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1. Introduction

Let Δ = {(x, x) : x ∈ R} . Suppose that K ∈ C∞(R2\Δ) satisfying∣∣∣∣ ∂ j+lK
∂xj∂yl

(x, y)
∣∣∣∣ � Aj,l|x − y|−(j+l) (1)

for j, l � 0 and (x, y) ∈ R2\Δ .
For a, b > 0 , define the non-convolutional oscillatory integral operator Ta,b :

(Ta,bf )(x) =
∫

R
ei|x|a|y|bK(x, y)f (y)dy (2)

initially for f ∈ S (R) , the space of Schwartz functions on R .
Such operators often arise in harmonic analysis (see e.g. [7–12]). It should be

noted that when a = b = 1 and K ≡ 1 the operator in (2) is essentially the Fourier
transform.

The main problem under investigation concerns the boundedness properties of
the operators {Ta,b} . It has been observed that for a, b > 0 the Lp(R) → Lp(R)
boundedness cannot hold in general unless p = a+b

a (see below). On the other hand,

it has been established in [5–7] and [1] that Ta,b is indeed bounded from L
a+b
a (R) to

L
a+b
a (R) whenever a, b � 1 .

In this paper we examine what happens when the restriction a, b � 1 is lifted. The
fact that Ta,b may fail to be bounded from L

a+b
a (R) to L

a+b
a (R) can be seen easily by

taking a = b = 1/2 and K ≡ 1 . In this case a+b
a = 2 , but T1/2,1/2 is not a bounded

operator from L2(R) to L2(R) (see Section 9). On the other hand, it will be shown
that a more comprehensive theory exists if one considers the broader class of weighted
Lp spaces with power weights, which we shall now describe.

Let σ, γ ∈ R . Recall that the space Lp(R, |x|σ) represents the collection of
Lebesgue measurable functions f satisfying

‖f ‖p,|x|σ =
(∫

R
|f (x)|p|x|σdx

)1/p

< ∞.
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By a simple argument one obtains that in general Ta,b cannot be a bounded operator
from Lp(R, |x|γ ) to Lq(R, |x|σ) unless

1
b
− 1 + γ

bp
− 1 + σ

aq
= 0 (3)

(see Section 9). Clearly in the special case σ = γ = 0 and p = q , condition (3) is
reduced to p = a+b

a . However, as pointed out earlier, condition (3) does not always
imply the Lp(R, |x|γ ) → Lq(R, |x|σ) boundedness of Ta,b (e.g. a = b = 1/2 and
σ = γ = 0 ). The following theorem (Theorem 2.1), which is the main result of this
paper, shows when the the Lp(R, |x|γ ) → Lq(R, |x|σ) boundedness of Ta,b holds under
condition (3).

2. Main result and some of its implications

THEOREM 2.1. Let a, b > 0 . Let K and Ta,b be given as in (1) and (2). Let
σ, γ ∈ R and p, q ∈ (1,∞) such that p � q and 1

b − 1+γ
bp − 1+σ

aq = 0 . If −1 < σ <

a − 1 and γ > (p − 1)(1 − b) , then there exists A = A(a, b,σ, γ , p, q) > 0 such that

‖Ta,bf ‖q,|x|σ � A‖f ‖p,|x|γ (4)

for all f ∈ Lp(R, |x|γ ) .

REMARKS.
(1) When p = q , condition (3) and the above theorem are reduced to p =

(1 + γ ) + b
a (1 + σ) and Ta,b mapping Lp(R, |x|γ ) to Lp(R, |x|σ) boundedly

when −1 < σ < a − 1 and γ > (1−b)(1+σ)
a .

(2) If in addition to p = q , we let σ = γ (therefore p = (1 + σ)(1 + b
a ) ), then

it follows that Ta,b is bounded from Lp(R, |x|σ) to Lp(R, |x|σ) whenever
a + b > 2 and 1−b

a+b−1 < σ < a − 1 .

Furthermore, if σ is taken to be 0 , then the L
a+b
a (R) → L

a+b
a (R) boundedness is

recovered for a, b > 1 .
(3) Finally, it should be pointed out that if a = b (e.g. a = b = 1

2 as mentioned
earlier) and γ = −σ ∈ (1 − a, 1) , then Ta,a is a bounded operator from the
Hilbert space L2(R, |x|γ ) to its dual space L2(R, |x|−γ ) .1

A few words about the organizationof the paper are in order. We shall first establish
(4) in the case p = q (Proposition 3.1). This will be accomplished in Sections 3–7.
The full statement of Theorem 2.1 will then be obtained by applying Stein’s theorem on
interpolation of analytic family of operators. See Section 8. The final section contains
a few additional remarks including the derivation of condition (3).

1The author is indebted to Chris Lennard for a helpful discussion.
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3. Dyadic decomposition and almost orthogonality

PROPOSITION 3.1. Let a, b > 0 . Let K and Ta,b be given as in (1) and (2).

Let σ , γ ∈ R such that −1 < σ < a − 1 and γ > (1−b)(1+σ)
a . Then for p =

(1 + γ ) + b
a (1 + σ) Ta,b is a bounded operator from Lp(R, |x|γ ) to Lp(R, |x|σ) .

An initial step in our proof of Proposition 3.1 involves a dyadic decomposition of
the operator Ta,b . To implement this idea, we shall begin by selecting a real-valued
function ψ ∈ C∞

0 (R) such that supp(ψ) ⊆ (1/2, 4) and

∞∑
j=−∞

ψ(2−jx) ≡ 1

for all x > 0 . For each k ∈ N define ψk by

ψk(x) = ψ(2−kx).

We also define ψ0 by

ψ0(x) =
0∑

k=−∞
ψ(2−kx).

Let
Γ = {(j, 0) : 0 � j � 3} ∪ {(0, k) : 0 � k � 3},

H(x, y) =
∑

(j,k)∈Γ
ψj(x)ψk(y),

and

h(x) =
∞∑
j=4

ψj(x).

For given a, b, and K , we shall define the operators {Tjk : j, k � 1} , R1 , R2 , and R3

by

(Tjkf )(x) = ψj(x)
∫ ∞

0
eixayb

K(x, y)ψk(y)f (y)dy, (5)

(R1f )(x) =
∫ ∞

0
eixayb

K(x, y)H(x, y)f (y)dy, (6)

(R2f )(x) = ψ0(x)
∫ ∞

0
eixayb

K(x, y)h(y)f (y)dy, (7)

(R3f )(x) = h(x)
∫ ∞

0
eixayb

K(x, y)ψ0(y)f (y)dy. (8)

Therefore one obtains the following for x > 0 :
∫ ∞

0
eixayb

K(x, y)f (y)dy = (R1f )(x) + (R2f )(x) + (R3f )(x) +
∞∑
j=1

∞∑
k=1

(Tjkf )(x). (9)

We shall begin with the estimates for the operators Tjk when |j − k| � 3 . We have the
following:
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PROPOSITION 3.2. Let j, k ∈ N and |j − k| � 3 . Then there exists a constant
A > 0 independent of j and k such that

‖Tjkf ‖2 � A2(1− a+b
2 )j‖f ‖2 (10)

for all f ∈ L2(R) .

The main tool we shall use to prove Proposition 3.2 is the Cotlar-Stein lemma on
almost orthogonality ([2][4]).

LEMMA 3.3. (Cotlar-Stein)Let {Sm : m ∈ Z} be a collection of bounded operators
on L2(R) . Let {ω(�) : � ∈ Z} be a sequence of nonnegative real numbers such that

A =
∑
�∈Z

√
ω(�) < ∞,

‖S∗mSn‖ � ω(m − n),

and
‖SmS∗n‖ � ω(m − n)

for all m, n ∈ Z . If a linear operator S on L2(R) can be written as

Sf =
∑
m∈Z

Smf ,

then S is a bounded operator on L2(R) and satisfies ‖S‖ � A .

Proposition 3.2 will be obtained as a special case of the following.

PROPOSITION 3.4. Let K satisfy (1). For λ > 1 , δ > 0 , and β ∈ [ 1
8 , 8] define

the operator S = Sλ ,δ,β by

Sf (x) = ψ(x)
∫ ∞

0
eiλxayb

K(δx, δy)ψ(βy)f (y)dy. (11)

Then there exists A > 0 independent of λ , δ, and β such that

‖Sf ‖2 � Aλ− 1
2 ‖f ‖2 (12)

for all f ∈ L2(R) .

Proof of Proposition 3.4. First we select a real-valued function φ ∈ C∞
0 (R) such

that supp(φ) ⊆ (−1, 1) and ∑
m∈Z

φ(t − m) = 1 (13)

for all t ∈ R . For m ∈ Z we define Sm by

Smf (x) = ψ(x)
∫ ∞

0
eiλxayb

K(δx, δy)φ(λ
1
2 (x − y) − m)ψ(βy)f (y)dy. (14)
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By (11), (13), and (14) we see that

Sf =
∑
m∈Z

Smf . (15)

Let
Ωm(x, y) = eiλxayb

K(δx, δy)φ(λ
1
2 (x − y) − m)ψ(x)ψ(βy).

Then by (1) and Schur’s lemma we obtain

‖Sm‖ � (A0,0‖φ‖1)λ− 1
2 (16)

for all m ∈ Z . For m, n ∈ Z we have

S∗mSnf (x) =
∫

R
Lmn(x, y)f (y)dy (17)

where

Lmn(x, y) = χ[0,∞)(y)
∫ ∞

0
Ωm(z, x)Ωn(z, y)dz

= ψ(βx)ψ(βy)
∫ ∞

0
eiλ za(yb−xb)K(δz, δx)K(δz, δy)×

× φ(λ
1
2 (z − x) − m)φ(λ

1
2 (z − y) − n)[ψ(z)]2dz.

Let

gmn(x, y, z) = K(δz, δx)K(δz, δy)×
× φ(λ

1
2 (z − x) − m)φ(λ

1
2 (z − y) − n)[ψ(z)]2.

By employing integration by parts we get

Lmn(x, y) =
−ψ(βx)ψ(βy)
iλa(yb − xb)

∫ ∞

0
eiλ za(yb−xb) ∂

∂z
[
gmn(x, y, z)

za−1
]dz

=
ψ(βx)ψ(βy)

[iλa(yb − xb)]4

∫ ∞

0
eiλ za(yb−xb)[c0z

−4agmn(x, y, z) + c1z
1−4a ∂gmn

∂z
(x, y, z)

+c2z
2−4a ∂2gmn

∂z2
(x, y, z) + c3z

3−4a ∂3gmn

∂z3
(x, y, z) + c4z

4−4a ∂4gmn

∂z4
(x, y, z)]dz

where c0, c1, c2, c3, and c4 are constants that depend on a only.
Assume that |n|, |m| � 2 and |n − m| � 4 . Then whenever gmn(x, y, z) 	= 0 we

have 1
2 < z < 4 and

|λ 1
2 (z − x) − m| < 1

and
|λ 1

2 (z − y) − n| < 1.

Thus
|z − x| > λ− 1

2 (|m| − 1) � λ− 1
2 ,
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|z − y| > λ− 1
2 (|n| − 1) � λ− 1

2 ,

and

|x − y| > λ− 1
2 [|n − m| − 2] � |n − m|λ− 1

2

2
. (18)

Therefore by (1) we have

|zj−4a ∂ jgmn

∂zj
(x, y, z)| � Ajλ j/2

for 0 � j � 4 . By the preceding inequalities we obtain

|Lmn(x, y)| � Aλ 2|ψ(βx)ψ(βy)|
(λ |yb − xb|)4

∫
|z−(x+mλ−

1
2 )|<λ−

1
2

dz =
2A|ψ(βx)ψ(βy)|
λ 5

2 |yb − xb|4 .

Since supp(ψ) ⊆ ( 1
2 , 4) and 1

8 � β � 8 , we have

1
16

< x, y < 32

whenever Lmn(x, y) 	= 0 . Thus

|yb − xb| � c0|x − y|
with c0 = b24(1−b) . By (18) we see that

Lmn(x, y) = 0

when |x − y| � 1
2 |n − m|λ− 1

2 , and

|Lmn(x, y)| � C

λ 5
2 |x − y|4

for all x, y ∈ R . Thus

sup
x∈R

∫
R
|Lmn(x, y)|dy + sup

y∈R

∫
R
|Lmn(x, y)|dx � Cλ−1|n − m|−3.

It follows from Schur’s lemma that

‖S∗mSn‖ � C
λ (1 + |n − m|)3

whenever |m|, |n| � 2 and |m − n| � 4 .
For |m − n| < 4 by (16) we have

‖S∗mSn‖ � ‖S∗m‖‖Sn‖ � (A0,0‖φ‖1)2λ−1.

Therefore,

‖S∗mSn‖ � C
λ (1 + |n − m|)3 (19)
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whenever |m|, |n| � 2 . Similarly,

‖SmS∗n‖ � C
λ (1 + |n − m|)3

(20)

for all |m|, |n| � 2 .
Let ω(�) = C

λ (1+|�|)3 . Then by Lemma 3.3

‖
∑
|m|�2

Sm‖ �
√

C
λ

∑
�∈Z

1

(1 + |�|) 3
2

= Ãλ− 1
2 . (21)

By (15), (16), and (21)

‖S‖ � ‖S0‖ + ‖S−1‖ + ‖S1‖ + ‖
∑
|m|�2

Sm‖ � Aλ− 1
2 ,

which completes the proof of Proposition 3.4.
Now we shall prove Proposition 3.2.

Proof of Proposition 3.2. Assume that |j − k| � 3 and f ∈ L2(R) . By definition

(Tjkf )(2jx) = 2jψ(x)
∫ ∞

0
ei2j(a+b)xayb

K(2jx, 2jy)ψ(2j−ky)f (2jy)dy.

Since |j−k| � 3 , we have 2j−k ∈ [ 1
8 , 8] . By applyingProposition 3.4 with λ = 2j(a+b) ,

δ = 2j , and β = 2j−k , we obtain

(∫
R
|Tjkf (2jx)|2dx

) 1
2

� A2j2−j( a+b
2 )

(∫
R
|f (2jy)|2dy

) 1
2

,

which implies that

‖Tjkf ‖2 � A2(1− a+b
2 )j‖f ‖2

for all f ∈ L2(R) . Proposition 3.2 is proved.

4. The method of T∗T

We shall now turn our attention to the operators Tjk with |j− k| � 4 . The method
that we use is to consider T∗

jkTjk , which reduces matters to related oscillatory integrals.

PROPOSITION 4.1. Let j, k ∈ N with |j− k| � 4 . Suppose that K satisfies (1). Let
Tjk be given as in (5). Then there exists a constant A > 0 independent of j and k such
that

‖Tjk‖ � A2[(1−a)j+(1−b)k]/2
√

j + k. (22)

Proof of Proposition 4.1. First let us assume that j � k+4 . By definition we have

T∗
jkTjkf (x) =

∫
R

Wjk(x, y)f (y)dy (23)
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where

Wjk(x, y) = ψk(x)ψk(y)
∫ ∞

0
eiza(yb−xb)K(z, x)K(z, y)[ψj(z)]2dz.

When ψk(x)ψk(y)[ψj(z)]2 	= 0 we have

2k−1 < x, y < 2k+2 and 2j−1 < z < 2j+2.

By j � k + 4 we have
∣∣∣∣ ∂

∂z
[K(z, x)K(z, y)]

∣∣∣∣ � C[|z − x|−1 + |z − y|−1] � 4C2−j.

Thus by integration by parts

|Wjk(x, y)| =
|ψk(x)ψk(y)|
a|xb − yb|

∣∣∣∣
∫ ∞

0
eiza(yb−xb) d

dz
{z1−aK(z, x)K(z, y)[ψj(z)]2}dz

∣∣∣∣
� C|ψk(x)ψk(y)|

a|xb − yb|
∫ 2j+2

2j−1

(z−a + 2−jz1−a)dz

� C2(1−a)j|ψk(x)ψk(y)||xb − yb|−1. (24)

We also have

|Wjk(x, y)| � |ψk(x)ψk(y)|
∫ 2j+2

2j−1

|K(z, x)K(z, y)|[ψ(2−jz)]2dz

� C2j|ψk(x)ψk(y)|. (25)

Let

W1
jk(x, y) =

{
Wjk(x, y) if x � y � 0
0 otherwise

and

W2
jk(x, y) =

{
Wjk(x, y) if y > x � 0
0 otherwise.

Thus we have
Wjk(x, y) = W1

jk(x, y) + W2
jk(x, y). (26)

Then by (24) and (25)

sup
y∈R

∫
R
|W1

jk(x, y)|dx = sup
v∈R

∫
R
|W1

jk(2
ku, 2kv)|2kdu

� 2k sup
v>0

|ψ(v)|[
∫ (vb+2−aj−bk)

1
b

v
2j|ψ(u)|du + 2−bk+(1−a)j×

×
∫ ∞

(vb+2−aj−bk)
1
b

(ub − vb)−1|ψ(u)|du]
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� C2k sup
v>0

|ψ(v)|
[
2j[(vb + 2−aj−bk)

1
b − v] + 2−bk+(1−a)j

∫ 4b

2−aj−bk

dt
t

]

� C2[(1−a)j+(1−b)k](1 + aj + bk) � C2[(1−a)j+(1−b)k](j + k).

We also have

sup
x∈R

∫
R
|W1

jk(x, y)|dy = sup
u∈R

∫
R
|W1

jk(2
ku, 2kv)|2kdv

� 2k sup
u>0

|ψ(u)|
[∫

ub−2−aj−bk�vb�ub
2j|ψ(v)|dv + 2−bk+(1−a)j×

×
∫

vb�ub−2−aj−bk
(ub − vb)−1|ψ(v)|dv

]

� C2[(1−a)j+(1−b)k](j + k).

Similar estimates can be obtained for W2
jk(x, y) ; therefore, by (26) we have

sup
x∈R

∫
R
|Wjk(x, y)|dy � C2[(1−a)j+(1−b)k](j + k) (27)

and

sup
y∈R

∫
R
|Wjk(x, y)|dx � C2[(1−a)j+(1−b)k](j + k). (28)

It then follows from (23), (27), (28), and Schur’s lemma that

‖Tjk‖ = ‖T∗
jkTjk‖ 1

2 � A2
[(1−a)j+(1−b)k]

2

√
j + k

when j � k + 4 .
If k � j + 4 for x, y ∈ supp(ψk) and z ∈ supp(ψj) , we have

∣∣∣∣ ∂

∂z
[K(z, x)K(z, y)]

∣∣∣∣ � C

(
1

|z − x| +
1

|z − y|
)

� C2−k � C2−j.

Therefore all the arguments used to treat the case j � k + 4 can be applied here to
obtain

‖Tjk‖ � A2
[(1−a)j+(1−b)k]

2

√
j + k

when k � j + 4 . This finishes the proof of Proposition 4.1.

5. Interpolation and weighted estimates

We shall now use the inequalities obtained in the previous sections and the method

of interpolation to establish the desired estimates for
∞∑
j=1

∞∑
k=1

Tjk .
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PROPOSITION 5.1. Let a, b > 0 . Let −1 < σ < a − 1 , γ > (1+σ)(1−b)
a , and

p = (1 + γ ) + b
a (1 + σ) . Let Tjk be given as in (5). If p � 2 , then there exists

A = A(a, b,σ, γ ) > 0 such that

‖
∞∑
j=1

∞∑
k=1

Tjkf ‖p,|x|σ � A‖f ‖p,|x|γ (29)

for all f ∈ S (R) .

Proof of Proposition 5.1. By assumption we have

p > 1 +
(1 + σ)(1 − b)

a
+

b
a
(1 + σ) = 1 +

(1 + σ)
a

> 1. (30)

Thus p ∈ (1, 2] . We have

‖Tjkf ‖1 � C2j‖f ‖1. (31)

Let p0 = q0 = 1 , p1 = q1 = 2 , t = 2(p−1)
p ∈ (0, 1] . Then by Proposition 3.2 and

Riesz’s convexity theorem, we obtain that

‖Tjkf ‖p � C2(1−t)j2t(1− a+b
2 )j‖f ‖p (32)

when |j − k| � 3 . Thus

‖
∑

|j−k|�3

Tjkf ‖p,|x|σ � C
∑

|j−k|�3

2
jσ
p

(∫
R
|Tjkf (x)|pdx

) 1
p

� C
∑

|j−k|�3

2
jσ
p 2(1−t)j2t(1− a+b

2 )j
(∫

R
|f (y)χ[2k−1,2k+2 ](y)|pdy

) 1
p

� C

( ∞∑
j=1

2j[ σ−γ
p +1− (a+b)(p−1)

p ]
)
‖f ‖p,γ .

Since
σ − γ

p
+ 1 − (a + b)(p − 1)

p
< 0,

we obtain that

‖
∑

|j−k|�3

Tjkf ‖p,|x|σ � A‖f ‖p,γ . (33)

Similarly, by (22), (31), and interpolation we have

‖Tjkf ‖p � C2(1−t)j2
t[(1−a)j+(1−b)k]

2 (j + k)t/2‖f ‖p (34)
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when |j − k| � 4 . Hence

‖
∑

|j−k|�4

Tjkf ‖p,|x|σ � C
∑

|j−k|�4

2
jσ
p ‖Tjkf ‖p

� C
∑

|j−k|�4

2
jσ
p 2(1−t)j2

t[(1−a)j+(1−b)k]
2 (j + k)t/2

(∫ 2k+1

2k−1

|f (y)|pdy

) 1
p

� C

( ∑
|j−k|�4

2j[ σ+1
p − a(p−1)

p ]2k[− γ
p + (1−b)(p−1)

p ](j + k)
p−1

p

)
‖f ‖p,|x|γ .

Since

ε1 =
a(p − 1)

p
− σ + 1

p
=

a
p

[
γ − (1 + σ)(1 − b)

a

]
> 0,

ε2 =
γ
p
− (1 − b)(p − 1)

p
=

b
p

[
γ − (1 + σ)(1 − b)

a

]
> 0,

and
(j + k)

p−1
p � C2−

(ε1 j+ε2k)
2 ,

we obtain that

‖
∑

|j−k|�4

Tjkf ‖p,|x|σ � C

(∑
j,k�1

2−
ε1 j
2 2−

ε2k
2

)
‖f ‖p,|x|γ � A‖f ‖p,|x|γ . (35)

By (33) and (35) we see that

‖
∞∑
j=1

∞∑
k=1

Tjkf ‖p,|x|σ � A‖f ‖p,|x|γ ,

which proves Proposition 5.1.

6. The estimates for R1 ,R2 , and R3

PROPOSITION 6.1. Let a, b > 0 . Let σ > −1 , γ > − (1+σ)b
a , p = (1 + γ ) +

b
a (1 + σ) , and R1 be given as in (6). Then there exists A > 0 such that

‖R1f ‖p,|x|σ � A‖f ‖p,|x|γ (36)

for all f ∈ S (R) .

Proof of Proposition 6.1. By − γ
p−1 + 1 = b(1+σ)

a(p−1) > 0 ,

|R1f (x)| � Cχ[0,32)(x)‖f ‖p,|x|γ .

By σ > −1 , one obtains (36).
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PROPOSITION 6.2. Let a, b > 0 . Let −1 < σ � a − 1 , γ > − (1+σ)b
a , and

p = (1 + γ ) + b
a (1 + σ) . Define Sab by

(Sabf )(x) = χ[0,∞)(x)
∫ ∞

0
eixayb

f (y)dy

for f ∈ S (R) . Then there exists A = A(a, b,σ, γ ) > 0 such that

‖Sabf ‖p,|x|σ � A‖f ‖p,|x|γ

for all f ∈ S (R) .

Proof of Proposition 6.2. For f ∈ S (R) let

g(u) =
1
b
χ[0,∞)(u)u

1
b−1f (u

1
b ).

Then
Sa,bf (x) = ĝ(xa)χ[0,∞)(x).

By 0 � 1 − σ+1
a < 1 and Pitt’s Inequality ([3]),

‖Sabf ‖p
p,|x|σ =

1
a

∫ ∞

0
|ĝ(ξ)|p|ξ |−[1− (1+σ)

a ]dξ

� C
∫ ∞

0
|g(u)|p|u|1− (1+σ)

a +(p−2)du � C‖f ‖p
p,|x|γ ,

where we used the fact that

b

[
p − 1 − (1 + σ)

a

]
+ p(1 − b) + b − 1 = p − 1 − b

a
(1 + σ) = γ .

This proves Proposition 6.2.

PROPOSITION 6.3. Let a, b > 0 . Let −1 < σ � a − 1 , γ > − (1+σ)b
a , p =

(1 + γ ) + b
a (1 + σ) , and R2 be given as in (7). Then there exists A > 0 such that

‖R2f ‖p,|x|σ � A‖f ‖p,|x|γ (37)

for all f ∈ S (R) .

Proof of Proposition 6.3. First we observe that

supp(ψ0) ⊆ (0, 4) and supp(h) ⊆ (8,∞).

Let m = [ b(1+σ)
ap ] . Then for x ∈ supp(ψ0) and y ∈ supp(h) there exists a t = t(x, y) ∈

(0, x) such that

K(x, y) =
m∑

�=0

1
�!

∂�K
∂x�

(0, y)x� +
1

(m + 1)!
∂m+1K
∂m+1

(t, y)x�+1. (38)
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By (1) for � = 0, 1, ..., m we have∣∣∣∣∂
�K

∂x�
(0, y)

∣∣∣∣ � C
|y|� � C (39)

and ∣∣∣∣∂
m+1K

∂xm+1
(t, y)

∣∣∣∣ � C
|t − y|m+1

� C|y|−(m+1). (40)

For � = 0, 1, ..., m, define R(�)
2 by

R(�)
2 f (x) =

x�

�!
ψ0(x)

∫ ∞

0
eixayb ∂�K

∂x�
(0, y)h(y)f (y)dy.

Then by σ > −1 and (38)

‖R2f −
m∑

�=0

R(�)
2 f ‖p

p,|x|σ � C
∫ 4

0

∣∣∣∣
∫ ∞

8
|f (y)||y|−(m+1)dy

∣∣∣∣
p

|x|σdx

� C

(∫ ∞

8
|f (y)|pyγdy

)(∫ ∞

8
y−[(m+1)p+γ ]/(p−1)dy

)p−1

� C‖f ‖p
p,|x|γ , (41)

where we also used
(m + 1)p + γ

p − 1
>

b
a (1 + σ) + γ

p − 1
= 1.

By Proposition 6.2 and (39) we have

‖R(�)
2 f ‖p,|x|σ � C‖f ‖p,|x|γ (42)

for � = 0, 1, ..., m . Therefore by (41) and (42) we obtain

‖R2f ‖p,|x|σ � C‖f ‖p,|x|γ

for all f ∈ S (R) , which proves Proposition 6.3.

PROPOSITION 6.4. Let a, b > 0 . Let −1 < σ � a − 1 , γ > − (1+σ)b
a , p =

(1 + γ ) + b
a (1 + σ) , and R3 be given as in (8). Then there exists A > 0 such that

‖R3f ‖p,|x|σ � A‖f ‖p,|x|γ (43)

for all f ∈ S (R) .

Proof of Proposition 6.4. Let n = [ 1+σ
p ] . For x ∈ supp(h) ⊆ (8,∞) and

y ∈ supp(ψ0) ⊆ (0, 4) there exists τ = τ(x, y) ∈ (0, y) such that

K(x, y) =
n∑

�=0

1
�!

∂�K
∂y�

(x, 0)y� +
1

(n + 1)!
∂n+1K
∂yn+1

(x, τ)yn+1. (44)

By (1) we have the following for � = 0, 1, ..., n :∣∣∣∣∂
�K

∂y�
(x, 0)

∣∣∣∣ � C
|x|� � C (45)
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and ∣∣∣∣∂
n+1K

∂yn+1
(x, τ)

∣∣∣∣ � C
|x − τ|n+1

� C|x|−(n+1). (46)

For � = 0, 1, . . . , n , define R(�)
3 by

R(�)
3 f (x) =

1
�!

∂�K
∂y�

(x, 0)h(x)
∫ ∞

0
eixayb

y�ψ0(y)f (y)dy. (47)

By (8), (44), (46), and (47) and −(n + 1)p + σ < −1 , we have

‖R3f −
n∑

�=0

R(�)
3 f ‖p,|x|σ � C‖f ‖p,|x|γ . (48)

By Proposition 6.2 and (45) we get

‖
n∑

�=0

R(�)
3 f ‖p,|x|σ � C

n∑
�=0

(∫ ∞

0
|y�ψ0(y)f (y)|p|y|γ dy

) 1
p

� C‖f ‖p,|x|γ . (49)

Therefore by (48) and (49) we obtain that

‖R3f ‖p,|x|σ � C‖f ‖p,|x|γ

for all f ∈ S (R) , which proves Proposition 6.4.

7. The Lp(R, |x|γ ) → Lp(R, |x|σ) boundedness

We are finally ready to present the proof of Proposition 3.1.

Proof of Proposition 3.1. Let a, b > 0 . Let −1 < σ < a − 1 , γ > (1+σ)(1−b)
a ,

and p = (1 + γ ) + b
a (1 +σ) . Let K and Ta,b be given as in (1) and (2). First we shall

establish the Lp(R, |x|γ ) → Lp(R, |x|σ) boundedness when p � 2 .
Assume that p � 2 . For j = 1, 2, 3, 4 define Tj by

T1f (x) = χ(0,∞)(x)
∫ ∞

0
eixayb

K(x, y)f (y)dy,

T2f (x) = χ(0,∞)(x)
∫ ∞

0
eixayb

K(x,−y)f (−y)dy,

T3f (x) = χ(0,∞)(x)
∫ ∞

0
eixayb

K(−x, y)f (y)dy,

and

T4f (x) = χ(0,∞)(x)
∫ ∞

0
eixayb

K(−x,−y)f (−y)dy.

Then we have

Ta,bf (x) = T1f (x) + T2f (x) + T3f (−x) + T4f (−x). (50)
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Since K(x, y) satisfies (1) so does K(−x,−y) . When x, y > 0 we have |x+y| > |x−y| ;
therefore, K(−x, y) and K(x,−y) also satisfy (1) in (0,∞) × (0,∞) . By (9), (50),
and Propositions 5.1, 6.1, 6.3, and 6.4, we obtain

‖Ta,bf ‖p,|x|σ � A‖f ‖p,|x|γ

for all f ∈ S (R) .
We now turn to the remaining case: p > 2 . Let q = p

p−1 < 2 . Let a1 = b > 0 ,
b1 = a > 0 , σ1 = −qγ /p , and γ1 = −qσ/p . Then we have

(1 + γ1) +
b1

a1
(1 + σ1) = q

[(
1 − 1

p

)(
1 +

a
b

)
− 1

p

(
σ +

aγ
b

)]
= q

and

σ1 + 1 = 1 − qγ
p

=
b(1 + σ)
a(p − 1)

> 0.

On the other hand,

σ1 − (a1 − 1) = − b
p − 1

[
γ − (1 + σ)(1 − b)

a

]
< 0.

In addition,

γ1 − (1 + σ1)(1 − b1)
a1

=
[(a − 1) − σ]

a(p − 1)
> 0.

Thus we have −1 < σ1 < a1 − 1 and γ1 > (1+σ1)(1−b1)
a1

. Let

Ra,bf (x) =
∫

R
ei|x|b|y|aK(y, x)f (y)dy. (51)

Since K(y, x) satisfies (1) and q < 2 , we obtain that

‖Ra,bf ‖q,|x|σ1 � A‖f ‖q,|x|γ1 . (52)

Let Γq = {g ∈ S (R) : ‖g‖q = 1} . For a given g we let g̃(y) = |y|σ/pg(y) . Then for
f ∈ S (R)

‖Ta,bf ‖p,|x|σ = sup
g∈Γq

∣∣∣∣
∫

R
Ta,bf (y)|y|σ/pg(y)dy

∣∣∣∣ = sup
g∈Γq

∣∣∣∣
∫

R
f (x)Ra,bg̃(x)dx

∣∣∣∣
� A‖f ‖p,|x|γ sup

g∈Γq

(∫
R
[|y| σp |g(y)|]q|y|− qσ

p dy

)1/q

= A‖f ‖p,|x|γ .

This finishes the proof of Proposition 3.1.
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8. Analytic interpolation and proof of main result

Finally we are ready to present the proof of our main result Theorem 2.1. This
can be achieved by combining Proposition 3.1 with Stein’s theorem on interpolation of
analytic families of operators. First let us recall Stein’s result.

Let u0, u1 ∈ R so that u0 < u1 . Let

D = {s ∈ C | u0 < Re(s) < u1}.
Let k(·, ·, ·) be a function on R × R × D , and for each s ∈ D define ks : R × R → C
by

ks(x, y) = k(x, y, s).

Suppose that there are L, A > 0 such that
(i) supp(ks) ⊆ [−L, L]2 for all s ∈ D ;
(ii) |k(x, y, s)| � A for all (x, y, s) ∈ R × R × D ;
(iii) for each (x, y) ∈ R × R the function

s → k(x, y, s)

is continuous in D and analytic in D .
For each s ∈ D , define the operator Us by

(Usf )(x) =
∫

R
ks(x, y)f (y)dy. (53)

LEMMA 8.1 ([12]). Let 1 � pj, qj � ∞ and {Us} be given as above. Suppose
that there are M0, M1 > 0 such that

‖Usf ‖qj � Mj‖f ‖pj (54)

whenever Re(s) = uj for j = 0, 1 . Then for every t ∈ [0, 1]

‖Uu0(1−t)+u1tf ‖qt � M1−t
0 Mt

1‖f ‖pt (55)

where
1
pt

=
1 − t
p0

+
t
p1

and
1
qt

=
1 − t
q0

+
t
q1

.

Proof of Theorem 2.1. Since the case p = q is covered by Proposition 3.1, we
may assume that 1 < p < q < ∞ . Let N ∈ N be fixed, IN = [ 1

N , N] , and
D = {s ∈ C : 0 < Re(s) < 1} . For each s ∈ D define ks(x, y) by

ks(x, y) = ei|x|a|y|bK(x, y)χIN (|x|)χIN (|y|)|x|sσ/(q+1− q
p )|y|−sγ /[p(1+ 1

q− 1
p )].

Let p0 = 1 , q0 = ∞ , p1 = q1 = q + 1 − q/p , and {Us} be defined as in (53).
When Re(s) = 0 , we have s = iθ for some θ ∈ R and

|(Usf )(x)| =
∣∣∣∣
∫

R
ei|x|a|y|bK(x, y)χIN (x)χIN (y)×

× |x|iθσ/(q+1− q
p )|y|−iθγ /[p(1+ 1

q− 1
p )]f (y)dy

∣∣∣∣ � A‖f ‖1. (56)
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When Re(s) = 1 , we write s = 1 + iθ for some θ ∈ R . Then

|Usf (x)| = χIN (|x|)|x|σ/q1 |Ta,b(f θ )(x)| (57)

where
f θ(y) = χIN (|y|)|y|−(1+iθ)γ q/(pp1)f (y).

Let σ1 = σ and γ1 = qγ /p . Then we have

γ1 − (1 + σ1)(1 − b)
a

=
q
bp

[γ − (p − 1)(1 − b)] > 0,

and

1 + γ1 +
b
a
(1 + σ1) − p1 =

qγ
p

+
b(1 + σ)

a
− q +

q
p

= 0.

Thus we have −1 < σ1 < a − 1 , γ1 > (1+σ1)(1−b)
a , and p1 = 1 + γ1 + b

a (1 + σ1) . By
Proposition 3.1 the operator Ta,b is bounded from Lp1(R, |x|γ1) to Lp1(R, |x|σ1) . Thus
by (57) we have

‖Usf ‖q1 �
(∫

R
|(Ta,bf θ)(x)|p1 |x|σ1dx

)1/p1

� A

(∫
R
|f θ(y)|p1 |y|γ1dy

)1/p1

� A‖f ‖p1 (58)

whenever Re(s) = 1 .
Let t = 1 + 1

q − 1
p ∈ (0, 1) . Then

1
pt

=
1 − t

1
+

t
p1

=
1
p

and
1
qt

=
1 − t
∞ +

t
q1

=
1
q
.

By Lemma 8.1 we obtain
‖Utf ‖q � A‖f ‖p,

i.e.
(∫

1
N �|x|�N

∣∣∣∣
∫

1
N �|y|�N

ei|x|a|y|bK(x, y)|f (y)||y|−γ /pdy

∣∣∣∣
q

|x|σdx

) 1
q

� A‖f ‖p (59)

for all f ∈ Lp(R) where A is independent of N ∈ N . For f ∈ Lp(R, |x|γ ) by applying
(59) to f (y)|y|γ /pχIN (y) we obtain that

(∫
1
N �|x|�N

∣∣∣∣
∫

1
N �|y|�N

ei|x|a|y|bK(x, y)f (y)dy

∣∣∣∣
q

|x|σdx

)1/q

� A‖f ‖p,|x|γ . (60)

By Lebesgue’s Dominated Convergence Theorem we have

lim
N→∞

∫
1
N �|y|�N

ei|x|a|y|bK(x, y)f (y)dy = Ta,bf (x)
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for f ∈ L1(R) . Therefore by (60), (61), and Fatou’s lemma we obtain

(∫
R
|Ta,bf (x)|q|x|σdx

) 1
q

� A‖f ‖p,|x|γ (61)

whenever f ∈ Lp(R, |x|γ ) ∩ L1(R) . Since Lp(R, |x|γ ) ∩ L1(R) is a dense subspace
of Lp(R, |x|γ ) , Ta,b extends to be a bounded operator from Lp(R, |x|γ ) to Lq(R, |x|σ) ,
which proves this theorem.

9. Concluding remarks

We shall end the paper by providing explanations for two remarks made in Section
1. By letting K(x, y) ≡ 1 , we have

(Ta,bf )(x) =
∫

R
ei|x|a|y|bf (y)dy.

(i) For δ > 0 let (Dδ f )(x) = f (δx) . Then ‖Dδ f ‖p,|x|γ = δ− (1+γ )
p ‖f ‖p,|x|γ .

Suppose that Ta,b is a bounded operator from Lp(R, |x|γ ) to Lq(R, |x|σ) .

Then by δ
1
b (D

δ
1
a
Ta,bD

δ
1
b
f )(x) = (Ta,bf )(x) , one obtains δ

1
b−( 1+σ

aq + 1+γ
bp ) � 1

for all δ > 0 , which implies that

1
b
− 1 + γ

bp
− 1 + σ

aq
= 0.

(ii) Let f (y) = 1
2
√

yχ[1,9](y) ∈ L2(R) . Then by a simple calculation one obtains
that

T 1
2 , 1

2
f (x) =

(
2e2i|x| 1

2
)sin(|x| 1

2 )
|x| 1

2

	∈ L2(R).
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