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Abstract. Some integral representations and inequalities for generalized beta function are given.

1. Introduction

In the recent survey paper [1], about gamma and beta functions, S. S. Dragomir, R.
P. Agarwal and N. S. Barnett presented relations, identities, integral representations and
inequalities for the gammaand beta functions. Various aspects of the topic are presented,
from integral representations, fundamental relations and identities, classical inequalities,
convexity and logarithmic convexity to some very recent results on Ostrowski type
inequalities and cubature formulae.

As a little contribution to the topic, in this paperwe look at the natural generalization
Bn, n � 2, of the beta function, defined by

Bn(x) =
Γ(x1) · · Γ(xn)
Γ(x1 + · · + xn)

(1.1)

where x ∈ Rn
+, x = (x1, .., xn), and Rn

+ is the set of all vectors x ∈ Rn with positive
coordinates.

This function has been considered earlier, e.g. in the monograph [3], by H. Federer.
See Remark 2 below.

We give some integral representations for Bn, and prove that Bn is strictly de-
creasing and logarithmically convex on Rn

+. We also prove some inequalities for Bn,
and for its partial derivatives.

2. Some integral representations

In this section we shall give some integral representations for Bn , suitable in
proving inequalities. To simplify notation we first introduce some standard notions
and symbols. For x, y ∈ Rn the relation x � y means xk � yk for all k = 1, .., n.
Further, (x|y) = x1y1 + .. + xnyn is the standard scalar product, xy = (x1y1, .., xnyn) is
the product by coordinates and u = (1, .., 1). Also we write |x| = (|x1| , .., |xn|) and
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xa = xa1
1 · · xan

n for x � 0 and a � 0 or for x > 0 and a ∈ Rn. The standard basis of
Rn is denoted by {e1, .., en}, where e1 = (1, 0, .., 0), .., en = (0, .., 0, 1).

By H(n) we denote the set of all continuous functions ϕ : Rn → [0,∞) such that
ϕ is differentiable a.e. and ϕ′(x) �= 0 a.e. and

ϕ(tx) = tϕ(x) for t ∈ [0,∞) and x ∈ Rn

Here ϕ′(x) means the gradient of ϕ.
For ϕ ∈ H(n) we introduce

Sϕ = {x ∈ Rn;ϕ(x) = 1} and Dϕ = {x ∈ Rn;ϕ(x) < 1}
the unit sphere and the unit disc of ϕ.

Every norm on Rn belongs to H(n). If ϕ1,ϕ2 ∈ H(n) then ϕ1 + ϕ2 ∈ H(n),
αϕ1 ∈ H(n) for positive α, and also max(ϕ1,ϕ2), min(ϕ1,ϕ2) ∈ H(n). If a ∈ Rn,
a �= 0, and ϕ(x) = |(a|x)| then ϕ ∈ H(n). If 0 < p < ∞ and

‖x‖p = (|x1|p + .. + |xn|p)1/p

then ‖ · ‖p ∈ H(n) and we write

S‖·‖p = Sp
n and D‖·‖p = Dp

n.

We denote by h the Hausdorff (n − 1) -measure on Rn. Restriction of h on a nice
surface becomes the usual surface area measure from analysis. By

∣∣Dϕ
∣∣ we denote the

Lebesgue measure of Dϕ , and we write
∣∣Sϕ∣∣ for the surface area of Sϕ i.e. for h(Sϕ).

LEMMA 1. For ϕ ∈ H(n) and F ∈ L1(Rn) we have∫
Rn

F(x)dx =
∫ ∞

0

∫
Sϕ

F(tx)tn−1 dtdh(x)
‖ϕ′(x)‖ ,

where ‖ϕ′(x)‖ is the standard euclidean norm of ϕ′(x).

Proof. See [2, Theorem 7]. This formula is called the polar formula. �

COROLLARY 1. Let ϕ ∈ H(n) and f : [0,∞) → R be such that F = f ◦ ϕ ∈
L1(Rn). Then ∫

Rn
f (ϕ(x))dx = n

∣∣Dϕ
∣∣ ∫ ∞

0
f (t)tn−1dt.

Proof. By the polar formula for F = f ◦ ϕ we have∫
Rn

f (ϕ(x))dx =
∫ ∞

0

∫
Sϕ

f (t)tn−1 dtdh(x)
‖ϕ′(x)‖

=
∫

Sϕ

dh(x)
‖ϕ′(x)‖

∫ ∞

0
f (t)tn−1dt.

If we choose f to be the indicator function of [0, 1), then we get∫
Rn

f (ϕ(x))dx =
∣∣Dϕ
∣∣ =

∫
Sϕ

dh(x)
‖ϕ′(x)‖

∫ 1

0
tn−1dt =

1
n

∫
Sϕ

dh(x)
‖ϕ′(x)‖ .



GENERALIZED BETA FUNCTION 475

Therefore ∫
Sϕ

dh(x)
‖ϕ′(x)‖ = n

∣∣Dϕ
∣∣ ,

which proves our assertion. �

REMARK 1. There are functions ϕ ∈ H(n) for which
∣∣Dϕ
∣∣ = ∞. For such a ϕ

the conditions of the Corollary 1 are not fulfilled i.e. F = f ◦ ϕ is not in L1(Rn) for
every f �= 0.

COROLLARY 2. For 0 < p < ∞ we have

|Dp
n| = 2n

Γ( 1
p + 1)n

Γ( n
p + 1)

.

Proof. Put ϕ(x) =‖x‖p and f (t) = exp(−tp) in Corollary 1 to get

(∫
R

exp(− |t|p)dt

)n

= n
∣∣Dϕ
∣∣ ∫ ∞

0
exp(−tp)tn−1dt.

After simple calculation we have the result. �

THEOREM 1. For x ∈ Rn
+, ϕ(y) =‖y‖p, and 0 < p < ∞ we have

Bn(x) = 2−npn−1
∫

Sp
n

|y|px−u dh(y)
‖ϕ′(y)‖ .

Proof. By the polar formula,∫
Rn

f (ϕ(y)) |y|px−u dy =
∫ ∞

0

∫
Sp
n

f (t)tp(x|u)−1 |y|px−u dt
dh(y)
‖ϕ′(y)‖

=
∫

Sp
n

|y|px−u dh(y)
‖ϕ′(y)‖ ·

∫ ∞

0
f (t)tp(x|u)−1dt,

for every f : [0,∞) → R such that the left hand side integral exists.
Let us apply this formula to f (t) = exp(−tp). We get

n∏
k=1

∫
R

exp(− |t|p) |t|pxk−1 dt =
∫

Sp
n

|y|px−u dh(y)
‖ϕ′(y)‖ ·

∫ ∞

0
exp(−tp)tp(x|u)−1dt

and
n∏

k=1

2
p
Γ(xk) =

∫
Sp
n

|y|px−u dh(y)
‖ϕ′(y)‖ · 1

p
Γ((x|u)),

which gives our formula.
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We also proved, as a side result, the integral formula∫
Rn

f (ϕ(y)) |y|px−u dy = 2np1−nBn(x)
∫ ∞

0
f (t)tp(x|u)−1dt.

�

COROLLARY 3. For x ∈ Rn
+ we have

Bn(x) =
1

2n
√

n

∫
S1
n

|y|x−u dh(y)

and

Bn(x) =
1
2

∫
S2
n

|y|2x−u dh(y). (2.1)

Proof. Put p = 1 in Theorem 1. Then ϕ(y) =‖y‖1 and ‖ϕ′(y)‖ =
√

n , a.e.,
which gives the first formula. Further, put p = 2 in Theorem 1. Then ϕ(y) =‖y‖2 =
‖y‖ and ‖ϕ′(y)‖ = 1 for y �= 0, which proves the second formula. �

REMARK 2. The formula (2.1) from Corollary 3 can be found in the monograph
[3, 3.2.13]. More precisely, in [3] the formula (2.1) has been used as the definition
formula for Bn, while the formula (1.1) has been proved.

COROLLARY 4. Let Δn be the (n−1) -dimensional simplex with vertices e1, .., en,
where {e1, .., en} is the standard basis of Rn. Then

Bn(x) =
1√
n

∫
Δn

yx−udh(y).

Proof. Follows from the first formula of Corollary 3 and

Δn = {x ∈S1
n; x � 0}.

�

THEOREM 2. For x ∈ Rn
+ and 0 < p < ∞ we have

Bn(x) = 2−npn(x|u)
∫

Dp
n

|y|px−u dy.

Proof. By the polar formula and Theorem 1, for ϕ(y) =‖y‖p we have∫
Dp

n

|y|px−u dy =
∫ 1

0

∫
Sp
n

tp(x|u)−1 |y|px−u dt
dh(y)
‖ϕ′(y)‖

=
1

p(x|u)

∫
Sp
n

|y|px−u dh(y)
‖ϕ′(y)‖

=
1

p(x|u)
2np1−nBn(x),
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which gives our formula. �

COROLLARY 5. For x ∈ Rn
+ we have

Bn(x) = 2−n(x|u)
∫

D1
n

|y|x−u dy

and

Bn(x) = (x|u)
∫

D2
n

|y|2x−u dy.

Proof. Put p = 1 and p = 2 in Theorem 2. �

COROLLARY6. Let Δn be the open n -dimensional simplexwith vertices 0, e1, .., en,
where {e1, .., en} is the standard basis of Rn. Then

Bn(x) = (x|u)
∫
Δn

yx−udy.

Proof. Follows from the first formula of Corollary 5 and

Δn = {y ∈D1
n; y > 0}.

�

3. Some inequalities for generalized beta function

In this section we shall prove some inequalities for Bn, and its derivatives, using
the integral representations from the preceding section. All these inequalities are valid
for every n � 2, and for n = 2 they become the inequalities for the beta function.
Some of these inequalities are given in [1], and some are new even for n = 2.

THEOREM 3. The function Bn is strictly decreasing on Rn
+ i.e. if x, y ∈ Rn

+ ,
x � y and x �= y, then Bn(x) > Bn(y).

Proof. By Corollary 3 we have

Bn(x) =
1

2n
√

n

∫
S1
n

|y|x−u dh(y).

Let An be the set of all y ∈S1
n such that |yk| = 0 or 1, for some k = 1, .., n. Then

h(An) = 0 and

Bn(x) =
1

2n
√

n

∫
S1
n\An

|y|x−u dh(y).

For every y ∈S1
n\An we have 0 < |y| < u i.e. 0 < |yk| < 1 , for every k = 1, .., n.

Therefore, the map x →|y|x−u is strictly decreasing on Rn
+ , for every y ∈S1

n\An.
Hence, by integrating over S1

n\An, we conclude that Bn is strictly decreasing on Rn
+.

�
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REMARK 3. From the definition of the function Bn we see that Bn is analytic on
Rn

+. The partial derivatives ∂kBn, k = 1, .., n, can be represented by integrals using
any integral representation of Bn from the previous section e.g.

∂kBn(x) =
1

2n
√

n

∫
S1
n

|y|x−u log |yk| dh(y) =
1

2n
√

n

∫
S1
n\An

|y|x−u log |yk| dh(y).

From this formula it follows
∂kBn(x) < 0,

for every x ∈ Rn
+ and every k = 1, .., n. This gives another proof of Theorem 3.

THEOREM 4. For 0 < p < ∞ and x ∈ Rn
+ , x � 1

pu we have

Bn(x) �
Γ( 1

p )
n

Γ( n
p + 1)

(x|u).

Proof. By Theorem 2 we have

Bn(x) = 2−npn(x|u)
∫

Dp
n

|y|px−u dy.

If x � 1
pu, then px − u � 0 and |y|px−u � 1 for every y ∈Dp

n . Therefore

Bn(x) � 2−npn(x|u)
∫

Dp
n

dy =2−npn(x|u) |Dp
n| .

Now, by Corollary 2,

|Dp
n| = 2n

Γ( 1
p + 1)n

Γ( n
p + 1)

and we get

Bn(x) � 2−npn(x|u)2n
Γ( 1

p + 1)n

Γ( n
p + 1)

=
Γ( 1

p )
n

Γ( n
p + 1)

(x|u),

which proves our inequality. �

THEOREM 5. Let μ be a positive finite Borel measure on Sϕ , with a density with
respect to the Hausdorff (n − 1) -measure h, where ϕ ∈ H(n) is such that Sϕ is
compact, and a ∈ Rn

+. Then the function f : Rn
+ → R+ defined by

f (x) =
∫

Sϕ

|z|ax−u dμ(z),

is logarithmically convex on Rn
+, i.e.

f (αx + (1−α)y) � f (x)α f (y)1−α (3.1)

for every α ∈ [0, 1] and x, y ∈ Rn
+. Further, if α ∈ R, α � 0 or α � 1, and

x, y ∈ Rn
+ are such that

αx+(1 − α)y ∈ Rn
+,

then
f (αx + (1−α)y) � f (x)α f (y)1−α . (3.2)
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Proof. The function f is well defined i.e. the integral exists for every x ∈ Rn
+ ,

since Sϕ is compact and μ has a density with respect to the Hausdorff (n−1) -measure
h . The compactness of Sϕ is equivalent to the condition:

ϕ(x) = 0 if and only if x = 0.

For α = 0 or 1 the inequalities are trivial. Therefore, to prove the first inequality, we
can assume that 0 < α < 1. We have

f (αx + (1−α)y) =
∫

Sϕ

|z|αax+(1−α)ay−u dμ(z)

=
∫

Sϕ

|z|αax−αu · |z|(1−α)ay−(1−α)u dμ(z).

Let us apply the Hölder inequality to this relation with

p =
1
α

and q =
1

1 − α
.

We get

f (αx + (1−α)y) �
(∫

Sϕ

|z|ax−u dμ(z)

)α (∫
Sϕ

|z|ay−u dμ(z)

)1−α

= f (x)α f (y)1−α ,

which proves the first inequality.
The second inequality follows by applying the reverse Hölder inequality. �

COROLLARY 7. Let g : R+ → R+, g(t) = f (tu), where f is from Theorem 5.
Then g is logarithmically convex on R+ i.e.

g(αs + (1 − α)t) � g(s)αg(t)1−α (3.3)

for every α ∈ [0,1] and s, t ∈ R+. Further, if α ∈ R, α � 0 or α � 1 and
s, t ∈ R+ are such that

αs + (1 − α)t ∈ R+,

then
g(αs + (1 − α)t) � g(s)αg(t)1−α . (3.4)

Proof. Follows immediately from Theorem 5 for x =tu. �

THEOREM 6. Let μ be a positive finite Borel measure on Dϕ , with a density with
respect to the Lebesgue measure, where ϕ ∈ H(n) is such that Sϕ is compact, and
a ∈ Rn

+. Then the function f : Rn
+ → R+ defined by

f (x) =
∫

Dϕ

|z|ax−u dμ(z),

satisfies the inequalities (3.1) and (3.2).
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Proof. Similar to the proof of Theorem 5. �

COROLLARY 8. Let g : R+ → R+, g(t) = f (tu), where f is from Theorem 6.
Then g satisfies the inequalities (3.3) and (3.4).

Proof. Follows from Theorem 6 for x =tu. �

THEOREM 7. The function Bn satisfies the inequalities (3.1) and (3.2).

Proof. By corollary 3 we have

Bn(x) =
1
2

∫
S2
n

|z|2x−u dh(z).

The assertion follows from Theorem 5 for a =2u, ϕ(x) = ‖x‖ and μ = 1
2h. �

THEOREM 8. The function f : Rn
+ → R+ defined by

f (x) =
Bn(ax)
(a|x)

is strictly decreasing on Rn
+, for every a ∈ Rn

+, and satisfies the inequalities (3.1) and
(3.2).

Proof. By Corollary 5

f (x) =
Bn(ax)
(a|x) =

∫
D2

n

|y|2ax−u dy.

Repeat now the argument of the proof of Theorem 3 to conclude that this function is
strictly decreasing on Rn

+, for every a ∈ Rn
+.

The last assertion follows from Theorem 6 for ϕ(x) = ‖x‖ and dμ(y) = dy.
�

COROLLARY 9. Let a ∈ Rn
+ and g : R+ → R+ be defined by g(t) = Bn(ta).

Then g is strictly decreasing on R+, and satisfies the inequalities (3.3) and (3.4).

Proof. Follows from Theorem 3 and Corollary 7. �

COROLLARY 10. The function g : R+ → R+ defined by

g(t) =
Γ(t)n

Γ(nt)

is strictly decreasing on R+, for every n � 2, and satisfies the inequalities (3.3) and
(3.4).

Proof. Put a = u in Corollary 9. �

COROLLARY 11. Let a ∈ Rn
+ and g : R+ → R+ be defined by

g(t) =
Bn(ta)

t
.

Then g is strictly decreasing on R+, and satisfies the inequalities (3.3) and (3.4).
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Proof. Follows from Theorem 8 for x =tu. �

COROLLARY 12. The function g : R+ → R+ defined by

g(t) =
Γ(t)n

tΓ(nt)

is strictly decreasing on R+, for every n � 2, and satisfies the inequalities (3.3) and
(3.4).

Proof. Put a = u in Corollary 11. �

THEOREM 9. Let f : Rn
+ → R+ be defined by

f (x) = (−u)m∂mBn(x),

where m is a multi-index and ∂m = ∂m1
1 · · ∂mn

n is the m -partial derivative operator.
Then f is strictly decreasing on Rn

+, and satisfies the inequalities (3.1) and (3.2).

Proof. By remark 3 we have

f (x) =
1

2n
√

n

∫
S1
n

|y|x−u (− log |y|)m dh(y),

where
log |y| = (log |y1| , .., log |yn|).

The first assertion is proved as in Theorem 3. The last assertion follows from Theorem
5 for ϕ(x) = ‖x‖1, a = u and

dμ(y) =
1

2n
√

n
(− log |y|)m dh(y).

�

THEOREM 10. Let a ∈ Rn
+ and f : Rn

+ → R+ be defined by

f (x) = (−u)m∂m Bn(ax)
(a|x) .

Then f is strictly decreasing on Rn
+, and satisfies the inequalities (3.1) and (3.2).

Proof. We have

f (x) =
∫

D2
n

|y|2ax−u (−2a log |y|)m dy.

The first assertion is proved as in Theorem 3. The last assertion follows from Theorem
6 for ϕ(x) = ‖x‖2, and

dμ(y) = (−2a log |y|)m dy.

�
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COROLLARY 13. Let a ∈ Rn
+ and g : R+ → R+ be defined by

g(t) = (−1)k dk

dtk
Bn(ta).

Then g is strictly decreasing on R+, and satisfies the inequalities (3.3) and (3.4), for
every k ∈ N and n � 2.

Proof. All the assertions follow from Theorem 9 for x =ta and Corollary 7, since

g(t) =
1

2n
√

n

∫
S1
n

|y|ta−u (a| − log |y|)k dh(y) > 0.

�

COROLLARY 14. Let a ∈ Rn
+ and g : R+ → R+ be defined by

g(t) = (−1)k dk

dtk
Bn(ta)

t
.

Then g is strictly decreasing on R+, and satisfies the inequalities (3.3) and (3.4), for
every k ∈ N and n � 2.

Proof. All the assertions follow from Theorem 10 for x =tu and Corollary 8, since

g(t) = (a|u)
∫

D2
n

|y|2ta−u (2a| − log |y|)k dy > 0.

�

COROLLARY 15. Let g : R+ → R+ be defined by

g(t) = (−1)k dk

dtk
Γ(t)n

Γ(nt)
.

Then g is strictly decreasing on R+, and satisfies the inequalities (3.3) and (3.4), for
every k ∈ N and n � 2.

Proof. Put a = u in Corollary 13. �

COROLLARY 16. Let g : R+ → R+ be defined by

g(t) = (−1)k dk

dtk
Γ(t)n

tΓ(nt)
.

Then g is strictly decreasing on R+, and satisfies the inequalities (3.3) and (3.4), for
every k ∈ N and n � 2.

Proof. Put a = u in Corollary 14. �
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