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WEIGHTED [” — L7 INEQUALITIES FOR
OSCILLATORY INTEGRAL OPERATORS

LESLIE C. CHENG

(communicated by J. Marshall Ash)

1. Introduction

Let A = {(x,x) : x € R}. Suppose that K € C>®(R*\A) satisfying
K
axj—ayl(xa y)

for j,l > 0 and (x,y) € R*\A.
For a,b > 0, define the non-convolutional oscillatory integral operator 7, :

(Tusf ) () = / MV K (e, y)f (3)dy @)

R

\ < Aylx— y| 0 W

initially for f € .#(R), the space of Schwartz functions on R.

Such operators often arise in harmonic analysis (see e.g. [7-12]). It should be
noted that when ¢ = b = | and K = 1 the operator in (2) is essentially the Fourier
transform.

The main problem under investigation concerns the boundedness properties of
the operators {7,,}. It has been observed that for a,b > 0 the L’(R) — L”(R)
boundedness cannot hold in general unless p = % (see below). On the other hand,
it has been established in [5-7] and [1] that T, is indeed bounded from L% (R) to
L%b(R) whenever a,b > 1.

In this paper we examine what happens when the restriction a,b > 1 is lifted. The
fact that T,; may fail to be bounded from L (R) to L (R) can be seen easily by
taking @« = b = 1/2 and K = 1. In this case “aib =2, but Ty, is not a bounded
operator from L*(R) to L*(R) (see Section 9). On the other hand, it will be shown
that a more comprehensive theory exists if one considers the broader class of weighted
L7 spaces with power weights, which we shall now describe.

Let 0,7y € R. Recall that the space L”(R,|x|°) represents the collection of
Lebesgue measurable functions f satisfying

If llp,xjo = </R V(x)l”x"dx)l/p < .
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By a simple argument one obtains that in general T,; cannot be a bounded operator
from L7 (R, |x|") to L(R,|x|°) unless

b op ag (3)

(see Section 9). Clearly in the special case 0 =y = 0 and p = ¢, condition (3) is
reduced to p = atb  However, as pointed out earlier, condition (3) does not always
imply the L(R,|x|") — L(R, |x|°) boundedness of T,; (e.g. a = b = 1/2 and
o =y = 0). The following theorem (Theorem 2.1), which is the main result of this
paper, shows when the the L”(R, |x|") — L(R, |x|°) boundedness of T,; holds under
condition (3).

2. Main result and some of its implications

THEOREM 2.1. Let a,b > 0. Let K and T, be given as in (1) and (2). Let

o,y € R and p,q € (1,00) such that p < qand——l;—pyf 1:;—0 If -1l<o<

a—1andy > (p—1)(1 —b), then there exists A = A(a, b, 0,Y,p,q) > 0 such that

I Taef g, xio < Allf llp, 57 (4)
forall f € IP(R, |x]").

REMARKS.

(1) When p = g, condition (3) and the above theorem are reduced to p =
(1+7v)+2(1+ o) and T,, mapping L”(R, |x|") to L”(R, |x|”) boundedly
when —1 <o <a-—1 andy>w.

(2) If in addition to p = ¢, we let 0 =y (therefore p = (1+ 0)(1 + 2)), then
it follows that Tab is bounded from I?(R, |x|?) to L[”(R,|x|°) whenever
a+b>2 and ﬁb 1 <o<a-—1.

Furthermore, if o is taken to be 0, then the L#(R) — LM(

recovered for a,b > 1.
(3) Finally, it should be pointed out that if @ = b (e.g. a = b = } as mentioned
earlier) and y = —o € (1 —a, 1), then T,, is a bounded operator from the
Hilbert space L*(R, |x|") to its dual space L*(R, |x|~7).!
A few words about the organization of the paper are in order. We shall first establish
(4) in the case p = g (Proposition 3.1). This will be accomplished in Sections 3-7.
The full statement of Theorem 2.1 will then be obtained by applying Stein’s theorem on
interpolation of analytic family of operators. See Section 8. The final section contains
a few additional remarks including the derivation of condition (3).

R) boundedness is

I'The author is indebted to Chris Lennard for a helpful discussion.
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3. Dyadic decomposition and almost orthogonality

PROPOSITION 3.1. Let a,b > 0. Let K and T, be given as in (1) and (2).
Let 0, v € R such that —1 < 0 < a-—1 andy>w. Then for p =
(L+7y)+2(14+0) Tup isabounded operator from L (R, |x|") to L (R, |x|).

An initial step in our proof of Proposition 3.1 involves a dyadic decomposition of
the operator T,;. To implement this idea, we shall begin by selecting a real-valued
function y € C§°(R) such that supp(y) C (1/2,4) and

oo

> w@ein=1

j=—00
for all x > 0. For each k € N define y; by

() = w2 ).
We also define y, by

= Z w(27%x).

k=—oc0
Let
F:{(jO)' j 3}U{(Ok)' < k< 3},
= > wwb
(j.k)er
and

0= )
j=4

For given a, b, and K, we shall define the operators {Tj : j,k > 1}, R;, R», and R3
by

(T )0 = wi) [ R Dl (5)

R0 = [ KD HE Oy (6)
R0 =) [ KO Oy ™)
(R0 = 1) [ K )l () 8)

Therefore one obtains the following for x > 0:

> (0

1

e

/O‘X’ K, y)f (0)dy = (Rif () + (Rof )(x) + (Raf ) (x) +

j=1

k=
We shall begin with the estimates for the operators Ty when |j — k| < 3. We have the
following:
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PROPOSITION 3.2. Let j,k € N and |j — k| < 3. Then there exists a constant
A > 0 independent of j and k such that

_axby;
1T Il < A2V 7 || (10)

forall f € [*(R).

The main tool we shall use to prove Proposition 3.2 is the Cotlar-Stein lemma on
almost orthogonality ([2][4]).

LEMMA 3.3. (Cotlar-Stein) Let {S,, : m € Z} be a collection of bounded operators
on L*(R). Let {o({) : £ € Z} be a sequence of nonnegative real numbers such that

A= Z Vo) < oo,
tez
155:5nll < @(m —n),

and
[SmSyll < w(m —n)

forall m,n € Z. If alinear operator S on L*(R) can be written as

SF = Suf,

meZ
then S is a bounded operator on L*(R) and satisfies ||S|| < A.
Proposition 3.2 will be obtained as a special case of the following.

PROPOSITION 3.4. Let K satisfy (1). For A > 1, 8§ >0, and B € [§,8] define
the operator S = S s by

. a.b
() = wle) [ K8 8w )y (1)
Then there exists A > 0 independent of A, 8, and B such that

_1
18 1l2 < AA7Z|f (|2 (12)
forall f € L*(R).
Proof of Proposition 3.4. First we select a real-valued function ¢ € C5°(R) such

that supp(¢) C (—1,1) and
d ot—m) =1 (13)

meZ
forall + € R. For m € Z we define S,, by

Suf (1) = y(x) / T KB S0 (x—y) — mu (B D)y, (14)

0
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By (11), (13), and (14) we see that

SfF = Suf.
meZ
Let ,
S a 1
Qu(x,y) = € K(8x, )9 (A% (x = y) — m)w (x)w (By).
Then by (1) and Schur’s lemma we obtain

1

1Sl < (Aooll@[l1)A ™2

forall m € Z.. For m,n € Z we have

SESf (1) = / L6, 9)f ()dly

where
Ln(1:3) = Hooy0) | Bule 130t
BBy [ R S5z 89) 1
X 9(A2(z—x) =m)9(A*(z —y) = n)[w () dz.
Let

gmn(x, Yy, Z) = I(((SZ7 CSX)K((SZ, (Sy) X
X O(A (e —x) =m)9(A2(z—y) —n)w().
By employing integration by parts we get

—w(Bx)w(By) /°° eixz“(yb—x%g[g'"”(xv%z)
0

L (X, =
(%) ira(y? — xb) 0z %!

|dz

v (Bx)w(By)

= - Az (yP—xP) —4a 1—4a agmn
iAa(y’ ,xb)]z;/o e [coz " gmn(x,y,2) + c12 5e (x,v,2)

2 3
3741118

05
where cp, ¢y, 2, c3, and ¢4 are constants that depend on a only.

4
2—4a 8 4—4a 8

+ez 02 = (x,,2) + €32 = (x,5,2) + ez

wEn T (x,y,2)ldz

&9

(15)

Assume that |n|,|m| > 2 and |n — m| > 4. Then whenever g,,(x,y,z) # 0 we

have %<z<4 and
AT(z—x)—m| <1
and
1
A2(z—y)—n| <L
Thus 1 1
z=x[>A72(|m| —1) > 477,
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2=yl > A7 (n| 1) > A2,
and
=y > A7 ln—m| 2] >

Therefore by (1) we have

‘Z] 4a gmn(x v,z )‘ <AA,J/2

for 0 < j < 4. By the preceding inequalities we obtain

ALy (Bx)w(By)|

|Linn (x, )| <
" h (A |yb - xb‘)4 \zf(xﬂnl*%)|</17%

Since supp(y) C (3,4) and § < B < 8, we have

1
— 32
16<x,y<

whenever Ly, (x,y) # 0. Thus
Y =] = colx —y|
with ¢o = b2*1=?)_ By (18) we see that
Lyn(x,y) =0
when |x —y| < L[n —m|A =7, and

C
|Lyn (x,¥)] < No50 g
Azlx —yl

for all x,y € R. Thus

x€R
It follows from Schur’s lemma that

C

oSl K ———=
1S0S2ll S F T =l

whenever |m|,|n| > 2 and |m —n| >4
For |m — n| < 4 by (16) we have

1S58ull < ISul1Sull < (Aoollpll1)*A "

Therefore,
C

SiSull € ——————=
I35 < ST =y

_ 2Alv(Bow (By)l

Ay =

sup/ | Lo (3, y \dy—&—sup/ |Lyn (x,y)|dx < CA ™ |n —m| 3.

(19)
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whenever |m|, |n| > 2. Similarly,

C

SmS>k \ 1 . o N\3

for all |m|,

n| > 2
Letw():

1+V\ . Then by Lemma 3.3

~ 1
| Z Smll < <\7 Z ——— = AL (21)
m|>2 er (1+ W )2

By (15), (16), and (21)
_1
ISIF< ISoll + IS—ill + ISl + 11 D Sull <A277,
Im|>2
which completes the proof of Proposition 3.4.
Now we shall prove Proposition 3.2.

Proof of Proposition 3.2. Assume that |j — k| < 3 and f € L*(R). By definition
(Taf)@) = D) [ H O R 2w (.

Since |j—k| < 3, wehave 27~ € [%, 8]. By applying Proposition 3.4 with A = 2/(a+?)
§ =2 ,and B = 2%, we obtain

(/ | Taf ( 2fx)2dx> < A2 (/ If (27y) 2dy> ,

which implies that
_athy;
ITf 112 < A28V £ |2
forall f € L?(R). Proposition 3.2 is proved.

4. The method of T*T

We shall now turn our attention to the operators Tj with |j — k| > 4. The method

*

that we use is to consider T7; Tj , which reduces matters to related oscillatory integrals.

PROPOSITION 4.1. Let j,k € N with |j —k| > 4. Suppose that K satisfies (1). Let
Tj be given as in (5). Then there exists a constant A > 0 independent of j and k such

that
| Tje|| < A2[(0=ali+(=00K/2, /5 g (22)

Proof of Proposition4.1. First let us assume that j > k44 . By definition we have

x) = /R Wik y)f (3)dy (23)
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where
b b)

Win0) = wa () [ e
0

When yie(x) yie(y)[w;(2)]* # 0 we have

K(zx)K(z,y)[y(2)] dz.

2l cxy< 29?2 and YTl << 22
By j > k+ 4 we have

9
0z

[K(ZJ)K(zy)]‘ Cllz—x|""' + |z —y|7'] < 4C277.

Thus by integration by parts

WEIVON [ o) (KGR Gy e

j+2
_ Awwo)| [*
al? =y Joi

< 2 Wy )y ) [ =7

oo

Wik, y)| =

(z7* + 27771 7%)dz

We also have

2]+2

W) < )] [ RGoK @) llw@ o) d:
< C2 |y (x)yi (y)]-
Let
1 _ ‘/ij(x7y) ifx>y=>0
Wi(x,y) = { 0 otherwise
and
> _ Wik(x,y) ify>x2>0
Wi(x,y) = { 0 otherwise.

Thus we have
Wi(x,y) = Wi (x,y) + Wi (x,y).
Then by (24) and (25)

sup/ \ij X,y |dx—sup/ |Wﬁ< u, 25v) [2%du

(Pr2mabE ‘
2 sup v ()] 2y () a4+ 2P0

v>0

x /( R (b — ) |y (u)

1
vo42—aj— bk)b
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4b g:|

—aj—bk T

<cfwmw>[u + a7yl ) et [
2
< ==K (1 1 gj 4+ pk) < C2[I=U+U=DM(; 4y,

We also have

sup/ |W k x,y)|dy = sup/ \lek(2ku,2kv)\2kdv

x€ER

<2 sup v ()] [/h 2—ai—bk b Zlw(v)ldv + 2

u>0
<[ (=) |y () dv
vbLub —2—a—bk
< Cz[(lfa)ﬁr(l*b)k](j + k).
Similar estimates can be obtained for szk (x,y); therefore, by (26) we have
sup/ Wi (x, y)|dy < C2I0 V(=PRI 4 ) (27)
and
sup/ | Wi (x, y)|dx < C21U=a+ =0 4 1y, (28)
It then follows from (23), (27), (28), and Schur’s lemma that

[(I—a)j+(1—b)k]
ITull = | TETll? < A2° 7 itk

when j > k+ 4.
If k >j+4 for x,y € supp(y) and z € supp(y;), we have

0

1 1 )
— K@Ky <C| — + —— | <27 < 2.
eI < (g + )

Therefore all the arguments used to treat the case j > k + 4 can be applied here to

obtain
(1—ajt0—bk — ,-
ITull A2 7 itk

when k > j + 4. This finishes the proof of Proposition 4.1.

5. Interpolation and weighted estimates

We shall now use the inequalities obtained in the previous sections and the method
oo oo

of interpolation to establish the desired estimates for Z Z T .
J=1 k=1
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PROPOSITION 5.1. Let a,b > 0. Let -1 < o <a-—1, y > w, and

p=(1+7y)+ 3(1 + 0). Let Ty be given as in (5). If p < 2, then there exists
A =A(a,b,0,y) > 0 such that

1D Tt llpste < AlIf llp e (29)
j=1 k=1
foral f € S (R).
Proof of Proposition 5.1. By assumption we have

(1+0)

1+0)(1—5b b

1 =1
P (1+o0) +

> 1. (30)

Thus p € (1,2]. We have
ITf 1 < C2|If |- (31)

Letpo=qo=1,pr=q1=2,1t= @ € (0,1]. Then by Proposition 3.2 and
Riesz’s convexity theorem, we obtain that

ITf Nl < €202 0= 52 r |, (32)
when |j — k| < 3. Thus

Y Gl ¢ X 2F( [ imrwpa)

[i—kI<3 [i—kI<3
1
sC Z 27 2(1-0igi1-41) (/lf Xjok— 12k+z()pd)’>
|j—k|<3
a+h)(p
(ZW sl
Since
- b)(p—1
oy, _latbp-1
p p
we obtain that
[ Z Tif llp.jaioe < Allf llp.y- (33)
li—k|<3

Similarly, by (22), (31), and interpolation we have

t(1— a)]+l b)k]

IT3f I, < C20-M2 5= G k2 ), (34)
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when |j — k| > 4. Hence
io
> Tiflloae <€ D2 27 ITif
li—k|=4 li—k| =4
. 2k+1 5
)‘ l—a)j+(1—
<c 3 2Fatopte ”o+k>f/2( v<y>|de)
li—k|>4 2
L A
Z 2J P p 2 (]+k) Hf”pIXIV
li—k| >4
Since
-1 o+1 1+0)(1-b
qot=_ okl _al, (rolioh],,
p p p
1-b)p—1 b 1+0)(1-b
B /= EL B
p p p a
and .
p—1 €1j+e€
(+KT <,
we obtain that
_ai, gk
IY Taflhise < (S 2% 2% )W lpsar <AV - 39)
[i—k| >4 k=1
y (33) and (35) we see that
|| ZZTjkap,\x\U <AHf”p,lXPﬂ
=1 k=1
which proves Proposition 5.1.
6. The estimates for R, ,R,, and R;
PROPOSITION 6.1. Let a,b > 0. Let 6 > —1, ¥y > — ““’) ,p=(0+y)+
5(1+4 o), and R, be given as in (6). Then there exists A > 0 Such that
1R (|0 < AL llp, 7 (36)

forall f € S (R).

Proof of Proposition 6.1. By . -+ 1= ugﬂf) >0,

|R1f(x)\ C10.32) O [l 7 -
By o > —1, one obtains (36).
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_ (+o)b

PROPOSITION 6.2. Let a,b > 0. Let -1 < o <a—1, 7y > , and

= (147)+ 2(1+ 0). Define Sy by

oo a b
(Suf J0) = Zor0) [ )y
Jor f € Z(R). Then there exists A = A(a,b,0,y) > 0 such that

Hsahﬂlp,\x\a <AHf”p,IXIV
foral f € S (R).
Proof of Proposition 6.2. For f € /(R) let

8(0) = 00 (Wt ' uh).

Then
Sa.hf (.X) = A(xa)X[O ) ()C)
By 0 < 1— 2t <1 and Pitt’s Inequality ([3]),

1 (1+0’

1 oo
ISaf e = 5 | EPIEI

<C/ 2P |ul' =0 2du < C|f |
0

plx[7
where we used the fact that
l1+o b

This proves Proposition 6.2.

PROPOSITION 6.3. Let a,b > 0. Let -1 <o <a—-1, 7 > —(”a—")b,

(14+7)+ (14 0), and R, be given as in (7). Then there exists A > 0 such that
RS Nlp.jsio < Al llpjarr (37)
forall f € S (R).
Proof of Proposition 6.3. First we observe that
supp(yo) < (0,4)  and  supp(h) C (8, 00).

Let m = [b(HU)] Then for x € supp(yp) and y € supp(k) thereexistsa t = #(x,y) €
(0,x) such that

m

1 aerlK
(m+ 1) o

1 8K
Kxy) =) 7570, y)xt+ (£, y)x"+ (38)
=0
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By (1) for £=0,1,...,m we have

'K C
——(0,y)| < =<C 39
ot ’y)‘ Iyl (39)

and
am+1K

C
— (¢ < ———— < Cly|~mHY, 40
axm+1 ( >y)‘ ‘ y|m+1 |y| ( )

For £ =0,1,...,m, define R\ by
A .x[ o0 a b aZK
Rr @) =) [ e T 000 0ay
17 ) Ox
Then by o > —1 and (38)

m p
e —(m
IRof =S ROFIL o < C Wy~ dy| |x|%dx
(=0

L) ) p—1
C</8 v(y)l’ymy) (/8 y—[<m+1>p+y]/<p—1>dy> <clflt,. @)

where we also used

(m+ Py 201 +0')+Y

=1
-1 -1
By Proposition 6.2 and (39) we have
¢
1R S lxi < CIF (42)

for £ =0,1,...,m. Therefore by (41) and (42) we obtain

||R2f||p,IXI" < CHpr,\x\V
forall f € .(R), which proves Proposition 6.3.

PROPOSITION 6.4. Let a,b > 0. Let -1 < o <a—-1, v > JHH—UV’,

(L+7v)+2(14 0), and Rs be given as in (8). Then there exists A > 0 such that

IR (|, 110 < Allf [, (43)
forall f € S (R).

Proof of Proposition 6.4. Let n = [1;—" . For x € supp(h) C (8,00) and

]
y € supp(yp) C (0,4) there exists T = t(x,y) € (0,y) such that

" 10K : 1 ol
= - 0 ¢ n+1. 44
X, ) ;E! ! (x,0)y" + (1)1 Gyt (x, T)y (44)
By (1) we have the following for £ =0,1,...,n
'K C
3—372()(’ 0)‘ < Pl <C (45)
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and ni
1 K C n
W(%T)‘ <W\C\ x| 70D, (46)
For £ =0,1,...,n, define Rge) by
4 1 841{ >~ lX
RO () = 3y e OhG) [ e wif )y (@7)

y (8), (44), (46), and (47) and —(n+ 1)p + 0 < —1, we have

. l
IR = > REF e < CUF . japr- (48)

=0

By Proposition 6.2 and (45) we get

1

IS ROF e < YO GIPbdy) < Clf g (49)
;3 I Z(/ Yoy y y) I

Therefore by (48) and (49) we obtain that

||R3f||p,IXI" < CHpr,\x\y
forall f € #(R), which proves Proposition 6.4.

7. The [’(R,|x]") — [’(R, |x|°) boundedness

We are finally ready to present the proof of Proposition 3.1.

ProofofProposmon31 Let a,b >0. Let -1 <o<a—1, }/>w,

and p=(1+7)+2(140). Let K and T, be givenas in (1) and (2). First we shall
establish the L*(R, |x|") — L (R, |x|°) boundedness when p < 2.
Assume that p < 2. For j = 1,2, 3,4 define T; by

Tif () = X000y () / Y K (x,)f (3)dy.

Taf (5) = Zooe) (3) / T K (x, —y)f (—y)dy,

T (5) = Zooe) () / TR~ y)f (),
and -
Taf (3) = H(ooe) () / &Y K(—x, —y)f (—y)dy.

Then we have

Tunf (x) = Tof (x) + Tof (x) + Taf (=x) + Tuf (—x). (50)
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Since K(x,y) satisfies (1) sodoes K(—x, —y). When x,y > 0 wehave |x+y| > [x—y]|;
therefore, K(—x,y) and K(x,—y) also satisfy (1) in (0,00) x (0,00). By (9), (50),
and Propositions 5.1, 6.1, 6.3, and 6.4, we obtain

HTa,hf”p,IXI" < AHpr,\x\V

forall f € Z(R).
We now turn to the remaining case: p > 2. Let ¢ = p%l <2.Leta;=b>0,
by=a>0, 0, =—qy/p,and y; = —qo/p. Then we have

IR ([ CORTR

and
qy b(l+o0)
op+l=1-—=——-2=>0.
p alp-1)
On the other hand,
b 1 1-b
(51—(611—1):— Y—(+G)( ) < 0.
p—1 a

In addition,

(14+0)(1—=b1) [(a—1)—o0]
" — lal U= ap—1) > 0.

Thus we have —1 < 01 <a; — 1 and y; > %&14") Let

Rusf (9= [ K217 (). 51)
R
Since K(y,x) satisfies (1) and ¢ < 2, we obtain that

||Ra.,thq,\x\°1 <AHf”q,IXIVI- (52)

Let T, = {g € .#(R): |g|l, = 1}. Foragiven g we let g(y) = [y|°””g(y). Then for
fe7R)

/EM@WW%w@Mww
R g€ely

/fumwamw
R

| Tasf llpxjc = sup
g€y

1/q
o _ 490
sMVbeﬂm</ﬂﬂHAWWWIPdO = Al
g€ly R

This finishes the proof of Proposition 3.1.



100 LESLIE C. CHENG

8. Analytic interpolation and proof of main result

Finally we are ready to present the proof of our main result Theorem 2.1. This
can be achieved by combining Proposition 3.1 with Stein’s theorem on interpolation of
analytic families of operators. First let us recall Stein’s result.

Let ug,u; € R sothat up < u; . Let

D={seC | uy<Re(s) <u}.

Let k(-,-,-) be a functionon R x R x D, and for each s € D define k;: Rx R — C
by
ks (x,y) = k(x,,5).
Suppose that there are L, A > 0 such that
(i) supp(ks) C [-L,L}* forall s € D;
(i) |k(x,y,s)| <A forall (x,y,s) € Rx RxD;
(iii) foreach (x,y) € R x R the function
s — k(x,y,s)

is continuous in D and analyticin D.
For each s € D, define the operator U* by

(U) () = / k(e y)f (0)dy. (53)

LEMMA 8.1 ([12]). Let 1 < pj,q; < oo and {U’} be given as above. Suppose
that there are My, M; > 0 such that

1T Nlgy < MilF I, (54)
whenever Re(s) = u; for j =0,1. Then for every t € [0, 1]

=g < A 39
where
11—t 1 S ek S
L t—- ad = o
pe po P @ g a

Proof of Theorem 2.1. Since the case p = q is covered by Proposition 3.1, we
may assume that 1 < p < g < o©o. Let N € N be fixed, Iy = [%,N}, and
D={se€ C:0<Re(s) <1}. Foreach s € D define ks(x y) by

50/(g+1— ‘—SY/[P(Hé—,%)}.

ilxl@ b
ks(x,y) = €MV K (e, v) sy (1) 20 (19]) ] Dy

Let po=1,go=00, p1=q1 =q+1—¢q/p,and {U*} be defined as in (53).
When Re(s) =0, we have s = i@ for some 0 € R and

(UF) ()] = ‘/ MV K (x, )0 (00 () X

i00/(q+1— q ‘

x |x] [OOSR (yay| < AllfIL. (56)
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When Re(s) =1, we write s = 1 + i0 for some 0 € R. Then

|UF ()] = sy () 137/ [T (Fo) ()] (57)

where
Fo(y) = sy (Iy])y| O erog ().
Let 0y = 0 and y; = gy /p. Then we have

(I+o)(l—-b) ¢

_ 2 T lyv—(p=1)1=b 0
" , bp[y (p—1)( )] >0,
and , !
14+0
1+Y1+—(1+51)—P1=ﬂ+g—61+gZO-
a )4 a )4
(1+61)(1—b)

Thus wehave —1 < oy <a-—1, 7 > " ,andp1:1+y1+§(1+0'1).By
Proposition 3.1 the operator T, is bounded from L' (R, |x|"") to L’'(R, |x|°"). Thus
by (57) we have

1/P1
10l < ( [ |x|°ldx)

1/p
<a( [ o brar)  <alr, (58)
R
whenever Re(s) = 1.
Let t:1+$—}7€ (0,1). Then
1 1—t ¢t 1 1 1—t ¢ 1
— =4 — == and — =+ — =
p: 1 pi P 9@ °°  q q
By Lemma 8.1 we obtain
1T llg < Allf [l

i.e.

1

4 q
d) <Alfl, (59

(/ﬁglxlgzv

forall f € L”(R) where A is independentof N € N. For f € L”(R, |x|") by applying
(59) to f (y)|y["/? 1 (v) we obtain that

(/%QXQN

By Lebesgue’s Dominated Convergence Theorem we have

INTZIINT ) _
/ VP K (e I )1y 7 Pdy
v <|yI<N

q 1/q
x"dx) < AHmex‘y. (60)

b
/ DK (x, y)f (v)dy
LN

lim MY K (6, y)f (v)dy = Tusf (x)

N=oo JLLyI<N
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for f € L'(R). Therefore by (60), (61), and Fatou’s lemma we obtain

(/R|Ta,bf(x)qx6dx>é SAIf oy (61)

whenever f € LP(R,|x|") N L'(R). Since L”(R,|x|") N L'(R) is a dense subspace
of I?(R, |x]"), T,» extends to be a bounded operator from L”(R, |x|") to L?(R, |x|?),
which proves this theorem.

9. Concluding remarks

We shall end the paper by providing explanations for two remarks made in Section
1. By letting K(x,y) = 1, we have

(Tusf ) () = / HVE (3)dy.

R

+7)

(i) For & > 0 let (Dgf)(x) = £(8x). Then [Daf [lpr = 8 7 [If -

Suppose that T,; is a bounded operator from L”(R,|x|") to L(R, |x|?).
1+y

Thenby 8% (Dsl “’bDaif)(x) = (Typf )(x), one obtains st ) >1
forall 6 > 0, which implies that

R A

b bp aq
(ii) Let f(y) = 2%/5 Zn9(y) € L*(R). Then by a simple calculation one obtains

that
by sin(x )
Ti . f (x) = (2e21|x|2)71 ¢ I*(R).
o
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