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Abstract. In this note, we explain the analogy between interlacing properties of invariant factors
of matrices over a principal ideal domain R and of eigenvalues of complex Hermitian matrices.
This is done by looking at the interlacing theorems as dealing with very special cases of the
problems of describing the invariant factors of a product of R -matrices and the eigenvalues of a
sum of Hermitian matrices.

1. Introduction

Let R be a principal ideal domain and let n � 2 be a natural number. Given
elements cn| . . . |c1 and an−1| . . . |a1 in R , there exists an n × n matrix over R with
the ci as invariant factors, containing an (n− 1)× n submatrix with the ai as invariant
factors, if and only if ([11, 16])

ci+1|ai|ci , i = 1, . . . , n − 1.

It is also well known that given real numbers γ1 � · · · � γn and α1 � · · · � αn−1 ,
there exists an n × n Hermitian matrix with the γi as eigenvalues, containing an
(n−1)× (n−1) principal submatrix with the αi as eigenvalues if and only if (e.g. [3])

γi+1 � αi � γi , i = 1, . . . , n − 1.

The observation of the analogy between these two “interlacing" results has led
several authors to look for explanations for it, as well as for other analogies between
invariant factors of R -matrices and eigenvalues of Hermitian matrices, (see e.g. [1], [2],
[10]).

In the present note we explain the interlacing analogy by looking at the above
results as dealing with very special cases of two important problems in matrix theory:
describing the invariant factors of products of matrices over R and the eigenvalues of
sums of Hermitian matrices.
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2. Interlacing of invariant factors

THEOREM 1. Let cn| . . . |c1 and an−1| . . . |a1 be elements of R . Then the following
three conditions are equivalent:

(a) There exists an n×n matrix over R with the ci as invariant factors, containing
an (n − 1) × n submatrix with the ai as invariant factors.

(b) There exist n× n R -matrices A with invariant factors a1, . . . , an−1, 1 , and X
with n − 1 invariant factors equal to 1 such that AX has invariant factors ci .

(c) cn|an−1|cn−1| . . . |c2|a1|c1 .

Proof. The assertion (a)⇔ (c) is the interlacing result mentioned in the introduc-
tion.

We base the proof of (a)⇔ (b) on the following matrix factorization suggested in
[4]: [

A1 0
x ξ

]
=

[
A1 0
0 1

] [
I 0
x 1

] [
I 0
0 ξ

]
, (1)

where A1 is (n− 1)× (n− 1) , x is 1× (n− 1) and ξ is 1× 1 . Note that the middle
factor is unimodular.

Let us start with an n × n matrix, call it C , and a submatrix as described in (a).
Of course we may assume that C already has the lower triangular block decomposition
of the lefthand side of (1), where A1 has invariant factors ai . So (1) gives us the
factorization we need in (b).

Conversely, assume we have a product AX satisfying all conditions in (b). Now
AX is obviously equivalent to a matrix product much like the righthand side of (1),
namely [

A1 0
0 1

]
V

[
I 0
0 ξ

]
, (2)

where V is unimodular and A1 is (n − 1) -square with invariant factors an−1| . . . |a1 .
But here we cannot guarantee that V has the block-lower-triangular form of the middle
factor in the first factorization. We remove this obstacle in the following way. First,
we remark that the problem is localizable: For each fixed prime p ∈ R , we can restrict
ourselves to matrices over the local domain Rp , i.e., work only with powers of p . Then
we use, with minor changes, Lemma 5.1 of [13] and the argument under that lemma to
show that V may in fact be transformed into a matrix like the middle unimodular factor
of (1). So we started with a product AX as in (b), and we end up with a matrix (1),
equivalent to AX and having A1 as a submatrix. This finishes our proof that (a) and
(b) are equivalent. �

We remark that, in the matrix product situation, we can multiply throughout by an
element of R , and obtain the following:

COROLLARY. Given elements cn| . . . |c1 and an| . . . |a1 in R , there exist n × n
R -matrices A with invariant factors an| . . . |a1 and X with n − 1 invariant factors
equal to 1 such that AX has invariant factors cn| . . . |c1 if and only if

an|cn|an−1|cn−1| . . . |c2|a1|c1 .
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REMARK. Unfortunately, in the second part of the above proof we used a non-
elementary localization technique, combined with a triangular decomposition of uni-
modular matrices over principal local domains. This can hardly be considered an
elementary argument. In fact, it seems that we cannot pass without some tricky maneu-
ver to transform AX into a matrix—e.g., like the one on the left side of (1)—exhibiting
the desired matrix-submatrix pattern, as we see with the following 2 × 2 example:
Given a, p, q, r, s, ξ in R , such that ps − qr = 1 , consider the factorization[

ap aqξ
r sξ

]
=

[
a 0
0 1

] [
p q
r s

] [
1 0
0 ξ

]
.

If either p, r, or s is a unit (as it holds in the local case) then it is easy to find
upper-triangular row and column elementary transformations that reduce the middle
unimodular factor to a lower triangular unimodular matrix. But in the general case
we cannot expect things to be so easy: As a matter of fact, the existence of LUL- or
ULU-factorizations for 2×2 [n×n ] unimodular matrices characterizes local principal
ideal domains [13, Lemma 5.1].

On the other hand, using localization, we have shown that our 2 × 2 matrix is
equivalent to one like [

a 0
0 1

] [
1 0
∗ 1

] [
1 0
0 ξ

]
.

We wonder if a simple proof of this fact can be found without the localization step.
More generally, we have the following:

OPEN PROBLEM. Find an explicit equivalence, without localization, which trans-
forms (2) into (1) .

3. Interlacing of eigenvalues of Hermitian matrices

THEOREM 2. Let γ1 � · · · � γn and α1 � · · · � αn−1 be nonnegative real
numbers. Then the following three conditions are equivalent:

(a) There exists an n× n Hermitian matrix with the γi as eigenvalues, containing
an (n − 1) × (n − 1) principal submatrix with the αi as eigenvalues.

(b) There exist n×n Hermitian matrices A with eigenvalues α1, . . . ,αn−1, 0 and
X � 0 with n − 1 zero eigenvalues such that A + X has eigenvalues γi .

(c) γ1 � α1 � γ2 � · · · � γn−1 � αn−1 � γn .

Proof. The assertion (a)⇔ (c) is the interlacing result mentioned in the introduc-
tion.

The proof of (a)⇔ (b) is essentially due to R. C. Thompson [15] and is based on
the following observation of Wielandt [17]: If we let N be n × (n − 1) , x be n × 1 ,
and denote by M the matrix [N | x] , then the n × n positive semidefinite matrices

MM∗ = NN∗ + xx∗ and M∗M =
[

N∗N N∗x
x∗N x∗x

]

have the same eigenvalues. �
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We remark that in the Hermitian sum situation, we can add a real scalar throughout,
and obtain the following:

COROLLARY. Given real numbers γ1 � · · · � γn and α1 � · · · � αn , there exist
n × n Hermitian matrices A with eigenvalues α1 � · · · � αn and X � 0 with n − 1
zero eigenvalues such that A + X has eigenvalues γ1 � · · · � γn if and only if

γ1 � α1 � γ2 � · · · � γn−1 � αn−1 � γn � αn .

4. Relating the two situations

We have seen in section 2 that in the invariant factor interlacing situation, we are
dealing with a very particular case of the problem of describing the invariant factors of
a product of two square R -matrices, given their invariant factors. In this problem, it is
enough to consider the non-singular case [12].

NOTATION. We deal with the local version of the problem. Denote by IFn the
set of triples (α, β , γ ) of n -tuples α = (α1, . . . ,αn) , β = (β1, . . . , βn) and γ =
(γ1, . . . , γn) of nonincreasing nonnegative integers for which there exist n × n non-
singular Rp -matrices A , B and C with invariant factors pα1 , . . . , pαn , pβ1 , . . . , pβn

and pγ1 , . . . , pγn such that C = AB .

Analogously, we have seen in section 3 that in the Hermitian matrix interlacing
situation we are dealing with a very particular case of the problem of describing the
eigenvalues of a sum of two Hermitian matrices given their eigenvalues.

NOTATION. Denote by En the set of triples (α, β , γ ) of n -tuples of nonincreasing
real numbers for which there exist n × n Hermitian matrices A , B and C with
eigenvalues α1, . . . ,αn , β1, . . . , βn and γ1, . . . , γn such that C = A + B . There is no
loss of generality in working with nonnegative numbers only, and we include this in the
definition of En .

THEOREM 3. One has
IFn = En ∩ Z

3n. (3)

Proof. From [6], we know that IFn = LRn , where LRn is the set of triples
(α, β , γ ) of n -tuples α = (α1, . . . ,αn) , β = (β1, . . . , βn) and γ = (γ1, . . . , γn)
of nonincreasing nonnegative integers such that γ can be obtained from α and β ,
according to the combinatorial Littlewood-Richardson rule [9].

In [7], Klyachko has shown that for integer n -tuples α , β and γ , one has

(α, β , γ ) ∈ En ⇐⇒ ∃N∈N (Nα, Nβ , Nγ ) ∈ LRn .

And very recently ([8]) Knutson and Tao proved that

(Nα, Nβ , Nγ ) ∈ LRn =⇒ (α, β , γ ) ∈ LRn .

Putting these three facts together gives the stated result. �
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This relation between invariant factors and eigenvalues (which, as seen in the proof,
follows readily from the deep results in [6], [7], [8]) explains, in light of Theorems 1 and
2, the interlacing analogy for submatrices.

REMARKS. 1. The equality (3) was conjectured for several years, on the strength
of analogies between the two sets. In [13] it was shown that the inclusion LRn ⊆ En

follows from a theorem of Heckman [5] on representations and coadjoint orbits of
compact connected Lie groups.

2. The set LRn , in the case where the second n -tuple is forced to have at most
one nonzero component, is described explicitly by the so-called Pieri rule. This, not
unexpectedly, is precisely the family of interlacing inequalities

γ1 � α1 � γ2 � α2 � · · · � γn � αn

plus the obvious condition
Σ γi = Σαi + β1

(which is the only restriction involving β1 ).
3. By Theorem 3, the integral vectors of En are the elements of LRn . It follows

from a result in [7] that En is a polyhedral cone in R
3n defined by a finite set of rational

homogeneous linear inequalities in α , β and γ . Such a cone is generated by its
integral vectors (see e.g. [14]), and therefore each inequality satisfied by the integral
generators holds for all vectors in the cone. So the study of the case of integral spectra
is enough to understand the situation concerning eigenvalues of Hermitian matrices.
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