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INTERPOLATION POLYNOMIALS AND INEQUALITIES
FOR CONVEX FUNCTIONS OF HIGHER ORDER

JOsIP PECARIC AND VERA CULJAK

Abstract. In this paper we prove several inequalities for convex function of a higher order.
Generalizations of Hadamard’s inequalities and the conversion of Jensen’s inequality for (n) —
convex function and with conditions on the regular, real (signed) Borel measure are presented
by Lidstone’s and Hermite’s interpolating polynomials. As a discrete form we also obtain
a generalization of PeroviC’s inequality, i.e. Giaccardi’s inequality. The Abel-Gontscharoff
interpolating polynomial with two-point right focal conditions leads us to an inequality like
converse of Jensen inequality for a regular, signed measure and, as a consequence, to some
inequalities related with Hadamard’s and Petrovi¢’s inequalities.

1. Introduction

In [4] A. M. Fink has considered Féjer generalizations [13] of the left side Hadamard
inequality involving convex functions of higher order. He has also proved the general-
ization of the right side of this inequality:

THEOREM A 1. Let f € C*[—1,1] be convex, i a regular, non-negative measure
on the collection of all Borel sets in R, and G(s,t) the homogeneous Green’s function
of the differential operator % on [—1,1]. If the function s — fil G(s,-)du is
non-positive, then

/llf du gPof(*l);rf(l) +Plf(l)*zf(*l) (1.1)

where Py = filxkd,u(x) , ke {0,1}.

The following Theorem corresponds to some conversions of the well known Jensen
inequality for convex functions (see Lemma 1 in [1]):

THEOREM A 2. Let f : [ = [m,M] — R, (=00 < m <M < 00) be convex and
g : la,b] — [m,M] be such that g € L'(u) on [a,b] for a non-negative measure u
satisfying fab du = 1. Then

M — [? g(H)du(r)

12 g(t)du(r) —m
e () e

b
| #tepanto < SN ). (12)
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The following result from [1] is generalization of some complements of the well
known Jensen inequality for convex functions obtained by P. R. Beesack:

THEOREM A 3. Let the conditions of Theorem 2 be satisfied and let J be an interval
such that J D f(I). If ®(u,v) is a real function defined on J x J, non-decreasing in
u, then

of [ stawnanto.s ([ stoanin)
< max @ |22 n) 4 200 (9] (13)

The right-hand side of (1.3) is a nondecreasing function of M and a nonincreasing
function of m.

The following generalization of the well known Petrovi¢ inequality for convex
functions [20] was given by F. Giaccardi [19] (see also [3], p. 153-154):

THEOREM A 4. Let p, x € R" satisfy

(-xi 7X()) (Zpkxk -xi> P 07 = 17 - 1, (14)
k=1

where xo, Yy, Pixk € [a,b] Y i prxk # xo. If f = [a,b] — R is convex, then
St < (Sm) +n(Sn- )i 09
=1 k=1 k=1

Ao Dt P =X)L P
er_;l PiXi — Xo 7 Z?:lpixi — X0
The notion of n-convexity goes back to Popoviciu [10]; we follow the definition
given by Karlin [15]:

where

DEFINITION 1. A function f : [a,b] — R is said to be (n)-convex on [a,b],
n > 0, if for all choices of (n+ 1) distinct points in [a, b], n™ order divided difference
of f satisfies
[X0, .y Xn]f = 0.

In fact, Popoviciu proved that each continuous (n)-convex function on [a, b] is
the uniform limit of the sequence of (n)-convex polynomials. Many related results,
as well as some important inequalities due to Favard, Berwald and Steffensen can be
foundin [16].

In this paper we give a proof of some inequalities for convex function of higher order
(n = 2). Generalizations of Hadamard’s inequalities and the conversion of Jensen’s
inequality for (n)-convex function and with conditions on the regular, real (signed)
Borel measure are presented by Lidstone’s and Hermite’s interpolating polynomials. As
a discrete form we also obtain a generalization of Perovi¢’s inequality, i.e. Giaccardi’s
inequality. The Abel-Gontscharoff interpolating polynomial with two-point right focal
conditions leads us to an inequality like converse of Jensen inequality for a regular,
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signed measure and, as a consequence, to some inequalities related with Hadamard’s
and Petrovi¢’s inequalities.

In Sections 2.2, 3.3 and 4.2 we give some inequality which are the generalizations
or is like the converse of the Jensen inequality for regular, signed Borel measure . In
Sections 2.3, 3.2 and 4.3 we obtained new inequalities which are the generalizations
of Hadamard inequality for convex function of higher order. Also, as a discrete form,
in Section 2.4, 3.4 and 4.4 we obtain some generalization of Giaccardi inequality for a
n-convex function.

2. Lidstone interpolating polynomial and some inequalitiesfor convex functions
of higher order

2.1. Lidstone interpolating polynomial

In the year 1929. G. J. Lidstone [5] introduced a generalization of Taylor’s series.
It approximates a given function in the neighbourhood of two points instead of one. D.
V. Widder [6] has given the following fundamental result:

LEMMA A 1. Let f(1) € C?[0,1] then

m—1 1
£@6) =D [FP )AL = 1) + £ P (1) A(0)] +/ Gu(t,s)f ®"(s)ds  (2.1)
k=0 0
where .
Gi(t,s) = G(1,5) = { 22:11); ZZ:EE (2.2)
Gl 5) :/0 Gi(t,p) G (p5) dpon > 2 (2.3)

and A(t) is the unique polynomial (Lidstone polynomial) of degree (2n + 1) defined
by the relations

No(t) =t
Ay (1) = Ana (1) (2.4)
A(0) = Ay(1)=0,n3>1

which can be expressed, in terms of G,(t,s) and the Fourier series expansions, as

1
An(t) = /0 G,(t,5)sds

2 ( 1)k+l
= (=" ﬁ2n+lz 2nt1 sin k7.

Another explicit representations of Lidstone polynomial are given by [7] and [8],

1 6l2n+1 t2n—1
A() = = —
(x) 6 {(ZnJrl)' (2n1)!}
n—2 2 22k+3 1) t2n72k73

n=12,.
Qkta)n Drrm —ma tThE

”M
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22n+1 1+[
At) = ——— Bopir [ —= ) sn=1,2..
=G 2“( 2 > "

where Boits is the (2k 4 4) th Bernoulli number and B, (¢) is a Bernoulli polynomial.

2.2. Generalization of the conversion of the Jensen inequality
Using Widder’s Lemma A1 we can get the following theorem (see [21]):

THEOREM 1. Let f(t) : [Mi,Mz2] — R be (2m)-convex function and let g :
[a,b] — [My, M) be given function. Let U be a regular, real (signed) Borel measure.

If

b J—
/a G (%s) du(r) <0, Vs € [0, 1] (2.5)
then
b m—1 b _
/ F(e(0) du(r) < S (M — My)*[F @) () / Ar (H) du()

a k=0 a

b
+f %9 (My) / Ax (%) du(r). (2.6)

If the reverse inequality in (2.5) is valid then the reverse inequality in (2.6) is valid, too.

COROLLARY 1. Ler f(t) : [M1,M;] — R be a (2m)-convex function and let
g : la,b] — [My, M,] be given function. For nonnegative measures 4 > 0,
(2.6) holds for m odd and the reverse inequality holds if m is even.

This corollary follows from the easily proved inequality (—1)"G,,(s,t) > 0.
For m = 1 in Theorem 1 we have a following corollary which is generalization of
Theorem A2 for signed measure U .

COROLLARY 2. Let f (1) be convex function on [My, M,] and u be a regular, real
(signed) Borel measure such that fab du(r) = 1. Let g : [a,b] — [M\,M;] be a given
function, integrable with respect to . If

b _
/u G(%,s) du(r) <0, Vs € [0, 1] (2.7)

then

’ b
/ f(g(2)) du(t) Qf(Ml)(Mz Ik g(t)du(;))

M, — M,
b
o oy (L £ 23)

If reverse inequality in (2.7) is valid then the reverse inequality in (2.8) is valid , too.
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As aconsequence of Theorem 1 and Corollary 2 we get a generalization of Theorem
A3 for non positive measure U :

THEOREM 2. Let the conditions of Corollary 2 be satisfied and let J be an interval
suchthat J D f (I). If ®(u,v) is real function defined on J x J, non-decreasing in u,
then

b b
of [ rieautr ([ etwauin)]
M, —x x— M
< mex @ | o (). () (29)
(= elggﬁ]@[ef(Ml) + (1= 0)f (M2).f (6M + (1 — 0)M>)])

The right-hand side of (4.9) is a nondecreasing function of M, and a nonincreasing
Sfunction of M .

The following two Corollaries of Theorem 2 are generalization of Corollaries 1
and 2 from [1] and [3] for non positive measure u (see [21]).

COROLLARY 3. Let f be a convex functionon I = [My,M;], (—oco <m <M <
00), such that f"(x) > 0 with equality for at most isolated points of 1. Suppose that
either (i) f (x) > 0 forall x € I or(ii) f (x) < O forall x € I. Let g : [a,b] — [M\,M,]
be a given function such that M < fabg(t)du(t) < My where W is a regular, signed
Borel measure. If (2.7) holds, then

/fMMW@<M</g@W@> (2.10)

holds for some A > 1 in case (i) or A € (0,1) in case (ii).
; . — [(My)—f(M)) .

More precisely: set r = W ;

if r=0 then A = % suffices for (2.10)

where x, is the unique solution of the equation f'(x) = 0;

if r#£0 then A = f,(;x”) suffices for (2.10)

where x, is the unique solution of the equation rf (x) —f'(x)(f (M) + r(x —M;)) =0

COROLLARY 4. Let f be differentiable function on I = [My,M;], and f'
strictly increasing on 1. Let g : [a,b] — [M,M,] be a given function such that

M; < fabg(t)d,u(t) < M, where U is a regular, signed Borel measure. If (2.7) then

/ f(g(0)du) <A +f (/ 8(f)du(t)> (2.11)

for some A > 1 satisfying 0 < A < (My — M;)(r —f'(My)), where r is defined as in
Corollary 3. More precisely :
A =f(M)—f(x)+ r(x, — My) suffices for (2.11)

where x, is an unique solution of the equation f'(x) = r.
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2.3. Generalization of a Hadamard inequality

For g(t) =t in Theorem 1 we have the generalization of Fink’s generalization of
Hadamard’s inequality (1.1) for (2m)-convex function, (see [21]):

COROLLARY 5. Let f : [a,b] — R be a (2m) -convex function. If

/me(lt)_Z,s)du(t) <0,Vse0,1] (2.12)

where U is a regular, signed Borel measure then

m—1 b b
[rwa <300 [l a0 [

k= a a

%) du(r))

(2.13)
If the reverse inequality in (2.12) is valid then the reverse inequality in (2.13) is valid,
too.

2.4. Generealisation of Giaccardi inequality

For the discrete case of Theorem 1 we get an inequality of Petrovi¢ and Giaccardi
for convex functions of higher order, generalization of Theorem A4, (see [9]):

COROLLARY 6. Let p and X be two given real n-tuples such that

Xi — Xo) (Zpkxk—xl> >0,i=1,..,n (2.14)

X0, Zpkxk € [My, M;)]

k=1
Zpkxk # Xo.
k=1
and
Zka TN ) <o, vse o, 1] (2.15)
Z; 1 PjXj — X0

are valid. If f - [Ml,Mg] — R is a (2m) -convex function then
- lpr/ Xi
St € S | ZPtAk
i=1 k=0 j=1 ; lprJ X0
2k ijx] ZplAk (ﬁ)} (216)

J 1 Pi%j

If the reverse inequality in (2.15) is valid then the reverse inequality in (2.16) is valid,
too.
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3. Hermite interpolating polynomial and some inequalitiesfor convex functions
of higher order

3.1. Hermite interpolating polynomial

Let —co<a<b<oo,anda< a) <ay...<a, <b, (r>2) begiven. Itis
well known, that for f € C"[a, b] a unique polynomial Py(r) of degree (n—1) [14], [7]
exists, fulfilling one of the following conditions:

Hermite conditions:

Pg)(aj) =fDa); 0<i<k, 1<j<r, ij+r:n,

in particular:
Simple Hermite or Osculatory conditions: (n =2m, r =m, k; =1 forall j)

Po(aj) = f (@), Polay) =f'(b), 1<j<m
Lagrange conditions: (r = n, k; = 0 for all j)
Pr(aj) =f(a;), 1 <j<n,
Type (m,n —m) conditions: (r=2, 1<m<n—1,kk=m—-1l, kh=n—m—1)
Pia) = fPa), 0
Pi(b) = (), 0
Two-point Taylor conditions: (n=2m, r =2,k =ky=m—1)
Pip(a) = (a), Py(0) =f"(b), 0<i<m—1.

The associated error |ey(¢)| can be represented in terms of the Green’s function
Ghu(t,s) for the multipoint boundary value problem z()(f) = 0, z(a;) =0, 0 < i <
kj, 1 <j < r,thatis, the following result holds [7]:

THEOREM A 5. Let F € C"[a,b], and let Py be its Hermite interpolating
polynomial. Then

F(t) = Pu(t) + enl(r)
&
- Y m0r@ [ Gt 5, (3.1)

where Hj; are fundamental polynomials of the Hermite basis defined by

ki—i
Hy(r) = L Z%[r o

(t—a]

)M}(k) (t — a), (3.2)

Illj
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where

=1
and Gy is the Green’s function, defined by

t

(aj—s)"~
ZJ 121 =0 ]n i—1)! Hlj(t)7 s

( s n i—1
Z] I+1 Zz =0 “(n—i—1)T_ Hy(t), s
forall ay <s < a1,l=1,...,r—1.

We use the following lemma describing positivity properties of the Green’s func-
tion (3.4), done by Levin [17] (i) and Beesack [18] (ii):

Gu(t,s) = (3.4)

VoA

t.

LEMMA A 2. The Green’s function Gg(t,s) has the following properties:

GH(I, S)

(i) 0(0) >0, g <t <a,a <s<a, (3.5)
.. 1
(i) Gu(t,s) < mm}(m, (3.6)
b
(iif) /a |Gu(t,s)|ds = %\w(rﬂ (3.7)

3.2. Generalization of Hadamard inequality

By using Theorem AS, Lemma A2 and a condition for the Green’s function, we
prove this theorem (see [22]):

THEOREM 3. Let f : [a,b] — R be (n)-convex function, —0 < a < a1 <
2 ... < dar < b< oo begiven, (r 2 2), kkeN,j=1,..r, ;zlkj—l—r:n,andlet
WU be a regular, signed measure on Borel sets.

() If .
/ Gu(t,s)du(t) <0, Vs € [a,b], (3.8)
then
ro ki b
/ Pt <3230 w) | Hsoaut). (39)
j=1 i=l a

The reverse inequality in (3.8) implies the reverse inequality in (3.9).

(II) If u is a positive measure, then
(i) if o(t) > 0, the reverse of the inequality in (3.9) holds;
(ii) if o(t) < 0, the inequality in (3.9) is always valid.

For the other cases we have the following corollaries (see [22]):
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COROLLARY 7. () Let f : [a,b] — R be (n)-convex, and 1 < m < n—1 be
fixed. If

/ ’ Gy (1, 5)dp(t) <0, Vs € [a, b] (3.10)
then ’
b m—1 ' b n—m—1 b
[ o < @ [Cwwau + 32500 [ w1
a i=0 a i=
where
m—1—i
Ti(l‘) — %(t—a n m Z <nm+k 1)(%)k’ (312)
k=0

n—m—1—i
1 L t—a m+k—1\ t—b,
(1) = —=(t—D>b) " —)~ 3.13
v = ge-nom X ("G e
The Green’s function can be explicitly calculated:

m—1 m—1—i (n—m+p— —a —a)(a—s)" "7 n—m
S e (T e e (L s
n—m—1 n—m—i—1 (m+qg— — bY(b—s)"" —a\m
— T S T T () () e — G, s

The reverse inequality in (3.10) implies the reverse inequality in (3.11).

() If u is a positive measure then:
(i) if m and n have the same parity, the reverse of the inequality in (3.11) holds;
(ii) if m and n have different parity, inequality in (3.11) always holds.

<t
Gmn(ta S): b
>t.

COROLLARY 8. (I) Let f € C*™[a,b] be (2m)-convex, and Gy the Green’s
function of the two-point Taylor problem:

_ [ T () s T ), s <

G = Gt { ) T (- i), s O

ples) = E= DD o~ ps.), vis € fab
Suppose that the measure | is such that for all s

b
/ Gor(s,1)du(r) <0. (3.15)
Then
m— lmlzm k— b 7(11- _p —a
[ s <23 ("t [ G
AN
+ 10w [ ) (3.16)

The reverse inequality in (3.15) implies the reverse inequality in (3.16).
(D If u is positive, then
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(i) if m is even, the reverse of (3.16) holds;
(ii) if m is odd, (3.16) holds.

COROLLARY 9. (D) Let f : [a,b] — R be (4)-convex, and p such that for all s

[
/ ’ Golt,8)du(e) < 0. (3.17)
Then
b
[rome < 0 [0 2D
4 bf / 2; 5 [(t—aldu(r)  (3.18)
+ lj; / t —a)(t — b)*du(r)
+ f / b)(t — a)*du(r),
where

| w
A
VA

(3.19)

(a=s)*  b—1\2 2( —a)(b—s)
Go(ns) = { (b !S>2(b a) [( )+ I;>_ )}7 t
7 (g )[(5_t)+2 |, s>t
If the reverse inequality in (3.17) is valid, then the reverse inequality in (3.18) is also

valid.
(D If u is positive, then the reverse inequality in (3.18) holds.

As a consequence of Theorem 3 for the Lagrange condition n = 2, we obtain a
Fink inequality (1.1) Theorem A1, (see also [21]).

COROLLARY 10. (I) Let f € C?[a,b] be convex, and G, special Lagrange
Greens’s function defined by

(a—s)(1—b) <t
— a—b 7 7N
GL(t7 S) - { —(b;j)a(f—a) s>t (320)
If u is such a measure that for all s € |a, b]
b
/ G (1, 8)du(r) <0, (3.21)
then
b by g
[ rwau < s / Ptdu@ 41 0) [ Sduto
_ (b) —af (a) f(b) —f(a)
- n[? ) [P, (3.22)

where P, = fab *du(t), k= 0,1. The reverse inequality in (3.21) implies the reverse
inequality in (3.22).
(D If u is positive, then inequality in (3.22) holds.
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3.3. Generalization of the conversion of the Jensen inequality
By using Theorem A5 we also can get this theorem (see [22]):

THEOREM 4. Let f : [My,M;] — R be (n)-convex and m,n € N such that
1<m<n—1. Let g:[a,b] — [My,M;] be integrable with respectto W. If U is such
that

/b Gun(g(2),s)du(r) <0, Vs € [My, Ms], (3.23)

then

m—1 n—m—1

b b b
[ rts@ndue < 3 r00n) [ atewdnior > r00m) [ vlgyaui.
- - (3.24)
where T; and v; are defined on [My, M) by:
1 i x—M nem " k-1 X — M \*
G = M) (MI—A/ZIZ) ; ( k >(M2—M1)
n—m—1—i

1 S x—M; \m m+k—1 x— M, \*k
() = ~(x—M (7) ) (7)
T V vy v 2 ( k ) M, — M,

If the reverse inequality in (3.23) is valid, then the reverse inequality in (3.24)
holds.

The following corollary is generalization of Theorem A2 for (2m) -convex function
and signed measure U .

COROLLARY 11. Let f (¢) : [My,M;] — R be (2m) -convex, g : [a,b] — [My, M,]
integrable with respect to W ,and U such that

b
/ Gor(g(t), s)du(r) <0, Vs € [My, M), (3.25)
Then
b m—1m—1—i m -
[ riemaue < Y-S ( *lf 1) (3.26)
@ i=0 k=0
i P (g(t) = M) rg(t) — My\m rg(t) — My\k
[ f()(Ml)/a i : (MI—M;) (Mz—Mll)du(t)
i " (8(r) = Ma)" rg(r) — Mi\™ rg(1) — My
© 0 [ EORRE (SR () duo)

where the Green’s function Gor is defined on [My,M;] x [My,M;]. If the reverse
inequality in (3.25) is valid, then the reverse inequality in (3.26) is also valid.

For the Lagrange condition n = 2, the following corollary is the same generaliza-
tion of Theorem A2 for a signed measure u as Corollary 2, (see also [21]).
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COROLLARY 12.  Let f(t) be convex on [M\,M;], and g : [a,b] — [M;, M,]
integrable with respect to W. If W is such that fab du(t) =1 and

b
/ Gula(),s)du(t) <0, Vs e [My, My, (3.27)

then

My — [ g(r)du() 17 g(B)du(r) — M,
Mz—Ml ) +f(ZWZ)< Mz—Ml >

(3.28)

b
/ £ (g(0)du() < f(M1)<

The reverse inequality in (3.27) implies the reverse inequality in (3.28).

By using Corollary 12 we can, also obtain the results which are the generalizations
of Theorem A3 (see [22]).
3.4. Generalization of Giaccardi and Petrovi¢ inequality

In discrete case of Theorem 4 we also obtain some interesting inequalities for
convex function of higher order, some being generalizations of the well known ones
mentioned before .

COROLLARY 13.  Let p,x € R™ be such that xo < x; < > ,_PiXk  Xo,

S i1 Pkxk € [e,d) and >, pexk # Xo. If we choose p = (pi,...pa) in such a
way that

n

ZkamN(xk,s) <0, Vs € [c,d], (3.29)
=1

then for (N) -convex function f : [¢,d] — R and 1 < m < N—1 we have the following
inequality:

n m—1 n N—m—1 n n
o) < D Y)Y pitln) + SO0 p) Y pivi(s).  (3.30)
i=1 k=0 i=1 k=0 j=1 i=1

The reverse inequality in (3.29) implies the reverse inequality in (3.30).

In case of two-point Taylor conditions, we have the following generalization of
Giaccardi inequality (1.5) for (2m)-convex function (see also [21]):

COROLLARY 14. Let p,x € R" be such that (2.14) holds, xo,> ,_, prxx €
[C7d}’ ZZ:] PkXk 7é xo. If

ZkaZT(xk,s) <0, Vs € [c,d], (3.31)
k=1
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then for a (2m) -convex function f : [c,d] — R the following inequality holds:

m—1m—1—i

o) <Y _Z (er]fl) (3.32)
i=1 i =0

i=0 k

[ f(i)(xo) il’i (x; :' c)! (i’:j)m(z:f‘)k
i=1

POy pe Y W ey ()

j=1 i=1

The reverse inequality in (3.31) also implies the reverse inequality in (3.32).

4. Abel-Gontscharoff interpolating polynomial and some inequalities for convex
functions of higher order

4.1. Abel-Gontscharoff interpolating polynomial

Let —co <a<b<oo,and a < a; € a... < a, < b be given. It is well
known, that for f € C"[a, b] a unique polynomial P(r) of degree (n — 1), [7] exists,
fulfilling one of the following conditions:

Abel-Gontscharoff conditions:
P§>(ai+1) =fNai1); 0<i<n—1,
n

in particular, for fixed 0 < oo < n — 2:

Two-point right focal conditions:
Pi(a) = fOa), 0<i<a,
Pop(ar) = fVar), a+
a<a; <ay<b.
The associated error |er(¢)| can be represented in terms of the Green’s function

Gyr(t,s) for the boundary value problem
(1) =0,z9(a)=0,0<i< o, ?(a)=0,a+1<i<n—1:

1 { Z?:O (i1171)(t - al)i(al . S)n_i_17 Cl <<t (41)
(n=1! L =2 (T —a)i(@ =) 1 <s < b

For n = 2 Green’s function for ‘two-point right focal’ problem is

Gzp(t, S) =

. (alfs)7a<S<t
Gzp(l,s) = { 7(t7a1)’ 1 <s<b. (42)

The following result holds [7]:

THEOREM A 6. Let F € C"[a,b|, and let Pyr be its "two-point right focal’
interpolating polynomial. Then
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- > ) (43)
i=0
n—oa—=2 J ap) @t (

a; — a) _I]F<a+1+j>(a2)

+ Z a+1+l'(/—z)

\..

b
+ / Gar(1,s)F" (s)ds,

where Gof is the Green’s function, defined by (4.1).

We use the following inequalities [2] which describes the positivity property of the
Green’s function (4.1):

LEMMA A 3. The Green’s function Gyr(t,s) has the following properties
forfixed 0 < a<n—2:

(=" 1%Gye(t,s) > 0, a; < s,t < as. (4.4)
4.2. Some inequalities related with the converse of the Jensen inequality

THEOREM 5. (1) Let f : [M{,M;] — R be (n)-convex and a be fixed, 0 <
o < n—2. Let u be a regular, signed Borel measure. Let g : |a,b] — [M;,M;] be
integrable with respect to L. If W is such that

b
/ Gzp(g(l),s)d[l(l) <0, Vs € [Ml,Mz], (45)

where Gyf is defined by (4.1), then

b . | b |
/af(g(t))du(t) <Zf<r>(M1)E/a (g(r) — My)du(7)
n—o—2
+ Z f(a+1+J')(M2)
j=0
J i b
Z a+1+M2)J z)!/a (g(r) = My)*du ()]

i=

(4.6)

If the reverse inequality in (4.5) is valid, then the reverse inequality in (4.6) holds.
(X) Let f € C"[a,b] be (n )-convex. Suppose that the measure [ is positive, then
(i) if n — a — 1 is even, the reverse of (4.6) holds;
(ii) if n—a — 1 is odd, (4.6) holds.
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Proof. By using Theorem A6, for f (g(¢)) we have

Fle@) = S EOM) iy

7 — M)t o j—i '
n Z [Z (g(1) (aﬂi)l —H)E?}ﬁ_ i)]!WZ)] ]f(a+1+1)(M2)

=0 i=0
]A/I2

+ / Gar((1), ) ™) (s)ds, 1 € [a, b].
M,

We can then integrate and use the condition (4.5) to get the result (4.6).
Statement (IT) follows from the fact (4.4). O

For the condition n = 2, the following corollary is some version of Theorem A2
for a signed measure u, (see also [21],[22]).

COROLLARY 15. Let f(t) be convex on [My,M], and g : [a,b] — [M,M;] be
integrable with respect to . If W is such that fab du(t) =1 and

b
/ Gor(g(t),s)du(t) <0, Vs € [My, M), (4.7)

where Gor is defined as (4.2), then

[ rlsau) < s+ 0n2) ( / g(t)du(t)—M1>- (4.8)

The reverse inequality in (4.7) implies the reverse inequality in (4.8).
By using Corollary 15 we can obtain the result which is related with Theorem A3
(see [21], [22]):

COROLLARY 16. Let the conditions of Corollary 15 be satisfied, and let J be
an interval such that J O f(I). If ®(u,v) is a real function defined on J x J,
non-decreasing in u, then

/ flg 0.f ([ ’ a0

< max CD[f(M])+(X*M1)f/(M2),f(x)] (4.9)

XG[M] Mz]

The right-hand side of (4.9) is a non-decreasing function of M, , and a non-increasing
function of M .

4.3. Some inequalities related with a Hadamard inequality

COROLLARY 17.  (I) Let f € C"[a,b] be (n)-convex, and G, the Green’s
function of the ‘two-point right focal’ problem. Suppose that the measure W is such
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that (4.5) |g(s)=¢ holds for all s, then
(4.10)

/f (1) Zf /t—a)du()

n—o—2 a— by b .
O Z( L [ ),

The reverse inequallty in (4.5) |g(t>:, implies the reverse inequality in (4.10).

(D) Let f € C"[a,b] be (n )-convex. Suppose that the measure U is positive, then
(i) if n — a — 1 is even, the reverse of (4.10) holds;
(ii) if n—a — 1 is odd, (4.10) holds.

Proof. By using Theorem 5, g(#) = ¢, we first prove statement (I). Statement (IT)
follows from the fact (4.4). O

For the condition n = 2, we obtain an inequality related with Fink inequality (1.1)
and Corollary 10 (see also [21], [22]).

COROLLARY 18. (I) Let f € C*[a, b] be convex, and Gyr the Greens’s function
defined by (4.2). If U is a measure such that for all s € [a, b]

/ ’ Gars. )dia(t) <0, (.11)

then

b b b
/ Fdu(t) < f(a) / du(t) +£'(b) / (t — a)du(n)

= Polf (@) — af'(b)] + Prf'(b), (4.12)

where P = f: t*du(t), k = 0,1. The reverse inequality in (4.11) implies the reverse
inequality in (4.12).
(II) Let f € C?|a,b] be convex. If W is a positive measure, then inequality (4.12) holds.

Proof. Statement (II) follows from the fact that G,r(s,t) < 0,Vs,t € [a,b] x
[a,b]. O

4.4. Some inequalities related with Giaccardi and Petrovi¢ inequality

In discrete case we also obtain some interesting inequalities for convex function of
higher order, wich are related with the well known ones mentioned before.

COROLLARY 19. Let p,x € R besuchthat xo < x; < >_;_; PkXk, X0, D p_; PkXk €
[c,d) and y"}_, prxx # xo. If we choose p = (pi,...pn) in such a way that

> piGorlxi,s) <0, Vs € [e,d], (4.13)
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where Gar is defined in (4.1) then for (N)-convex function f : [c,d] — R and
0 < o < N — 2 we have the following inequality:

> opf () < Zf (x0) ZP!« X = x0)' (4.14)
k=1 :
N—o—2

+ Z f(oc+1+j)(zplxl)
=0 I=1

J
Zl 1plxl)J oa+1+i
o T

The reverse inequality in (4.13) implies the reverse inequality in (4.14).

Proof. We take a discrete measure p in Theorem 5,and g(¢) = ¢ forall ¢ € [a, b].
We can suppose that [c,d] D [M;, M;], where M;, M, are as in Theorem 5. For a
specific choice of M| and M, take

n
My = xo, My = pixi,

we have

n
< Zpk)%
k=1

In case N =2 we have the following type of Petrovi¢ inequality (1.5) for convex
function also [21], [22]):

COROLLARY 20. Let p,x € R" be as Corollary 19. If
ZkagF(xk,s) <0, Vs € [c,d], (4.15)

where G is defined in (4.2), then for a convex function f : [c,d] — R the following
inequality holds:

oo ) < fFx0) D e+ O pm) > pelxe — x0)- (4.16)
k=1 k=1 =1 k=1

The reverse inequality in (4.15) also implies the reverse inequality in (4.16).
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