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A SHARP NORM INEQUALITY FOR
NON-ISOTROPIC DISTANCE FUNCTIONS ON R”

FARUK F. ABI-KHUZAM AND BASSAM SHAYYA

Abstract. We obtain best possible upper and lower bounds for spherical means of distance
functions associated with non-isotropic dilation groups on R .

1. Introduction

Consider the function p : R” — R defined by

) ) 1/p)
(X1, X2, ., X,) = (xfp/ gl +~-~+xﬁp/”")

where, a;,as, ...,a, are positive real numbers, p = aja;...a,,and n > 2.

If r >0, o« >a +a +--+a,, S is the unit sphere in R", o,_; is
the Lebesgue surface area measure, and I(r; p, o) is the function of the positive real
variable r defined by the equation

ip.0) = [ plro) o o), (1)

then our purpose here is to obtain sharp upper and lower bounds for I(r; p, o) .

The interest in these norms arises in connection with the study of mapping proper-
ties of certain singular integral operators [1], where knowledge of the precise order of
growth of the integral in (1), as a function of r, is indispensible.

‘We shall show that, if

a;

bi: , i:1,2,...7n,
a
and
. / d&dEs ... dE,
Rn—1 (1 + 522[)/(12 I gr%p/an)a/(zp)
then
2K o) < 2K
(max,- bi) ra/lll*b27"'*bn+ﬂ*1 = (r’p7 OC) = (mini bi) roc/alsz*---fanrnfl ’

the left-hand inequality holding for & > a; + a> + - - - + @, and the right -hand one for
oa=a +a+---+a.
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2. A more general inequality

For a point @ € §"~! write @ = (w;, ®,, ..., ®,) and retain all notation intro-
duced earlier. The inequalities stated above are special cases of the following two more
general inequalities:

THEOREM 1. If ry, 1, ..., 1, are positive real numbers and
I=1(ri,r,...,10;0,0) = / p(rio, nw,, ..., 10,)”*do, (o),
Snfl

then

2"K 2"K
SIS o/ay—by—---—b, ’
e "Fo ... T

(max; b;) rix/’“ b2 KPS (min; b;) r
the left-hand inequality holding for o > a) + ax + - - - + a, and the right-hand one for
a=a+a+ -+ a,. Furthermore, these inequalities are sharp in the case when
oa=a +a+---+a,.

First of all it suffices to estimate the integral over the set
StT=8""n{(x1,x2,...,%):x>0,i=1,2,...,n},

since, by symmetry, the integral over $"~! is 2" times the integral over S*. The proof
of the Theorem will employ a certain change of variables, and it will be necessary to
obtain sharp bounds for the Jacobian determinant of the transformation. The calculations
will be easier to follow in case n = 2 and we present this first.

If n =2 and (cos ¢y, sin ¢;) is the usual parametrization of S', we introduce a
new variable A; defined by

3 sin ¢ :(r1008¢1)b211, 0< ¢ < E

2
We have L da

1 V4
——— =cot byt 0 =
Ald‘bl co ¢1+ 2 an¢17 <¢1< 7’

so that A, is a positive, strictly increasing function of ¢; . Then

7'[/2 d¢l
1 p,00) = 4 ;
(rl7r2 p ) /O [(”1 cos ¢1)2a2 + (r2 sin ¢1)2a1]a/(2a1a2)

= 4/Oo (d¢y/dAr)dA
o (ricos¢y)/a(1 4 A2 )/ Caa)”

The simple inequalities
min(1, by)A < dA < max(1, by)A
sing,cosd,  do;  sin@ cos
imply that
maxfl(l,bg) < d¢1/dll < min’l(l,bz)

X X .
(cos ¢y )@/ar—ba=1 014702 = (ry cos §) 4 (cos gy )a/a—ba=1 2N,
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If a > ay +a;,then 0 < (cos¢y)*/~~1 <1 for 0 < ¢; < /2, and the left-hand
inequality implies that
max (1, by) < dey/dA
rix/ul_bzrz = (ricos gy )/

If a = a; + ax, the right-hand inequality gives

dey/dM o min~!(1,6,)  min~'(1,b,)

(ri cos )/ = by rir

Returning to the original integral we conclude that
max_l(l,bg) i dA;
4 o/ar—b. 2a; 2
A A SR

4min_1(1,b2) /°° dM
o (

T Jy (LT A

< I(r1,r;p, 0)

the left-hand inequality holding for o > a;+a, and the right-hand one for o = a;+a; .
If n >3 welet ¢1,¢,...,¢,—; be the usual spherical coordinates and write

W = cos¢
Wy, = Ccos @ sin @

Wy—1 = COS@Py_1Sin¢,_5...sin @, sin ¢;
W, = sin¢,_;sin@,_,...sin @ sin@;.
Next we introduce positive variables Ay, A;, ..., A,—; defined by
Fip1;
L JH1W)j+1 P _
Aj_i(rlwl)bf“’ j=1,2,...,n—1, (2)

with

0<¢k<g, k=1.2,....n—1.

LEMMA 2. The transformation defined by the equations in (2) is injective and its
Jacobian determinant J,_| satisfies the inequalities

min(bl,bz,...7bn))t1/12...ﬂtn_1 <J < max(bl,bz,...,b,,)/llkz.../ln_l
n—1 . X Jn—-1 X n—1 .
Hk:f sin @ cos ¢y Hk:f sin @ cos ¢y

D s on 1)
(1,02, 0p—1)

where J,_1 =

Proof. We first show that the mapping
(01,02, u—1) ¥ (A1, A2, Ant)
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is injectiveon 0 < ¢y, ¢2,. .., P,—1 < /2. Suppose

< 12X r3s3 rpy, > . < rza)é r3 (Dé rna),g )
) PAE - ) A )
(riy)> " (rian)™ (rioy)e (riof)>" (naop)™ (riop)*
/. .
where ®; is defined as @; but with ¢; replaced by 6;. Then

(“’—{)bkﬂ’g k=2,3,....n

(] oy’
This gives
b . .
cos 0\ F  cosOsinB_;...sin 0 £ =72 1
cos ¢y COS @ Sin @g_1 ...sin Py’ L ’
and

cos 6, bn __sin 6,_18in0,_,...sin O;

cos ¢y  sin@,_;sing,_n...sin@;
If 8, # ¢, assume, without loss of generality, that 0 < 0; < ¢; < 7m/2. Then
cos B > cos ¢, sin O; < sin ¢; , and

b .
cos0;\7?  cos6,sin 6 < cos 6,
cosd /)  cosppsing,  cos¢y’

sothat 0 < 6, < ¢» < m/2 . Having
0<6 <¢<m/2 forj=1,2,...,k—1,

we deduce that

< cos 6, b"icoseksiHGk,l...sinQI cos 6y
cos ¢y _cos¢ksin¢k_1...sinq>1 cos Or
Thus 0 < 6, < ¢ < /2 and so we have
0<6<¢<m/2 forj=1,2,....,n—1.

It follows from (3) that

(cos 91>b" _ sinf,_;sin6,_5...sin 6 -

cos ¢ " sin Qp_18IN@P,y_»...sin ¢

and we have a contradiction. Therefore 6, = ¢;, and then w; = ] from which
follows that @y = wy for k = 2,3,...,n. These last equalities imply that 6, = ¢ for
k=1,2,...,n— 1. Hence the defined mapping is injective.

The next step is to obtain upper and lower bounds for the Jacobian determinant of
the transformation.
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Since

Loa
A1 O

1 OA
A1 0y
1 oA
A1 Ok

cot ¢; + b, tan ¢y,

— tan ¢,

=0 (k=3),

and, for j > 2,

1 oA,
% 001
% O

2 091

1 oA,
% O

coty + by tan ¢y,

cotpy (2<k<y),

_tan¢j+1>
=0 (+l<k<n-1),

we may display J,—1/(MA2...A,—1) as follows

cot ¢; + b; tan ¢
cot @y + bz tan ¢

cot P + b,_1 tan ¢;
cot ¢; + b, tan ¢,

—tan¢, O
cot ¢,

cot ¢,
cot ¢

— tan ¢n—2
cot ¢n—2
cot ‘Pan

0
—tan ¢n—1
cot ‘Pnfl

We also denote by L,_, the determinant of the minor corresponding to — tan ¢,_; in
Joo1/(MAz2. .. Ap—1). Thus L,_, is the (n — 2) x (n — 2) determinant

cot +bytan¢gy —tan¢p O 0
cot @ + bz tan ¢ cot ¢
— tan ¢n73 0
cot¢; + b,_rtan¢; cot¢h cot,_3 —tan@,_»
cot ¢; + b, tan ¢, cot ¢ cot@,_3 cot,_»
We now show that
Il’lil‘l(bl7 bz, . 7bn) Allz . An—l < Jn_l < max(bl, bz, ey bn) Alkz .. .An_l

-1 .
1=, sin ¢k cos ¢

forn > 3.
If n =3, we have

r, sin @y cos ¢, = (ry cos q>1)b2/11,

-1 .
[TZ; sin ¢k cos ¢

73 sin @ sin ¢ = (7| cos ¢1)b3)L2,




366 FARUK F. ABI-KHUZAM AND BASSAM SHAYYA

and

5 = (A1, A2)
(1, ¢2)
— cot, + bytan ¢, — tan ¢y ‘
cotd; +bstan¢; cot,
= MAzcot@r(cot ¢y + by tan @) + A1 A, tan @ (cot ¢ + b tan ¢y)
< AiAzcot gy (M> + AAy tan ¢ <M)

sin ¢ cos ¢ sin ¢y cos ¢

< A max(by, by, b3)
= M2 Sin gy cos ¢y sin gp cos i )

A lower bound is obtained in a similar fashion. Also

L — cot ¢y + bytan ¢ — tan ¢, ‘
cotg; +bstan ¢y cot¢,
so that
min(by, by, bs) o max(by, by, by)
sin @ cos ¢ sin ¢ cos ¢ > Sin @1 cos ¢y sin ¢, cos ¢
Suppose now that J,_, (n > 4 ) satisfies the inequalities in Lemma?2 forall by, b, ..., b, .

Explicitly, suppose that J,,_, satisfies
min(bl,bz,...7bn_1) < ]n—2 < max(bl,bg,...,bn_l)
HZ;IZ sin ¢ cos ¢ S My Ay HZ;IZ sin ¢ cos ¢ .

Then L,_,, as defined above, satisfies

min(by, by, ..., b,_1,b,) max(by, by, ..., by_1,by,)
n—2 . SLia< n—2 .
[T;—; sin ¢ cos ¢x [T;=; sin ¢ cos ¢
where the ~ above a term indicates that the term should be omitted. If now we use the
expansion of J,_1/(AMAz ... A,—1) along its last column, that is
]n—l ]n—2
MAzr.. A MAr.. . Ay_a

= (COt q)n*l) + (tan ‘Pnfl)Lana

we obtain
Jo_1 max(by, by, ..., by_1)
My hpy TTi=} sin ¢ cos x
n max(by, by, ..., by_1,b,)
[Ti=7 sin ¢k cos ¢
max(by, by, ..., by)
[Ti=) sin ¢ cos ¢

This finishes the proof of the right-hand inequality in Lemma 2. The left-hand
inequality follows in a similar fashion. [

(cot ¢—1)

(tan ¢,—1)
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To continue the proof of the Theorem, we first express the integral over S in
spherical coordinates and then apply the change of variables defined in (2).

sm” 2y sin" 3 ¢, .. .sin (1),1,2) (75{;&%"1;)
1= dAi ... dA,_.
2p/a;\ &/ (2P)
(r1 cos ¢ )/ (1+ZJ 2 A ’)

It remains to apply the inequalities in Lemma 2 for the Jacobian

8(3,1, e ’1”71)7
and to note that, since o > a; + ay + - - - + a, , we have
(04
_717172*173—...71)’120
ai
so that
(cos q)l)a/alflfbrbr...,bn <1

and the left-hand inequality in Theorem 1 follows. If &« =a; +a, + --- + a,, then
(cos gy )/t mbambammbn —
and the right-hand inequality in Theorem 1 follows.

3. Aninequality for distance functions associated with non-isotropic dilation
groups on R”

Let 0 < a1 < a» < --- < a, be given constants and, for ¢+ > 0, define
o : R" — R" by
Ox = (1M x1,1%x0, .., 17"Xy), X = (X1,X2,. .., %n)-

DEFINITION 3. A function p : R" — [0, 00) satisfying

p(&x) = 1p(x)
for all x € R" and vanishing only at 0 is called a & -homogeneous distance function.

For elementary properties of these functions we refer the reader to [2]. The primary
example of such distance functions is the function defined in the introduction, which has
the additional properties of infinite differentiability on R” — {0}, and symmetry with
respect to each of the hyperplanes x; = 0. There are, of course other § -homogeneous
distance functions not necessarily in possession of these two properties.

It turns out that the inequalities in Theorem 1 extend to general § -homogeneous
distance functions which are C? in R"—{0} . We indicate briefly how these inequalities
may be obtained.

Let p be a 6 -homogeneous distance function as defined above. If, say, x; > 0,
use

p(-x17x27 e 7xﬂ) = (-xi/ul) p(17z‘17}’27 e az‘nfl)
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where N . N
A‘l = ﬁ7 A‘ZZ ﬁ? sty A‘nfl :%/lll
xl xl’ X
If the coordinates are expressed in spherical coordinates
X| = rcosd,
j—1
X =1 Hsinq>k cosgy (2<j<n—1),
k=1
n—2
X, = F H sin ¢ | sin ¢, 1,
k=1

it becomes possible to proceed as in the proof of Theorem 1 and we arrive at two sharp
inequalities for the integral [, (50} p(x)~*do,—i(w). For example, one such

inequality is
/ do—"_l(w) 2 rnK/
s-1n{>0y P(re)®

for an appropriate constant K’ and with the same restrictions on ¢ . Similar inequalities
may be obtained for the integrals over the other parts of the sphere and addition gives
an analogue of our inequalities in Theorem 1. We omit the details.

Finally it is perhaps worthwhile to remark that the right-hand inequality in Theorem
1 extends, but with a different constant, to the case where o > a1 +ax + -+ + a,.
Since this requires a different method of proof we do not include it here.
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