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Abstract. It is shown that the class of real sequences defined by Z̆ . Tomovski recently is identical
with the Fomin’s class, furthermore one new class of sequences is defined and compared with
some known classes of sequences.

1. Introduction

The literature studying the cosine and sine series is very plentiful. E.g. we can
refer to the excellent monograph by R. P. Boas, Jr. [1] or the interesting paper by Č. V.
Stanojević [8] and the references given there.

The first results pertaining to the series
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∞∑
n=1

an cos nx (1.1)

and ∞∑
n=1

bn sin nx (1.2)

considered the case of monotone coefficients. Later the authors investigated the series
(1.1) and (1.2) with quasi-monotone coefficients (an+1 � an(1 + α/n) , n � n0 ,
α > 0 ).

Several papers deal with convex or quasi-convex null-sequences (Δ2an � 0 or∑
n|Δ2an| < ∞) , furthermore with null-sequences of bounded variation (

∑ |Δan| <
∞) .

S. A. Telyakovskiı̆ [10] introduced a very effective idea, defined a new class of
coefficients. He denoted this class by S; the letter S refers to an esteemed result of S.
Sidon [6].
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A null-sequence a := {an} belongs to the class S, or briefly a ∈ S , if there
exists a monotonically decreasing sequence A := {An} such that

∑∞
n=1 An < ∞ and

|Δan| � An hold for all n .
It is easy to verify that this class is a generalization of the class of quasi-convex

null-sequences (An :=
∑∞

k=n |Δ2ak|) .
Utilizing the notion of the class S, Telyakovskiı̆, among others, extended the

classical result of A. N. Kolmogorov [3] concerning the L1 -convergence of the series
(1.1) with quasi-convex null-sequences.

It is quite natural that several mathematicians have utilized this very applicable
notion and proved interesting results in connection with cosine and sine series. It is also
factual that some authors have extended the class S.

E.g. G. A. Fomin [2] gave the following definition.
A null-sequence a belongs to the class Fp, p > 1 , if

∞∑
n=1

(
n−1

∞∑
k=n

|Δak|p
)1/p

< ∞.

It can be also shown that
S ⊆ Fp ⊆ BV, (1.3)

where BV denotes the class of sequences having bounded variation.
Later N. Singh and K. M. Sharma [7] gave a further extension of the class S as

follows:
A null-sequencea belongs to the class S’ if there exists a quasi-monotone sequence

A such that
∑∞

n=1 An < ∞ and |Δan| � An for all n .
S. Zahid Ali Zenei [12], using the concept of the δ -quasi-monotone sequences,

introduced the class S(δ) .
A null-sequence a is said to be δ -quasi-monotone if an > 0 and Δan � −δn ,

where {δn} is a sequence of positive numbers.
The definition of the class S(δ) is the following: A null-sequence a belongs to

the class S(δ) if there exists a δ -quasi-monotone sequence A such that
∑∞

n=1 An <
∞, |Δan| � An for all n , furthermore

∑∞
n=1 n δn < ∞ .

In [9] Č. V. Stanojević and V. B. Stanojević defined a new class of sequences as
follows:

A null-sequence a belongs to the class Sp if there exists a positive monotonically
decreasing sequence A such that

∞∑
n=1

An < ∞ and
1
n

n∑
k=1

|Δak|p
Ap

k

= O(1). (1.4)

In [11] Ž Tomovski defined a further class of sequences in the following manner.
A null-sequence a belongs to the class Sp(δ) if there exists a δ -quasi-monotone

sequence A satisfying the assumptions (1.4) and
∑∞

n=1 nδn < ∞.
It is clear that

S ⊆ S′ ⊆ S(δ) ⊆ Sp(δ).
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Very recently we ([4]) also defined a class S∗p of sequences. Our class S∗p contains
the null-sequences a having the property

∞∑
m=1

2m(1− 1
p )

⎧⎨
⎩

2m+1∑
n=2m+1

|Δan|p
⎫⎬
⎭

1/p

< ∞

for a fixed p > 1 .
The real concrete aim of these extensions was always the generalization of some

theorems, proved on sine and cosine series, to a wider class. These plans have been
successful in general.

Inmy view the kernel of these succesful enterprises has been based on the following
facts proved very rencently.

In [4] we verified that if p > 1 then

Fp ⊆ Sp ⊆ S∗p ⊆ Fp (1.5)

holds and in [5] we showed that

S ⊆ S′ ⊆ S(δ) ⊆ S(A) ⊆ S (1.6)

is also valid.
The class S(A) has not been mentioned so far, because it appeared only in the

proof of S(δ) ⊂ S given in [5]. Namely analyzing the proof in question it looked like
that the class S(A) is a wider class than S(δ) , but finally it has turned out that the
classes S(A) and S(δ) are the same.

However, in my view, the class S(A) is worth for recealling its definition and
explaining that it is also identical with the class S .

A null-sequence a belongs to the class S(A) if there exists a null-sequence A such
that

|Δan| � An (1.7)

and ∞∑
n=1

n|ΔAn| < ∞. (1.8)

As we have already mentioned, see (1.3),

S ⊆ Fp (1.9)

holds, but an example given in [4] shows that this embedding is strict, that is, there exists
a null-sequence a such that

a ∈ Fp but a �∈ S. (1.10)

Collecting the partial results of (1.5), (1.6), (1.9) and (1.10) we get the following
embedding relations:

S ≡ S′ ≡ S(δ) ≡ S(A)⊂
�=

Fp ≡ Sp ≡ S∗p (1.11)
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The goal of the present note is to clear up the relation of the class Sp(δ) to the
others, furthermore we define the analogue of the class S(A) for p > 1 , to be denoted
by Sp(A) , and compare it with the classes appearing in (1.11) and also with Sp(δ).

A null-sequence a belongs to the class Sp(A) if there exists a null-sequence A such
that (1.8) and

1
n

n∑
k=1

|Δak|p
Ap

k

= O(1) (1.12)

hold.
We shall show that if p > 1 then

Sp ⊆ Sp(δ) ⊆ Sp(A) ⊆ S∗p (1.13)

2. Result

The embedding relations (1.5) and (1.13) will lead to the following result.

THEOREM. If p > 1 then the following identity

Fp ≡ Sp ≡ S∗p ≡ Sp(δ) ≡ Sp(A) (2.1)

holds.

By (1.11) and (2.1) we have the following

COROLLARY. If p > 1 then the following embedding relations

S ≡ S′ ≡ S(δ) ≡ S(A)⊂
�=

Fp ≡ Sp ≡ S∗p ≡ Sp(δ) ≡ Sp(A)

are valid.

3. Lemma

The following result can be found in [7].

LEMMA. Let {cn} be a δ -quasi-monotone sequence with

∞∑
n=1

n δn < ∞.

If
∞∑

n=1

cn

converges, then
∞∑
n=1

(n + 1)|Δcn| < ∞.
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4. Proof

The embedding relation Sp ⊆ Sp(δ) evidently follows from the definitions. It is
enough to choose δk := k−3 .

Next we show that if a ∈ Sp(δ) then a ∈ Sp(A) also holds.
Since a ∈ Sp(δ) there exists a δ -quasi-monotone sequence A with

∑∞
n=1 n δn <

∞. Applying the Lemma with An we get that the condition (1.8) holds.
On the other hand the estimation (1.12) is automatically satisfied by the assumption

a ∈ Sp(δ) , see the conditions (1.4).
Thus the embedding statement

Sp(δ) ⊆ Sp(A)

is verified.
Finally we prove the embedding relation

Sp(A) ⊆ S∗p .

Setting

Dm :=
2m+1∑
n=2m

|ΔAn|,

by (1.8) we obtain that
∞∑

m=0

2mDm < ∞. (4.1)

Since An → 0 thus

A2m =
∞∑

n=2m

ΔAn �
∞∑

n=m

Dn.

Utilizing the last inequality and (4.1) we get that

∞∑
m=1

2mA2m �
∞∑

m=1

2m
∞∑

n=m

Dn =
∞∑

n=1

Dn

n∑
m=1

2m � 2
∞∑
n=1

2nDn < ∞. (4.2)

Now we define one more sequence {Cm} as follows:

Cm := A2m + Dm for all m � 1.

If 2m < k � 2m+1 then

Ak = A2m −
k−1∑
n=2m

ΔAn � A2m +
k−1∑
n=2m

|ΔAn| � A2m + Dm = Cm.

Using this estimation we obviously have the following inequality

∞∑
m=1

2m(1− 1
p )

⎧⎨
⎩

2m+1∑
n=2m+1

|Δan|p
⎫⎬
⎭

1/p

�
∞∑

m=1

2mCm

⎧⎨
⎩2−m

2m+1∑
n=2m+1

|Δan|p
Ap

n

⎫⎬
⎭

1/p

. (4.3)
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Here the sum in the bracket is O(1) by (1.12), thus if we can show that

∞∑
m=1

2mCm < ∞, (4.4)

then (4.3) implies that a ∈ S∗p . But (4.4) clearly stays by (4.1) and (4.2).
Herewith the embedding relation

Sp(A) ⊆ S∗p

is also proved.
Summing up our partial results we obtain the assertion (2.1) of the Theorem.
The proof is complete.
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