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Abstract. New characterization of spectral order A � B is given as follows:

A � B if and only if A2p−r � (A
−r
2 BpA

−r
2 )

2p−r
p−r for all p > r � 0

and also its application is given.

1. Introduction

In what follows, a capital letter means a bounded linear operator on a complex
Hilbert space H . An operator T is said to be positive (denoted by: T � 0 ) if
(Tx, x) � 0 for all x ∈ H . Also an operator T is strictly positive (denoted by: T > 0 )
if T is positive and invertible. Olson [19] defined a new order A � B among the
selfadjoint operators as follows;

A � B holds if and only if Et � Ft holds for all t

where A =
∫

tdEt and B =
∫

tdFt , cf, also [4]. Moreover Olson [19] characterized the
spectral order for positive operators as follows. For positive operators A and B

A � B if and only if An � Bn for all natural numbers n .

Appling Löwner-Heinz inequality, we recall that for positive operators A and B

A � B if and only if Aq � Bq for all positive real numbers q . (∗ )

A useful characterization of the spectral order is given in [23].

On the other hand, we recall the following order preserving operator inequalities.
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Theorem FI (Furuta inequality).

If A � B � 0 , then for each r � 0 ,

(i) (B
r
2 ApB

r
2 )

1
q � (B

r
2 BpB

r
2 )

1
q

and

(ii) (A
r
2 ApA

r
2 )

1
q � (A

r
2 BpA

r
2 )

1
q

hold for p � 0 and q � 1 with (1 + r)q � p + r .

Figure 1

The original proof of TheoremFI is in [8], afterward in [2][17] and one page proof in
[9] and the domain drawn for p , q and r in the Figure is the best possible one for (i) and
(ii) of Theorem FI in [20]. The following Theorem GFI interpolates Furuta inequality
itself and a useful inequality equivalent to the main theorem of log majorization in [1].

THEOREM GFI. (Generalized Furuta inequality) If A � B > 0 , then for each
t ∈ [0, 1] and p � 1 ,

A1−t+r � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r (GFI)

holds for any r � t and s � 1 .

The original proof of Theorem GFI is in [10], afterward in [5][14] and one page
proof in [11]. The following result means the best possibility of the value of the power

1 − t + r
(p − t)s + r

in (GFI) shown in [22][24] and [6].

THEOREM BGFI. For p � 1 , t ∈ [0, 1] , r � t , s � 1 and α > 1 , there exist
A, B > 0 such that A � B > 0 and

A(1−t+r)α �� {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } (1−t+r)α

(p−t)s+r .

Very recently we posed the following question and gave a concrete negative answer
to this question in [13] associated with Theorem BGFI.

QUESTION. For A, B > 0 , logA � logB if and only if

Ar−t � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } r−t

(p−t)s+r (Q)

holds for all p � 1 , r � t , s � 1 and t ∈ [0, 1]?

Fujii and Nakamoto [7] have given the following exact answer in Theorem FN-1
to this question by using excellent idea and also they have shown Theorem FN-2 as an
application of Theorem FN-1.
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THEOREM FN-1. ([7]) For A, B > 0 , A � B if and only if

Ar−t � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } r−t

(p−t)s+r (Q)

holds for all p � 1 , r � t , s � 1 and t ∈ [0, 1] .

THEOREM FN-2. ([7]) For A, B > 0 , A � B if and only if

Ar−t � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } r−t

(p−t)s+r (Q)

holds for all p, r � t � 1 and s � 1 .

In this paper, firstly we show a new characterization of the spectral order:

A � B if and only if A2p−r � (A
−r
2 BpA

−r
2 )

2p−r
p−r for all p > r � 0 .

Secondly we show two extensions of Theorem FN-2 and Theorem FN-1 as an
application of this characterization of the spectral order.

2. Statement of results

THEOREM 1. Let A > 0 and B � 0 . Then A � B if and only if

A2p−r � (A
−r
2 BpA

−r
2 )

2p−r
p−r

holds for all p > r � 0 .

The following result is a simple corollary of Theorem 1.

COROLLARY 2. Let A > 0 and B � 0 . Then the following assertions are
equivalent;

(i) A � B.

(ii) Aq−t+r � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } q−t+r

(p−t)s+r

holds for all p � t � 0 , 2p � q � t , r � 0 and s such that (p− t)s � q− t .

The following result is an extension of TheoremFN-2 as an application of Theorem
1.

THEOREM 3. Let A > 0 and B � 0 . Then the following assertions are equivalent;
(i) A � B.
(ii) For each ε ∈ (0, 1]

A(r−t)ε � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } (r−t)ε

(p−t)s+r (Q- ε )

holds for all p, r � t � 0 and s � 1 .
(iii) For some α � 0 and each ε ∈ (0, 1]

A(r−t)ε � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } (r−t)ε

(p−t)s+r (Q- ε )

holds for all p, r � t � α and s � 1 .

The following result is an extension of Theorem FN-1.
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COROLLARY 4. Let A > 0 and B � 0 . Then the following assertions are
equivalent;

(i) A � B .
(ii) For each ε ∈ (0, 1]

A(r−t)ε � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } (r−t)ε

(p−t)s+r (Q- ε )

holds for all p � 1 , t ∈ [0, 1] , r � t and s � 1 .

3. Proofs of results

We cite a simple proof of Theorem 1 by using the following known Theorem B.

THEOREM B. ([3][18][15][16][21]) If A � B � 0 with A > 0 , then

A1−t � (A
−t
2 BpA

−t
2 )

1−t
p−t for 2p � 1 � p > t � 0.

Proof of Theorem 1. We have only to prove “only if” part since the reverse part
“if” is obvious. The hypothesis A � B is equivalent to Aq � Bq for all q > 0 by (*).
Put A1 = Aq and B1 = Bq . Applying Theorem B for A1 � B1 , then

Aq−qt � (A
−qt

2 BqpA
−qt

2 )
q−qt
qp−qt

for 2qp � q � qp > qt � 0 . Then replacing qp by p and qt by r , so we have

Aq−r � (A
−r
2 BpA

−r
2 )

q−r
p−r for 2p � q � p > r � 0. (1)

As we can choose q = 2p in (1), we obtain

A2p−r � (A
−r
2 BpA

−r
2 )

2p−r
p−r for p > r � 0,

so the proof of Theorem 1 is complete.

Proof of Corollary 2.

(i) =⇒ (ii). Put A1 = A2p−t and B1 = (A
−t
2 BpA

−t
2 )

2p−t
p−t . Then A1 � B1 � 0

holds for p > t � 0 by Theorem 1, so that Theorem FI ensures the following (2)

Aq1+r1
1 � (A

r1
2

1 Bp1
1 A

r1
2

1 )
q1+r1
p1+r1 (2)

holds for any p1 � q1 , q1 ∈ [0, 1] and r1 � 0 because (1 + r1) p1+r1

q1+r1
� p1 + r1 holds.

Put p1 = (p−t)s
2p−t , q1 = q−t

2p−t ∈ [0, 1] and r1 = r
2p−t � 0 in (2), and refining, we have

the following desired result

Aq−t+r � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } q−t+r

(p−t)s+r

holds for all p � t � 0 , 2p � q � t , r � 0 and s such that (p − t)s � q − t , so the
proof of (ii) is complete.

(ii) =⇒ (i). Put r = t = 0 in (ii). Then we have Aq � Bq for all q � 0 , that is,
(i) holds.

Proof of Theorem 3. We shall show a proof along an excellent idea of [7]. We need
the following result;



A � B IF AND ONLY IF A2p−r � (A
−r
2 BpA

−r
2 )

2p−r
p−r FOR ALL p > r � 0 623

THEOREM C. ([12, Theorem 2.1]) Let M � A � m > 0 and h = M
m . If

A � B � 0 , then hp−1Ap � Bp for all p � 1 .

(i) =⇒ (ii). Put q = p in (ii) of Corollary 2. Raise each side of (ii) of Corollary

2 to the power
(r − t)ε
p − t + r

∈ [0, 1] by Löwner-Heinz theorem, we have (ii).

(ii) =⇒ (iii). Obvious.
(iii) =⇒ (i). Let M � A � m > 0 and h = M

m . Applying Theorem C to (iii), we
have

hp1−1
1 A(r−t)εp1 � {Ar

2 (A
−t
2 BpA

−t
2 )sA

r
2 } (r−t)εp1

(p−t)s+r

holds for all p, r � t � α , s � 1 and also h1 = h(r−t)ε . Put p1 =
(p − t)s + r

(r − t)ε
� 1

for r > t , then we have

hp1−1
1 A(r−t)εp1 � A

r
2 (A

−t
2 BpA

−t
2 )sA

r
2

and refining

h(p−t)s+r(1−ε)+tεA(p−t)s � (A
−t
2 BpA

−t
2 )s (3)

for all p � t � α and s � 1 . Raise each side of (3) to the power 1
s ∈ [0, 1] by

Löwner-Heinz theorem and then s → ∞ , we obtain

hp−tAp � Bp for all p � t � α, (4)

so that we have Ap � Bp for all p � α by putting t = p in (4) and finally we obtain
Ap � Bp for all p � 0 by Löwner-Heinz theorem, that is, (i) holds.

Proof of Corollary 4. (i) =⇒ (ii). Raise each side of (GFI) of Theorem GFI to

the power
(r − t)ε
1 − t + r

∈ [0, 1] by Löwner-Heinz theorem. Then we have (ii).

(ii) =⇒ (i). Proof is essentially contained in the proof of Theorem 3. In fact, by
the same way as the proof of (iii) =⇒ (i) in Theorem 3 via s → ∞ ,

hp−tAp � Bp for all p � 1 � t � 0 (5)

so that we obtain A � B because we can put p = t = 1 in (5).
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