 = 1 . Then the

following inequality holds:

k∑
j=1

(f (Aj)xj, xj) � C(q)
( k∑

j=1

(Ajxj, xj)
)q

under any one of the conditions (i) and (ii) in Theorem A.

REMARK 2. Furthermore, Furuta extends Theorem B as follows: Under the same
situation as in Theorem B, the inequality

k∑
j=1

Ujf (Aj)U∗
j � C(q)

( k∑
j=1

UjAjU
∗
j

)q

holds for contractions Uj ( j = 1, 2, · · · , k ) with
∑k

j=1 UjU∗
j = 1 . Also, it can be

extended to unital positive linear maps.

On the other hand, Mond and Pečarić showed the following inequality which
is a general one for positive operators including real valued convex functions (cf.[9,
Theorem 4]):

THEOREM C. Let A be a positive operator on a Hilbert space H satisfying mI �
A � MI where 0 < m < M . Let f (t) be a real valued continuous convex function
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on [m, M] and J an interval including f [m, M] . If F(u, v) is a real valued function
defined on J × J , non-decreasing in u , then

F [(f (A)x, x), f ((Ax, x))] � max
m�t�M

F

[
f (m) +

f (M) − f (m)
M − m

(t − m), f (t)
]

for every unit vector x in H .

Unfortunately, Theorem C of Mond-Pečarić is not able to cover Theorem A and
Theorem B of Furuta. However, our general setting constructed in the next section is
available for us to understand theorems of Furuta.

3. A general theorem

We first show Jensen’s type inequality in multiple positive operator cases and
extend Theorem C in the preceding section, which is based on the idea due to Furuta
[5], [6], [7] and [8].

THEOREM 1. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let f (t) be a real valued
continuous convex function on [m, M] and also let x1, x2, . . . , xk be any finite number
of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then the following inequalities hold

f
( k∑

j=1

(Ajxj, xj)
)

�
k∑

j=1

(f (Aj) xj, xj) , (7)

k∑
j=1

(f (Aj) xj, xj) � f (m) +
f (M) − f (m)

M − m

( k∑
j=1

(
Ajxj, xj

)
− m

)
. (8)

Proof. The inequality (7) was given in [10, Theorem 1], the inequality (8) in [10,
Theorem 2] by applying Lemma and the operational calculus.

THEOREM 2. Assume that the conditions of Theorem 1 hold and let g(t) be a
real valued continuous function on [m, M] . Let U and V be two intervals such that
U ⊃ f [m, M] and V ⊃ g[m, M] . If F(u, v) is a real valued function defined on U×V ,
non-decreasing in u , then the following inequality holds

F
[ k∑

j=1

(f (Aj) xj, xj) , g
( k∑

j=1

(Ajxj, xj)
)]

� max
m�t�M

F
[
f (m) +

f (M) − f (m)
M − m

(t − m), g(t)
]

= max
0�θ�1

F [θf (m) + (1 − θ)f (M), g (θm + (1 − θ)M)] . (9)
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Proof. Let us take t0 =
∑k

j=1 (Ajxj, xj) in (8). The hypothesis ensures inequality

m =
∑k

j=1 (mxj, xj) �
∑k

j=1 (Ajxj, xj) �
∑k

j=1 (Mxj, xj) = M , i.e. m � t0 � M . Using
the non-decreasing character of F(·, v) , we have

F
[ k∑

j=1

(f (Aj) xj, xj) , g
( k∑

j=1

(Ajxj, xj)
)]

� F
[
f (m) +

f (M) − f (m)
M − m

(t0 − m), g(t0)
]

� max
m�t�M

F
[
f (m) +

f (M) − f (m)
M − m

(t − m), g(t)
]
.

The second form on the right side of inequality (9) follows at once from the change of
variable θ = (M − t)/(M − m) , so t = θm + (1 − θ)M with 0 � θ � 1 .

THEOREM 3. Assume that the conditions of Theorem 2 hold except that F(u, v)
is non-increasing in u . Then the following inequality holds

F
[ k∑

j=1

(f (Aj) xj, xj) , g
( k∑

j=1

(Ajxj, xj)
)]

� min
m�t�M

F
[
f (m) +

f (M) − f (m)
M − m

(t − m), g(t)
]

= min
0�θ�1

F [θf (m) + (1 − θ)f (M), g (θm + (1 − θ)M)] . (10)

Proof. We have this Theorem by replacing F by −F in Theorem 2.

REMARK 3. We remark that Theorems 2 and 3 in the case g(t) = f (t) are proved
by Mond-Pečarić [9, Theorems 3,4].

By a similar method as in Theorem 2, we obtain the following result which is an
extension of Mond-Pečarić in [11, Theorem 7]:

COROLLARY 1. Assume that the conditions of Theorem 2 hold except that F(u, v)
is operatormonotone in u . Let Uj (j = 1, 2, · · · , k) be contractionswith

∑k
j=1 UjU∗

j =
1 , then the following inequality holds

F
[ k∑

j=1

Ujf (Aj)U∗
j , g(

k∑
j=1

UjAjU
∗
j )
]

�
{

max
m�t�M

F
[
f (m) +

f (M) − f (m)
M − m

(t − m), g(t)
]}

I

=
{

max
0�θ�1

F [θf (m) + (1 − θ)f (M), g (θm + (1 − θ)M)]
}

I.
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4. Converses of Jensen’s inequality

As a simple application of Theorem 2, we discuss an extension of [16, Theorem
1], which give us a unified view to several inequalities due to Ky Fan, Furuta, Mond
and Pečarić. Moreover we shall consider the conditions under which the equality holds.
For convenience, we define μ = f (M)−f (m)

M−m for a real valued function f on the interval
[m, M] .

THEOREM 4. Assume that the conditions of Theorem 1 hold and let g(t) be a real
valued continuous function on [m, M] . Then for any real number α ∈ R the following
inequality

k∑
j=1

(f (Aj)xj, xj) � αg
( k∑

j=1

(Ajxj, xj)
)

+ β (11)

holds for β = maxm�t�M{f (m) + μ(t − m) − αg(t)} .

Moreover, suppose that β = f (m)+μ
(∑k

j=1(Ajxj, xj) − m
)
−αg

(∑k
j=1(Ajxj, xj)

)
for some vectors xj in H such that

∑k
j=1 ‖xj‖2 = 1 . Then the equality is attained in

(11) if and only if there exist orthogonal vectors yj and zj such that

xj = yj + zj, Ajyj = myj and Ajzj = Mzj. (12)

Proof. Put t0 =
∑k

j=1(Ajxj, xj) , then the hypothesis ensures the inequality m �
t0 � M . Also, put F(u, v) = u − αv , u =

∑k
j=1(f (Aj)xj, xj) and v = g(t0) . Then it

follows from Theorem 2 that

k∑
j=1

(f (Aj)xj, xj) − αg
( k∑

j=1

(Ajxj, xj)
)

� max
m�t�M

F [f (m) + μ(t − m), g(t)]

= max
m�t�M

{f (m) + μ(t − m) − αg(t)},

which gives the desired inequality.
We next investigate conditions under which the equality holds. Suppose that

the equality
∑k

j=1(f (Aj)xj, xj) = αg(t0) + β holds. By definition of β , notice

that the equality
∑k

j=1(f (Aj)xj, xj) = αg(t0) + β holds if and only if the equality∑k
j=1(f (Aj)xj, xj) = f (m) + μ(t0 − m) holds. Let Ej(t) be the spectral resolution

of the identity of Aj , that is, Aj =
∫ M

m−0 tdEj(t) . Put Pj = Ej(M) − Ej(M − 0) ,
Qj = Ej(M−0)−Ej(m) and Rj = Ej(m)−Ej(m−0) . Then (AjPjxj, xj) = M(Pjxj, xj)
and (AjRjxj, xj) = m(Rjxj, xj) . Note also that

(f (Aj)Pjxj, xj) =
∫ M

m−0
f (t)d(Ej(t)Pjxj, xj) = f (M)(Pjxj, xj)

= ((f (m) + μ(M − m))Pjxj, xj)
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and

(f (Aj)Rjxj, xj) =
∫ M

m−0
f (t)d(Ej(t)Rjxj, xj) = f (m)(Rjxj, xj)

= ((f (m) + μ(m − m))Rjxj, xj).

Since
∑k

j=1(f (Aj)xj, xj) = f (m)+μ(t0−m) , it follows that
∑k

j=1((f (m)+μ(Aj−m)−
f (Aj))Qjxj, xj) = 0 and hence Qjxj = 0 for any j because f (m)+μ(s−m)− f (s) > 0
for s ∈ (m, M) . Thus we obtain the desired decomposition of xj setting yj = Rjxj and
zj = Pjxj .

Assume conversely (12). Then it follows that

f (m) + μ
( k∑

j=1

(Ajxj, xj) − m

)
= f (m)

k∑
j=1

(‖yj‖2 + ‖zj‖2)

+μ
( k∑

j=1

m‖yj‖2 + M‖zj‖2 − m

)

= f (m)
k∑

j=1

‖yj‖2 + f (M)
k∑

j=1

‖zj‖2

=
k∑

j=1

(f (Aj)xj, xj),

which is the desired equality.

Putting g = f , we have a multiple operator version in [16, Theorem 1]:

THEOREM 5. Assume that the conditions of Theorem 1 hold and moreover let f (t)
be a nonnegative real valued continuous strictly convex twice differentiable function on
[m, M] . Then for any positive real number α(> 0) ∈ R the following inequality

k∑
j=1

(f (Aj)xj, xj) � αf
( k∑

j=1

(Ajxj, xj)
)

+ β (13)

holds for β = −αf (t0) + f (m) + μ(t0 − m) and

t0 =

⎧⎨
⎩

M if M � f ′−1( μα )
m if f ′−1( μα ) � m
f ′−1( μα ) otherwise.

The equality is attained in (13) if and only if there exist orthogonal vectors yj and zj

such that xj = yj +zj , Ajyj = myj , Ajzj = Mzj and t0 = m
∑k

j=1 ‖yj‖2+M
∑k

j=1 ‖zj‖2 .
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Proof. By virtue of Theorem 4, it is sufficient to see that β = −αf (t0) + f (m) +
μ(t0 − m) . Put h(t) = f (m) + μ(t − m) − αf (t) . Since f (t) is strictly convex, we
put t1 = f ′−1( μα ) . Then we have h′(t) = 0 if and only if t = t1 . If m � t1 � M , then

h
′′
(t) = −αf

′′
(t) < 0 and so β = maxm�t�M h(t) = h(t1) . If M � t1 , then h(t) is

increasing on [m, M] and hence the maximum value on [m, M] of h(t) is attained for
t0 = M . Similarly, we have t0 = m if t1 � m .

Next, since the graph of αf (t)+β touches the line of f (m)+μ(t−m) at the point
t0 , it follows that the equality

∑k
j=1(f (Aj)xj, xj) = αf (

∑k
j=1(Ajxj, xj))+β holds if and

only if two equalities t1 =
∑k

j=1(Ajxj, xj) and
∑k

j=1(f (Aj)xj, xj) = f (m) + μ(t1 − m)
hold. Therefore we obtain Theorem 5 by the same proof as Theorem 4.

Moreover, we have two corollaries; Corollary 2 (resp. Corollary 3) follows from
Thereom 4 (resp. Corollary 1) and they extend the results by Furuta [6], [7] on Hölder-
McCarthy and Kantorovich type inequalities.

COROLLARY 2. Assume that the conditions of Theorem 1 hold. Suppose that
either of the following conditions holds

(I) f (m) < f (M),
f (m)

m
<

f (M)
M

, q > 1 any real number
or

(II) f (m) > f (M),
f (m)

m
>

f (M)
M

, q < 0 any real number.

Then for any positive real number α(> 0) ∈ R the following inequality

k∑
j=1

(f (Aj) xj, xj) � α
( k∑

j=1

(Ajxj, xj)
)q

+ β (14)

holds for

β =

⎧⎨
⎩ α(q − 1)

(
μ
αq

) q
q−1

+
Mf (m) − mf (M)

M − m
if αmq−1q � μ � αMq−1q,

max{f (M) − αMq, f (m) − αmq} otherwise.

COROLLARY 3. If the conditions of Corollary 1 are satisfied, then for each α ∈ R

k∑
j=1

Ujf (Aj)U∗
j � αg

( k∑
j=1

UjAjU
∗
j

)
+ βI

holds for β = maxm�t�M{f (m) + μ(t − m) − αg(t)} .
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5. Applications I

In this section, as applications of our general theorem, we shall show general
ratio inequalities that can be given for several positive operators and give the explicit
expressions in their estimations.

5.1. Application to ratio operators.

THEOREM 6. Assume that the condition of Theorem 1 hold and let g(t) be a real
valued continuous function on [m, M] . Suppose that either of the following conditions
holds
(i) g(t) > 0 for all t ∈ [m, M] and f (m) > 0 , f (M) > 0
or
(ii) g(t) < 0 for all t ∈ [m, M] and f (m) < 0 , f (M) < 0.
Then the following inequality

k∑
j=1

(f (Aj) xj, xj) � λ g
( k∑

j=1

(Ajxj, xj)
)

(15)

holds for

λ = max
m�t�M

{
1

g(t)
(f (m) + μ(t − m))

}
(16)

in case (i), or

λ = min
m�t�M

{
1

g(t)
(f (m) + μ(t − m))

}
(17)

in case (ii), where μ = f (M)−f (m)
M−m .

(iii) Suppose that moreover g(t) is the strictly convex twice differentiable function on
[m, M] under (i) or (ii), then the constant λ satisfies the conditon λ � max{f (m)/g(m),
f (M)/g(M)} in case (i), or 0 < λ � min{f (m)/g(m), f (M)/g(M)} in case (ii),where
the strictly inequalities hold if [μg(m) − f (m)g′(m)] [μg(M) − f (M)g′(M)] < 0 .

More precisely, a value of λ ≡ λ (m, M, f , g) for (15) may be determined as
follows:
If [μg(m) − f (m)g′(m)] [μg(M) − f (M)g′(M)] � 0 , then if μ = 0 , let t = t̄ be the
unique solution of the equation g′(t) = 0 (m < t < M) ; then λ = f (m)/g(t̄) suffices
for (15), but if μ �= 0 , let t = t̄ be the unique solution in [m, M] of the equation

μg(t) − g′(t) (f (m) + μ(t − m)) = 0 (18)

then λ = μ/g′(t̄) suffices for (15).
If [μg(m) − f (m)g′(m)] [μg(M) − f (M)g′(M)] > 0 , then

λ = max {f (m)/g(m), f (M)/g(M)} (19)

suffices for (15) in case (i), or

λ = min {f (m)/g(m), f (M)/g(M)} (20)
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suffices for (15) in case (ii).

Proof. For case g(t) > 0 on [m, M] apply Theorem 2 and for case g(t) < 0 on
[m, M] apply Theorem 3 both with F(u, v) = u/v . We proceed only with case (i) since
the proof in case (ii) is essentially the same.
The inequality (9) becomes

k∑
j=1

(f (Aj) xj, xj) � max
m�t�M

h(t; m, M, f , g) · g
( k∑

j=1

(Ajxj, xj)
)
, (21)

where

h(t) ≡ h(t; m, M, f , g) =
f (m) + μ(t − m)

g(t)
. (22)

Now h′(t) = H(t)/g(t)2 , where

H(t) = μg(t) − (f (m) + μ(t − m)) g′(t). (23)

Because f (m) > 0 and f (M) > 0 , we have f (m)+μ(t−m) = f (m)(M−t)+f (M)(t−m)
M−m > 0

for all t ∈ [m, M] . Let g(t) be the strictly convex twice differentiable function on
[m, M] , i.e. g′′(t) > 0 in (iii). It follows that H′(t) = − (f (m) + μ(t − m)) g′′(t) < 0 ,
so that H is a decreasing function on [m, M] .
Furthermore, if H(m)H(M) = [μg(m)− f (m)g′(m)] [μg(M)− f (M)g′(M)] � 0 , then
the equation H(t) = 0 has exactly one solution t̄ ∈ [m, M] . Hence, the maximum
value on [m, M] of the function h(t) is attained for t = t̄ , since

h′′(t̄) =
[
H′(t̄)g(t̄) − 2H(t̄)g′(t̄)

]
/g(t̄)3 = H′(t̄)/g(t̄)2 < 0.

If H(m)H(M) > 0 then because H(t) is a decreasing function, we have that either
H(t) > 0 or H(t) < 0 on [m,M], i.e. either h′(t) > 0 or h′(t) < 0 on [m, M] .
Hence h(t) is a monotone function on [m, M] and it follows that maxm�t�M h(t) =

max
{

f (m)
g(m) ,

f (M)
g(M)

}
. Thus the proof of (15) for λ determined by (16) in case (i) is

complete.

Now we remark that if H(m)H(M) < 0 then t̄ ∈ (m, M) and λ > max
{

f (m)
g(m) ,

f (M)
g(M)

}
in case (i), or λ < min

{
f (m)
g(m) ,

f (M)
g(M)

}
in case (ii). The inequality h(t) > 0 on [m, M]

ensures the inequality λ > 0 .

REMARK 4. We remark that inequality (16 ) is proved directly in [6, Lemma 2.1].

COROLLARY 4. Assume that the conditions of Theorem 1 hold and moreover let
f (t) be a strictly convex twice differentiable function on [m, M] . Suppose that either of
the following conditions holds
(i) f (t) > 0 for all t ∈ [m, M]
or
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(ii) f (t) < 0 for all t ∈ [m, M].
Then the following inequality

k∑
j=1

(f (Aj) xj, xj) � λ f
( k∑

j=1

(Ajxj, xj)
)

(24)

holds for λ > 1 in case (i), or 0 < λ < 1 in case (ii).
More precisely, a value of λ ≡ λ (m, M, f , g) for (24) may be determined as

follows:
If μ = 0 , let t = t̄ be the unique solution of the equation f ′(t) = 0 (m < t̄ < M) ; then
λ = f (m)/f (t̄) suffices for (24). If μ �= 0 , let t = t̄ be the unique solution in (m, M)
of the equation μf (t) − f ′(t) (f (m) + μ(t − m)) = 0 ; then λ = μ/f ′(t̄) suffices for
(24).

Proof. We have this Corollary by replacing g by f in Theorem 6. The condition
H(m)H(M) < 0 automatically holds in the case (i) or (ii). In fact, since f is a strictly
convex differentiable function on [m, M] , it follows that f (x) − f (y) > (x − y)f ′

+(y)
for x ∈ O(y) and also (i) or (ii) holds. Therefore we obtain H(m)H(M) = [μf (m) −
f (m)f ′(m)] [μf (M)− f (M)f ′(M)] = f (m)f (M)(μ − f ′(m))(μ − f ′(M)) < 0 . Hence
the inequality λ > 1 or 0 < λ < 1 holds, because t̄ ∈ (m, M) and h(t) > 0 on
[m, M] .

REMARK 5. We remark that Corollary 4 is proved directly in [9, Corollary 1].

5.2. Application to power function.

COROLLARY 5. Assume that the conditions of Theorem 1 hold. Suppose that
either of the following conditions holds

(I) f (m) < f (M),
f (m)

m
<

f (M)
M

, q > 1 any real number
or

(II) f (m) > f (M),
f (m)

m
>

f (M)
M

, q < 0 any real number.

Then the following inequality
k∑

j=1

(f (Aj) xj, xj) � λ
( k∑

j=1

(Ajxj, xj)
)q

(25)

holds for

λ =

⎧⎨
⎩

mf (M)−Mf (m)
(q−1)(M−m)

(
(q−1)(f (M)−f (m))
q(mf (M)−Mf (m))

)q
if f (m)

m q � μ � f (M)
M q

max
{

f (m)
mq , f (M)

Mq

}
if μ < f (m)

m q or μ > f (M)
M q

� mf (M) − Mf (m)
(q − 1)(M − m)

(
(q − 1) (f (M) − f (m))
q (mf (M) − Mf (m))

)q

, (26)

where μ = (f (M) − f (m))/(M − m) .
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Proof. In Theorem 6 put g(t) = tq for t > 0 and for a real number q such
that q �∈ [0, 1] , then we have g′′(t) > 0 . The condition (i) in Theorem 6 is
weakened here as we can determine explicitely the solution of the equation (18):

t̄ =
q

q − 1
mf (M) − Mf (m)

f (M) − f (m)
. It follows from the conditions (I) or (II) that h′′(t̄) =

−q(q − 1)(f (m) + μ(t̄ − m))/t̄q+2 = (1 − q)μ t̄−(q+1) < 0 and t̄ > 0 where h(t) is
defined by (22).

The inequality (26) follows from (16). Indeed, if m � t̄ � M , i.e. H(m)H(M) �
0 where H(t) is defined by (23), we have the condition qf (m)/m � μ � qf (M)/M . In

this case λ = h(t̄) =
mf (M) − Mf (m)
(q − 1)(M − m)

(
(q − 1) (f (M) − f (m))
q (mf (M) − Mf (m))

)q

. If t̄ �∈ [m, M] ,

i.e. H(m)H(M) > 0 then (19) becomes λ = max{f (m)/mq, f (M)/Mq} .

COROLLARY 6. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number p > 1

and q > 1 or p < 0 and q < 0 the following inequality

k∑
j=1

(
Ap

j xj, xj
)

� λ
( k∑

j=1

(Ajxj, xj)
)q

(27)

holds for

λ =

⎧⎪⎪⎨
⎪⎪⎩

(mMp − Mmp)
(q − 1)(M − m)

(
(q − 1) (Mp − mp)
q (mMp − Mmp)

)q

if mp−1q � μ̄ � Mp−1q

max

{
mp

mq
,
Mp

Mq

}
if μ̄ < mp−1q or μ̄ > Mp−1q

� (mMp − Mmp)
(q − 1)(M − m)

(
(q − 1) (Mp − mp)
q (mMp − Mmp)

)q

, (28)

where μ̄ = (Mp − mp) /(M − m) .

Proof. We obtain the inequality (27) if we put f (t) = tp for a real number q such
that q �∈ [0, 1] in Corollary 5. In fact, the condition (I) in Corollary 5 holds if p > 1
and q > 1 and also the condition (II) holds if p < 0 and q < 0 .

COROLLARY 7. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number p �∈ [0, 1]

the following inequality holds

k∑
j=1

(
Ap

j xj, xj
)

� (mMp − Mmp)
(p − 1)(M − m)

(
(p − 1) (Mp − mp)
p (mMp − Mmp)

)p( k∑
j=1

(Ajxj, xj)
)p

. (29)

Proof. Put q = p �∈ [0, 1] in Corollary 6 or f (t) = tp in Corollary 4.
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COROLLARY 8. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number p > 0

the following inequality

( k∑
j=1

(Ajxj, xj)
)p( k∑

j=1

(
A−1

j xj, xj

))
� λ1 (30)

holds for

λ1 =

⎧⎪⎪⎨
⎪⎪⎩

pp

(p + 1)p+1

(m + M)p+1

mM
if

m
M

� p � M
m

max
{
mp−1, Mp−1

}
if p >

M
m

or p <
m
M

� pp

(p + 1)p+1

(m + M)p+1

mM
(31)

and
k∑

j=1

(
A2

j xj, xj
)

� λ2

( k∑
j=1

(Ajxj, xj)
)p+1

(32)

for

λ2 =

⎧⎪⎪⎨
⎪⎪⎩

pp

(p + 1)p+1

(m + M)p+1

(mM)p
if

m
M

� p � M
m

max
{
m1−p, M1−p

}
if p >

M
m

or p <
m
M

� pp

(p + 1)p+1

(m + M)p+1

(mM)p
. (33)

Proof. The inequality (30) for λ1 from (31) follows from Corollary 6 if we put
p = −1 and replace q by −p for p > 0 . Also we obtain the inequality (32) for λ2

from (33) if we put p = 2 and replace q by p + 1 for p > 0 .

REMARK 6. We remark that we have the inequalities (3 ) and (4 ) if we put
k = 1, p = 1 in (30 ) and (32 ) respectively.

REMARK 7. The Corollary 5 is discussed in somewhat different style by Furuta
[6, Theorem 1.1 i.e. Theorem B here]. This Corollary and the Corollaries 6, 8 [6,
Corollaries 1.1,1.2] are proved only with appropriate conditions of type [μg(m) −
f (m)g′(m)] [μg(M) − f (M)g′(M)] < 0 .
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5.3. Application to exponential function.

COROLLARY 9. Assume that the conditions of Theorem 1 hold. Suppose that
either of the following conditions holds
(I) f (m) < f (M), α > 0 any real number
or
(II) f (m) > f (M), α < 0 any real number .
Then the following inequality

k∑
j=1

(f (Aj) xj, xj) � λ exp

(
α

k∑
j=1

(Ajxj, xj)
)

(34)

holds for

λ =

⎧⎪⎪⎨
⎪⎪⎩

μ
αe

exp

(
α (Mf (m) − mf (M))

f (M) − f (m)

)
if αf (m) � μ � αf (M)

max

{
f (m)
eαm

,
f (M)
eαM

}
if μ < αf (m) or μ > αf (M)

� μ
αe

exp

(
α (Mf (m) − mf (M))

f (M) − f (m)

)
, (35)

where μ = (f (M) − f (m))/(M − m) .

Proof. In Theorem 6 put g(t) = eαt for a real number α �= 0 . The condition (i)
from Theorem 6 are weekened here as we can determine explicitely the solution of the
equation (18): t̄ = 1

α + m − f (m) 1
μ . It follows from the conditions (I) or (II) that

h′′(t̄) = −αμ/eα t̄ < 0 where h(t) is defined by (22).
The inequality (35) follows from (16). Indeed, if m � t̄ � M , i.e. H(m)H(M) �

0 where H(t) is defined by (23), then we have αf (m) � μ � αf (M) . In this case

λ = h(t̄) = μ
αe exp

(
α(Mf (m)−mf (M))

f (M)−f (m)

)
. If t̄ �∈ [m, M] , i.e. H(m)H(M) > 0 then (19)

becomes λ = max{f (m)/eαm, f (M)/eαM} .

COROLLARY 10. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number α > 0

and β > 0 or α < 0 and β < 0 the following inequality

k∑
j=1

(
eβAjxj, xj

)
� λ exp

(
α

k∑
j=1

(Ajxj, xj)
)

(36)
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holds for

λ =

⎧⎪⎪⎨
⎪⎪⎩

μ̄
αe

exp

(
α
(
Meβm − meβM

)
eβM − eβm

)
if αeβm � μ̄ � αeβM

max

{
eβm

eαm
,
eβM

eαM

}
if μ̄ < αeβm or μ̄ > αeβM

� μ̄
αe

exp

(
α
(
Meβm − meβM

)
eβM − eβm

)
, (37)

where μ̄ =
(
eβM − eβm

)
/(M − m) .

Proof. We obtain the inequality (36) if we put f (t) = eβ t for a real number β �= 0
in Corollary 9.

COROLLARY 11. Assume that the conditions of Corollary 10 hold. Then for any
real number α �= 0 the following inequality holds

k∑
j=1

(
eαAjxj, xj

)

� eαM − eαm

αe(M − m)
exp

(
α
(
Meαm − meαM

)
eαM − eαm

)
exp

(
α

k∑
j=1

(Ajxj, xj)
)

. (38)

Proof. Put α = β �= 0 in Corollary 10. As f (t) = eαt is a real valued continuous
convex function for any real number α �= 0 , then we have

αeαm �
(
eαM − eαm

)
/(M − m) � αeαM for any real number α �= 0,

which is just the first condition in the inequality (37).

REMARK 8. We have the inequalities

(
e−Ax, x

)
e(Ax,x) � eM − em

eMem(M − m)
exp

(
(M − 1)eM − (m − 1)em

eM − em

)

if we put k = 1,α = −1 in (38) and

(
eAx, x

)
e−(Ax,x) � eM − em

M − m
exp

(
(M + 1)em − (m + 1)eM

eM − em

)
for k = 1,α = 1 . Here A is a positive operator on a Hilbert space H satisfying
mI � A � MI where 0 < m < M and x is any unit vector in H.

REMARK 9. The Corollaries 9-11 are proved in [6, Theorem 5.1, Corollaries
5.2-5.5], but only with appropriate conditions αf (m) � μ � αf (M) or αeβm �(
eβM − eβm

)
/(M − m) � αeβM .
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6. Applications II

In this section, as applications of our general theorem, we shall show general
difference inequalities that can be given for several positive operators and give the
explicit expressions in their estimations .

6.1. Application to difference operators.

THEOREM 7. Assume that the conditions of Theorem 1 hold and let g(t) be a real
valued continuous function on [m, M] . Then the following inequality

k∑
j=1

(f (Aj) xj, xj) � λ + g

( k∑
j=1

(Ajxj, xj)
)

(39)

holds for
λ = max

m�t�M
{(f (m) + μ(t − m)) − g(t)} , (40)

where μ = (f (M) − f (m))/(M − m) .
If g(t) is the differentiable function and g′(t) is strictly increasing on [m, M] , then the
constant λ satisfies the condition f (m)−g(m) � λ � f (m)−g(m)+[μ − g′(m)] (M−
m) .

More precisely, a value of λ ≡ λ (m, M, f , g) for (39) may be determined as
follows:
If g′(m) � μ � g′(M) , then let t = t̄ be the unique solution in [m, M] of the equation

g′(t) = μ (41)

then λ = f (m) − g(t̄) + μ(t̄ − m) suffices for (39).
If μ < g′(m) or μ > g′(M) , then

λ = max {f (m) − g(m), f (M) − g(M)} (42)

suffices for (39).

Proof. We put F(u, v) = u − v in Theorem 2. The inequality (9) becomes

k∑
j=1

(f (Aj) xj, xj) − g

( k∑
j=1

(Ajxj, xj)
)

� max
m�t�M

h(t; m, M, f , g), (43)

where
h(t) ≡ h(t; m, M, f , g) = f (m) + μ(t − m) − g(t). (44)

Let g(t) be the differentiable function and g′(t) is strictly increasing on [m, M] , then it
follows that h′(t) = μ−g′(t) is strictly decreasing on [m, M] . If g′(m) � μ � g′(M) ,
then the equation (41) has exactly one solution t̄ ∈ [m, M] and the maximum value on
[m, M] of the function h(t) is attained for t = t̄ . If μ < g′(m) or μ > g′(M) , i.e.
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[μ − g′(m)] [μ − g′(M)] > 0 then because h′(t) is a decreasing function, we have that
either h′(t) > 0 or h′(t) < 0 on [m,M]. Hence h(t) is a monotone function on [m, M]
and it follows that maxm�t�M h(t) = max {f (m) − g(m), f (M) − g(M)} . Thus the
proof of (39) for λ determined by (40) is complete.
Now we remark that since g′(t) is an increasing function, i.e. g(t) is a strictly convex
function, it follows that

g(m) − g(t̄) � g′(m)(m − t̄) if m � t̄ � M.

Then we have

λ = f (m) − g(t̄) + μ(t̄ − m) = f (m) − g(m) + [g(m) − g(t̄) + μ(t̄ − m)]

� f (m) − g(m) + [−g′(m) + μ](t̄ − m) � f (m) − g(m) + [−g′(m) + μ](M − m).

Hence we have the upper bound for λ . The lower bound is evident.

COROLLARY 12. Assume that the conditions of Theorem 1 hold and moreover
let f (t) be a differentiable function and f ′ is strictly increasing on [m, M] . Then the
following inequality

k∑
j=1

(f (Aj) xj, xj) � λ + f

( k∑
j=1

(Ajxj, xj)
)

(45)

holds for λ satisfying 0 < λ < (M−m) [μ − f ′(m)] , where μ = (f (M)−f (m))/(M−
m) .

More precisely, a value of λ ≡ λ (m, M, f , g) for (45) may be determined as
follows: let t = t̄ be the unique solution of the equation f ′(t) = μ in (m, M) . Then
λ = f (m) − f (t̄) + μ(t̄ − m) suffices for (45).

Proof. We have this Corollary by replacing g by f in Theorem 7. Since f is a
strictly convex differentiable function on [m, M] , it follows f (x)− f (y) > (x− y)f ′

+(y)
for x ∈ O(y) and we obtain f ′(m) < μ < g′(M) . Bounds for λ are evident.

REMARK 10. We remark that Corollary 12 is proved directly in [9, Corollary 2].

6.2. Application to power function.

COROLLARY 13. Assume that the conditions of Theorem 1 hold. Suppose that
either of the following conditions holds
(I) f (m) < f (M), q > 1 any real number
or
(II) f (m) > f (M), q < 0 any real number.
Then the following inequality

k∑
j=1

(f (Aj) xj, xj) � λ +
( k∑

j=1

(Ajxj, xj)
)q

(46)
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holds for

λ =

⎧⎨
⎩

Mf (m) − mf (M)
M − m

+ (q − 1)
(

1
qμ
)q/(q−1)

if qmq−1 � μ � qMq−1

max{f (m) − mq, f (M) − Mq} if μ < qmq−1 or μ > qMq−1

� Mf (m) − mf (M)
M − m

+ (q − 1)
(

1
q
μ
)q/(q−1)

, (47)

where μ = (f (M) − f (m))/(M − m) .

Proof. In Theorem 7 put g(t) = tq for t > 0 and for a real number q such that
q �∈ [0, 1] when g′(t) is strictly increasing. We can determine explicitely the solution

of the equation (41): t̄ =
(

1
q μ
)1/(q−1)

.

The inequality (47) follows from (40). Indeed, if m � t̄ � M , we have the

condition qmq−1 � μ � qMq−1 . In this case λ = Mf (m)−mf (M)
M−m +(q−1)

(
1
q μ
)q/(q−1)

.

If t̄ �∈ [m, M] then because h(t) is an increasing function ( respectively decreasing ) for
t < t̄ if the condition (I) holds and for t > t̄ if the condition (II) holds ( respectively
for t > t̄ if the condition (I) holds and for t < t̄ if the condition (I) holds ), we have
λ = max {f (m) − mq, f (M) − Mq} .

COROLLARY 14. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number p > 1

and q > 1 or p < 0 and q < 0 the following inequality

k∑
j=1

(
Ap

j xj, xj
)

� λ +
( k∑

j=1

(Ajxj, xj)
)q

(48)

holds for

λ =

⎧⎨
⎩

Mmp − mMp

M − m
+ (q − 1)

(
1
q μ̄
)q/(q−1)

if qmq−1 � μ̄ � qMq−1

max {mp − mq, Mp − Mq} if μ̄ < qmp−1 or μ̄ > qMp−1

� Mmp − mMp

M − m
+ (q − 1)

(
1
q
μ̄
)q/(q−1)

, (49)

where μ̄ = Mp−mp

M−m .

Proof. We obtain the inequality (48) if we put f (t) = tp for a real number q such
that q �∈ [0, 1] in Corollary 13. In fact, the condition (I) in Corollary 13 holds if p > 1
and q > 1 and also the condition (II) holds if p < 0 and q < 0 .
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COROLLARY 15. Let Aj be positive operators on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number p �∈ [0, 1]

the following inequality

k∑
j=1

(
Ap

j xj, xj
)

� λ +
( k∑

j=1

(Ajxj, xj)
)p

(50)

holds for

λ =
Mmp − mMp

M − m
+ (p − 1)

(
Mp − mp

p(M − m)

) p
p−1

.

Proof. Put q = p �∈ [0, 1] in Corollary 14.

REMARK 11. The estimation of Corollary 15 is better than one of [2, Theorem 2]:

(Akx, x) − (Ax, x)k � 1
4
((k − 1)Mk − kMk−1m + mk) (51)

for every natural number k . Actually it can be checked that the estimation of Corol-
lary 15 is more precise than (51 ) , that is,(

1
p

) 1
p−1
(

1 − 1
p

)(
Mp − mp

M − m

) p
p−1

+
Mmp − Mpm

M − m
� 1

4
((p−1)Mp−pMp−1m+mp)

(52)
for every integer p � 2 . Here we give a brief proof: We see that both sides of (52)
coincide 1

4 (M−m)2 in case p = 2 . Multiplying (52) by m−p and putting x = M
m > 1 ,

then (
1
p

) 1
p−1

(
1 − 1

p

) (
xp − 1
x − 1

) p
p−1

+
x − xp

x − 1
� 1

4
((p − 1)xp − pxp−1 + 1).

Therefore it suffices to see that for every integer p � 3

(p − 1)xp+1 + (5 − 2p)xp + pxp−1 − 3x − 1
4(x − 1)

�
(

1
p

) 1
p−1 p − 1

p

(
xp − 1
x − 1

) p
p−1

if x > 1 . To prove it, put F(x) =

ln
(p − 1)xp+1 + (5 − 2p)xp + pxp−1 − 3x − 1

4(x − 1)
− ln

(
1
p

) 1
p−1 p − 1

p

(
xp − 1
x − 1

) p
p−1

.

Then limx→1 F(x) = 0 and by differentiating F(x) , we have

F′(x) =
(p − 1)(p + 1)xp + (5 − 2p)pxp−1 + p(p − 1)xp−2 − 3

(p − 1)xp+1 + (5 − 2p)xp + pxp−1 − 3x − 1

+
(1 − p2)xp + p2xp−1 − 1
(p − 1)(x − 1)(xp − 1)

.
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Moreover the numerator of F′(x) becomes
(x− 1)5((2p2 − 6p+ 4)x2p−5 +(6p2 − 23p+ 20)x2p−6 +(12p2− 56p+ 60)x2p−7

+ · · · + 1
6 (2p4 − 7p3 + 7p2 − 2p)xp−3 + 1

6 (2p4 − 12p3 + 22p2 − 12p)xp−4

+ · · · + (12p − 20)x + 3p − 4) .
Since the coefficients of x are positive, it follows that F′(x) > 0 if x > 1 . Therefore
we have (52 ) .

COROLLARY 16. Let Aj be positive operator on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real number p > 0

the following inequality

( k∑
j=1

(
A−1

j xj, xj
))−

( k∑
j=1

(Ajxj, xj)
)−p

� λ1 (53)

holds for

λ1 =

{
M+m
mM − p+1

(pMm)p/(p+1) if mp

M < p < Mp

m

max
{

1
m − 1

mp , 1
M − 1

Mp

}
if p � mp

M or p � Mp

m

� M + m
mM

− p + 1
(pMm)p/(p+1) (54)

and ( k∑
j=1

(
A2

j xj, xj
))−

( k∑
j=1

(Ajxj, xj)
)p+1

� λ2 (55)

for

λ2 =

{
p
(

M+m
p+1

)(p+1)/p
− mM if M+m

Mp < p < M+m
mp

max
{
m2 − m1+p, M2 − M1+p

}
if p � M+m

Mp or p � M+m
mp

� p

(
M + m
p + 1

)(p+1)/p

− mM. (56)

Proof. The inequality (53) for λ1 from (54) follows from Corollary 14 if we put
p = −1 and replace q by −p for p > 0 . Also we obtain the inequality (55) for λ2

from (56) if we put p = 2 and replace q by p + 1 for p > 0 .

REMARK 12. We remark that we have the inequalities
(
A−1x, x

) − (Ax, x)−1 �
(
√

M−√
m)2

Mm and
(
A2x, x

)− (Ax, x)2 �
(

M−m
2

)2
if we put k = 1, p = 1 in (53) and (55)

respectively.
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6.3. Some other inequalities for power function.

THEOREM 8. Assume that the conditions of Theorem 1 hold and f (t) > 0 for all
t ∈ [m, M] . Suppose that either of the following conditions holds
(i) f (m) > f (M), q < 0 any real number
or
(ii) f (m) < (M), 0 < q < 1 any real number.
Then the following inequality

k∑
j=1

(Ajxj, xj) −
( k∑

j=1

(f (Aj) xj, xj)
)q

� λ1 (57)

holds for

λ1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− ν
μ

+
1
μ

f max − f q
max if μ <

1
q
f 1−q
max

− ν
μ

+ (q − 1)(μq)q/(1−q) if
1
q
f 1−q
max � μ � 1

q
f 1−q
min

− ν
μ

+
1
μ

f min − f q
min if μ >

1
q
f 1−q
min

� − ν
μ

+ (q − 1)(μq)q/(1−q) (58)

in case (i), and ( k∑
j=1

(f (Aj) xj, xj)
)q

−
k∑

j=1

(Ajxj, xj) � λ2 (59)

for

λ2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν
μ
− 1

μ
f min + f q

min if μ <
1
q
f 1−q
min

ν
μ

+ (q − 1)(μq)q/(1−q) if
1
q
f 1−q
min � μ � 1

q
f 1−q
max

ν
μ
− 1

μ
f max + f q

max if μ >
1
q
f 1−q
max

� − ν
μ

+ (q − 1)(μq)q/(1−q) (60)

in case (ii), where μ = f (M)−f (m)
M−m , ν = Mf (m)−mf (M)

M−m , fmin = min
m�t�M

f (t) and

fmax = max
m�t�M

f (t) .

Proof. Let (i) be satisfied. Since the inequality (8) becomes

k∑
j=1

(Ajxj, xj) � − ν
μ

+
1
μ

k∑
j=1

(f (Aj) xj, xj) ,
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it folows that
k∑

j=1

(Ajxj, xj) −
( k∑

j=1

(f (Aj) xj, xj)
)q

� − ν
μ

+
1
μ

k∑
j=1

(f (Aj) xj, xj) −
( k∑

j=1

(f (Aj) xj, xj)
)q

. (61)

Let us take t =
∑k

j=1 (f (Aj) xj, xj) in the right side of this inequality. Because 0 <

f min � f (t) � f max , by the Lemma, operators f maxI − f (Aj) and f (Aj) − f minI are
positive for all j ∈ {1, 2, . . . , k} , and hence

f min (xj, xj) � (f (Aj) xj, xj) � f max (xj, xj) .

Then we have t ∈ [f min, f max] by summing over j . The inequality (61) becomes

k∑
j=1

(Ajxj, xj) −
( k∑

j=1

(f (Aj) xj, xj)
)q

� max
t∈[fmin,fmax]

h(t; m, M, f , q)

where

h(t) ≡ h(t; m, M, f , q) = − ν
μ

+
1
μ

t − tq.

By the differential calculus of positive number t , the maximum value of h(t) is attained
for t̄ = (μq)1/(1−q) > 0 if q < 0 . Furthemore, if t̄ ∈ [f min, f max] then

1
q
f 1−q
max � μ � 1

q
f 1−q
min

and

max
t∈[fmin,fmax ]

h(t) = − ν
μ

+ (q − 1)(μq)q/(1−q).

If t̄ �∈ [f min, f max] then because h(t) is an increasing function ( respectively decreasing )
for t < t̄ ( respectively for t > t̄ ) then we have max

t∈[fmin,fmax ]
h(t) = h(f max) ( respectively

max
t∈[fmin,fmax ]

h(t) = h(f min) ) if t̄ < f min ( respectively t̄ > f max ).

Then (57) is proved. For case (ii) we have λ2 = − min
t∈[fmin,fmax ]

h(t) .

COROLLARY 17. Assume that the conditions of Theorem 8 hold. Then for any
real number p > 0 the following inequality

k∑
j=1

(Ajxj, xj) −
( k∑

j=1

(
A−1

j xj, xj
))−p

� λ1 (62)
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holds for

λ1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M − Mp if p <
m
Mp

M + m − (1 + p)
(

mM
p

)p/(1+p)

if
m
Mp

� p � M
mp

m − mp if p >
M
mp

� M + m − (1 + p)
(

mM
p

)p/(1+p)

(63)

and for any real number p > 1 the following inequality

( k∑
j=1

(
A2

j xj, xj
))1/p

−
k∑

j=1

(Ajxj, xj) � λ2 (64)

holds for

λ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m2/p − m if

(
M + m

p

)p/(p−1)

< m2

− Mm
M + m

+
p − 1

p

(
M + m

p

)1/(p−1)

if m2 �
(

M + m
p

)p/(p−1)

� M2

M2/p − M if

(
M + m

p

)p/(p−1)

> M2

� − Mm
M + m

+
p − 1

p

(
M + m

p

)1/(p−1)

(65)

Proof. The inequality (62) for λ1 from (63) follows from Theorem 8 if we put
f (t) = t−1 and replace q by −p for p > 0 . Also we obtain the inequality (64) for λ2

from (65) if we put f (t) = t2 and replace q by 1/p for p > 1 .

REMARK 13. We have the inequalities (Ax, x) − (A−1x, x
)−1 �

(√
M −√

m
)2

and√
(A2x, x) − (Ax, x) � (M−m)2

4(M+m) if we put k = 1, p = 1 in (62) and k = 1, p = 2 in
(64) respectively.

REMARK 14. The inequalities (57) and (59) which we have got by the inequality
(8) might be generalized so that they can be replaced by α ·∑k

j=1 (Ajxj, xj) like in

the starting inequality
∑k

j=1 (Ajxj, xj) , where α is any real number. The following
inequality can be used for that.
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COROLLARY 18. Assume that the conditions of Theorem 1 hold. Then for any
real number α the following inequality

k∑
j=1

(f (Aj) xj, xj) + α ·
k∑

j=1

(Ajxj, xj) � β (66)

holds for

β =

⎧⎪⎨
⎪⎩

f (m) + αm if α < −μ
f (m)M − f (M)m

M − m
if α = −μ

f (M) + αM if α > −μ
(67)

Proof. We put g(t) = −αt in Theorem 7. Then the constant λ is the maximum
value on [m, M] of h(t) = (α + μ)t + f (m) − μm (see (44)). The function h(t) is
increasing if α+μ > 0 , that is maxm�t�M h(t) = h(M) ; h(t) is decreasing if α+μ <
0 , that is maxm�t�M h(t) = h(m) . If α+μ = 0 , that is maxm�t�M h(t) = f (m)−μm .
In this case the inequality (66) is in fact the inequality (8).

REMARK 15. We remark that we have the inequality

k∑
j=1

(
A−1

j xj, xj
)

+
1

Mm

k∑
j=1

(Ajxj, xj) � M + m
Mm

if we put in Corollary 18 f (t) = t−1 and the inequality

k∑
j=1

(
A2

j xj, xj

)− (M + m)
k∑

j=1

(Ajxj, xj) � M + m
−Mm

if we put f (t) = t2 .

REMARK 16. We remark that two inequalities in Remark 15 are proven differently
in [5, Proof of Theorem 1. (i), (ii) and Lemma 1] so that is not used that these functions
are convex.

6.4. Application to exponential function.

COROLLARY 19. Assume that the conditions of Theorem 1 hold. Suppose that
either of the following conditions holds
(I) f (m) < f (M), α > 0 any real number
or
(II) f (m) > f (M), α < 0 any real number .
Then the following inequality

k∑
j=1

(f (Aj) xj, xj) � λ + exp
(
α

k∑
j=1

(Ajxj, xj)
)

(68)
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holds for

λ =

⎧⎨
⎩

Mf (m) − mf (M)
M − m

+
μ
α

(
ln
μ
α

− 1
)

if αeαm � μ � αeαM

max
{
f (m) − eαm, f (M) − eαM

}
if μ < αeαm or μ > αeαM

� Mf (m) − mf (M)
M − m

+
μ
α

(
ln
μ
α

− 1
)

. (69)

Proof. In Theorem 7 put g(t) = eαt for a real number α �= 0 . The conditions
(i) in Theorem 7 are weakened here as we can determine explicitely the solution of the
equation h′(t) = 0 where h(t) = f (m) + μ(t − m) − eαt , t̄ = 1

α ln μ
α . It gives the

conditions (I) or (II).

COROLLARY 20. Let Aj be positive operator on a Hilbert space H satisfying
mI � Aj � MI (j = 1, 2, . . . , k) , where 0 < m < M . Let x1, x2, . . . , xk be any finite
number of vectors in H such that

∑k
j=1 ‖xj‖2 = 1 . Then for any real numbers α > 0

and β > 0 or α < 0 and β < 0 the following inequality holds

k∑
j=1

(
eβAjxj, xj

)
� λ + exp

(
α

k∑
j=1

(Ajxj, xj)
)

, (70)

where λ is defined by (69) for μ̄ =
(
eβM − eβm

)
/(M − m) .

Proof. We obtain the inequality (70) if we put f (t) = eβ t for a real number β �= 0
in Corollary 19.

COROLLARY 21. Assume that the conditions of Corollary 10 hold. Then for any
real number α �= 0 the following inequality holds

k∑
j=1

(
eαAjxj, xj

)− exp
(
α

k∑
j=1

(Ajxj, xj)
)

� Meαm − meαM

M − m
+

eαM − eαm

α(M − m)
ln

(
eαM − eαm

α(M − m)

)
(71)

Proof. Put α = β �= 0 in Corollary 20. As f (t) = eαt is a real valued continuous
convex function for any real number α �= 0 , then the first condition in the inequality
(69) holds.

REMARK 17. We have the inequalities

(
e−Ax, x

)− e−(Ax,x) � Me−m − me−M

M − m
+

e−m − e−M

M − m
ln

(
e−m − e−M

M − m

)
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if we put k = 1,α = −1 in (71) and

(
eAx, x

)− e(Ax,x) � Mem − meM

M − m
+

eM − em

M − m
ln

(
eM − em

M − m

)

for k = 1,α = 1 .

7. Multiple positive definite matrix case

If instead of the positive operators we observe the positive definite Hermitian
matrices, then the results of all the above analogons are valid with the necessary modi-
fications. For example, we have Theorems 10 and 12 instead of Theorem 2. We recall
that μ = (f (M)− f (m))/(M −m) for a real valued function f on the interval [m, M] .

7.1. Extension of the Ky Fan inequality.

THEOREM 9. Let Aj , (j = 1, 2, . . . , k) be positive definite Hermitian matrices
of order n with eigenvalues in the interval [m, M] , where 0 < m < M , and also let
Xj, j = 1, 2, . . . , k , be any finite number of vectors in the unitary n-space such that∑k

j=1 (Xj, Xj) = 1 . If f (t) is a real valued continuous convex function on [m, M] , then
the following inequality holds

k∑
j=1

(f (Aj) Xj, Xj) � f (m) + μ
( k∑

j=1

(AjXj, Xj) − m

)
. (72)

Proof. This inequality was given in [13, Theorem 1].

THEOREM 10. Assume that the conditions of Theorem 9 hold and let g(t) be a
real valued continuous function on [m, M] . Let U and V be two intervals such that
U ⊃ f [m, M] and V ⊃ g[m, M] . If F(u, v) is a real valued function defined on U×V ,
non-decreasing in u , then the following inequality holds

F
[ k∑

j=1

(f (Aj) Xj, Xj) , g
( k∑

j=1

(AjXj, Xj)
)]

� max
m�t�M

F [f (m) + μ(t − m), g(t)]

= max
0�θ�1

F [θf (m) + (1 − θ)f (M), g (θm + (1 − θ)M)] . (73)

Proof. Proof is the almost same as one in the Theorem 2.
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7.2. Matrix version of the Ky Fan inequality.

THEOREM 11. Let Aj , (j = 1, 2, . . . , k) be positive definite Hermitian matrices
of order n with eigenvalues in the interval [m, M] , where 0 < m < M , and also let
Uj, j = 1, 2, . . . , k , be r × n matrices such that

∑k
j=1 UjU∗

j = I . If f (t) is a real
valued continuous convex function on [m, M] , then the following inequality holds

k∑
j=1

Ujf (Aj) U∗
j � f (m)I + μ

( k∑
j=1

UjAjU
∗
j − mI

)
. (74)

Proof. This inequality was given in [14, Theorem 1].

THEOREM 12. Assume that the conditions of Theorem 9 hold and let g(t) be
a real valued continuous function on [m, M] . If U and V are two intervals such that
U ⊃ f [m, M] and V ⊃ g[m, M] and if F(u, v) is a real valued function defined on
U × V , matrix non-decreasing in u , then the following inequality holds

F
[ k∑

j=1

Ujf (Aj) U∗
j , g
( k∑

j=1

UjAjU
∗
j

)]

�
{

max
m�t�M

F [f (m) + μ(t − m), g(t)]
}

I

=
{

max
0�θ�1

F [θf (m) + (1 − θ)f (M), g (θm + (1 − θ)M)]
}

I. (75)

Proof. By (74) and the matrix non-decreasing character of F(·, v) , we have

F
[ k∑

j=1

Ujf (Aj) U∗
j , g
( k∑

j=1

UjAjU
∗
j

)]

� F
[
f (m)I + μ

(
Ã − mI

)
, g(Ã)

]
, (76)

where Ã =
∑k

j=1 UjAjU∗
j . Now, again consider the inequality for a real valued function

F [f (m) + μ (t − m) , g(t)] � λ
where

λ = max
m�t�M

F [f (m) + μ (t − m) , g(t)] .

As in [14, Theorem 1], we can get the matrix inequality

F
[
f (m)I + μ

(
Ã − m

)
, g(Ã)

]
� λ I (77)

for matrices Ã such that mI � Ã � MI . Now (76) and (77) give (75).
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RE F ER EN C ES

[1] KY FAN, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg, 29 (1966), 185–196.
[2] M. FUJII, T. FURUTA, R. NAKAMOTO AND S.-E. TAKAHASI, Operator inequalities and covariance in

noncommutative probability, Math. Japon., 46 (1996), 317–320.
[3] M. FUJII, S. IZUMINO, R. NAKAMOTO AND Y. SEO, Operator inequalities related to Cauchy-Schwarz
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[11] B. MOND AND J. E. PEČARIĆ, On Jensen’s inequality for operator convex functions, Houston J.Math.,

21 (1995), 739–753.
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[13] B. MOND, J. E. PEČARIĆ, Some Matrix Inequalities of Ky Fan Typa, Tam. J. Math. 26, No 4, 1995,

321-326.
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