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INTERPOLATION POLYNOMIALS AND INEQUALITIES

FOR CONVEX FUNCTIONS OF HIGHER ORDER

JOSIP PEČARIĆ AND VERA ČULJAK

Abstract. In this paper we prove several inequalities for convex function of a higher order.
Generalizations of Hadamard’s inequalities and the conversion of Jensen’s inequality for (n) –
convex function and with conditions on the regular, real (signed) Borel measure are presented
by Lidstone’s and Hermite’s interpolating polynomials. As a discrete form we also obtain
a generalization of Perovič’s inequality, i.e. Giaccardi’s inequality. The Abel-Gontscharoff
interpolating polynomial with two-point right focal conditions leads us to an inequality like
converse of Jensen inequality for a regular, signed measure and, as a consequence, to some
inequalities related with Hadamard’s and Petrović’s inequalities.

1. Introduction

In [4] A. M. Fink has consideredFéjer generalizations [13] of the left sideHadamard
inequality involving convex functions of higher order. He has also proved the general-
ization of the right side of this inequality:

THEOREM A 1. Let f ∈ C2[−1, 1] be convex, μ a regular, non-negative measure
on the collection of all Borel sets in R , and G(s, t) the homogeneous Green’s function

of the differential operator d2

ds2 on [−1, 1] . If the function s → ∫ 1
−1 G(s, ·)dμ is

non-positive, then ∫ 1

−1
f dμ � P0

f (−1) + f (1)
2

+ P1
f (1) − f (−1)

2
(1.1)

where Pk =
∫ 1
−1 xk dμ(x) , k ∈ {0, 1}.

The following Theorem corresponds to some conversions of the well known Jensen
inequality for convex functions (see Lemma 1 in [1]):

THEOREM A 2. Let f : I = [m, M] → R , (−∞ < m < M < ∞) be convex and
g : [a, b] → [m, M] be such that g ∈ L1(μ) on [a, b] for a non-negative measure μ
satisfying

∫ b
a dμ = 1 . Then

∫ b

a
f (g(t))dμ(t) �

M − ∫ b
a g(t)dμ(t)

M − m
f (m) +

∫ b
a g(t)dμ(t) − m

M − m
f (M). (1.2)
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The following result from [1] is generalization of some complements of the well
known Jensen inequality for convex functions obtained by P. R. Beesack:

THEOREM A3. Let the conditions of Theorem2 be satisfied and let J be an interval
such that J ⊃ f (I) . If Φ(u, v) is a real function defined on J × J , non-decreasing in
u , then

Φ
[∫ b

a
f (g(t))dμ(t), f

(∫ b

a
g(t)dμ(t)

)]

� max
x∈[m,M]

Φ
[

M − x
M − m

f (m) +
x − m
M − m

f (M), f (x)
]

. (1.3)

The right-hand side of (1.3) is a nondecreasing function of M and a nonincreasing
function of m .

The following generalization of the well known Petrović inequality for convex
functions [20] was given by F. Giaccardi [19] (see also [3], p. 153–154):

THEOREM A 4. Let p , x ∈ Rn satisfy

(xi − x0)

(
n∑

k=1

pkxk − xi

)
� 0, i = 1, .., n, (1.4)

where x0,
∑n

k=1 pkxk ∈ [a, b]
∑n

k=1 pkxk �= x0 . If f : [a, b] → R is convex, then

n∑
k=1

pkf (xk) � Af

(
n∑

k=1

pkxk

)
+ B

(
n∑

k=1

pk − 1

)
f (x0), (1.5)

where

A =
∑n

i=1 pi(xi − x0)∑n
i=1 pixi − x0

, B =
∑n

i=1 pixi∑n
i=1 pixi − x0

.

The notion of n -convexity goes back to Popoviciu [10]; we follow the definition
given by Karlin [15]:

DEFINITION 1. A function f : [a, b] → R is said to be (n) -convex on [a, b] ,
n � 0 , if for all choices of (n+1) distinct points in [a, b], nth order divided difference
of f satisfies

[x0, ..., xn]f � 0.

In fact, Popoviciu proved that each continuous (n) -convex function on [a, b] is
the uniform limit of the sequence of (n) -convex polynomials. Many related results,
as well as some important inequalities due to Favard, Berwald and Steffensen can be
found in [16].

In this paperwe give a proof of some inequalities for convex function of higher order
(n � 2 ). Generalizations of Hadamard’s inequalities and the conversion of Jensen’s
inequality for (n) -convex function and with conditions on the regular, real (signed)
Borel measure are presented by Lidstone’s and Hermite’s interpolating polynomials. As
a discrete form we also obtain a generalization of Perovič’s inequality, i.e. Giaccardi’s
inequality. The Abel-Gontscharoff interpolating polynomial with two-point right focal
conditions leads us to an inequality like converse of Jensen inequality for a regular,
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signed measure and, as a consequence, to some inequalities related with Hadamard’s
and Petrović’s inequalities.

In Sections 2.2, 3.3 and 4.2 we give some inequality which are the generalizations
or is like the converse of the Jensen inequality for regular, signed Borel measure μ . In
Sections 2.3, 3.2 and 4.3 we obtained new inequalities which are the generalizations
of Hadamard inequality for convex function of higher order. Also, as a discrete form,
in Section 2.4, 3.4 and 4.4 we obtain some generalization of Giaccardi inequality for a
n -convex function.
2. Lidstone interpolating polynomial and some inequalitiesfor convex functions

of higher order

2.1. Lidstone interpolating polynomial

In the year 1929. G. J. Lidstone [5] introduced a generalization of Taylor’s series.
It approximates a given function in the neighbourhood of two points instead of one. D.
V. Widder [6] has given the following fundamental result:

LEMMA A 1. Let f (t) ∈ C(2m)[0, 1] then

f (t) =
m−1∑
k=0

[f (2k)(0)Λk(1 − t) + f (2k)(1)Λk(t)] +
∫ 1

0
Gm(t, s)f (2m)(s)ds (2.1)

where

G1(t, s) = G(t, s) =
{

(t − 1)s, if s � t ,
(s − 1)t, if t � s ,

(2.2)

Gn(t, s) =
∫ 1

0
G1(t, p)Gn−1(p, s) dp, n � 2 (2.3)

and Λ(t) is the unique polynomial (Lidstone polynomial) of degree (2n + 1) defined
by the relations

Λ0(t) = t

Λ
′′
n (t) = Λn−1(t) (2.4)

Λn(0) = Λn(1) = 0, n � 1

which can be expressed, in terms of Gn(t, s) and the Fourier series expansions, as

Λn(t) =
∫ 1

0
Gn(t, s)s ds

= (−1)n 2
π2n+1

∞∑
k=1

(−1)k+1

k2n+1
sin kπt.

Another explicit representations of Lidstone polynomial are given by [7] and [8],

Λn(t) =
1
6

[
6t2n+1

(2n + 1)!
− t2n−1

(2n − 1)!

]

−
n−2∑
k=0

2(22k+3 − 1)
(2k + 4)!

B2k+4
t2n−2k−3

(2n − 2k − 3)!
; n = 1, 2, ..
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Λn(t) =
22n+1

(2n + 1)!
B2n+1

(
1 + t

2

)
; n = 1, 2..

where B2k+4 is the (2k + 4) th Bernoulli number and Bn(t) is a Bernoulli polynomial.

2.2. Generalization of the conversion of the Jensen inequality

Using Widder’s Lemma A1 we can get the following theorem (see [21]):

THEOREM 1. Let f (t) : [M1, M2] → R be (2m) -convex function and let g :
[a, b] → [M1, M2] be given function . Let μ be a regular, real (signed) Borel measure.
If

∫ b

a
Gm

(
g(t) − M1

M2 − M1
, s

)
dμ(t) � 0, ∀s ∈ [0, 1] (2.5)

then∫ b

a
f (g(t)) dμ(t) �

m−1∑
k=0

(M2 − M1)2k[f (2k)(M1)
∫ b

a
Λk

(
M2 − g(t)
M2 − M1

)
dμ(t)

+f (2k)(M2)
∫ b

a
Λk

(
g(t) − M1

M2 − M1

)
dμ(t)]. (2.6)

If the reverse inequality in (2.5) is valid then the reverse inequality in (2.6) is valid, too.

COROLLARY 1. Let f (t) : [M1, M2] → R be a (2m) -convex function and let
g : [a, b] → [M1, M2] be given function. For nonnegative measures μ � 0 ,
(2.6) holds for m odd and the reverse inequality holds if m is even.

This corollary follows from the easily proved inequality (−1)mGm(s, t) � 0.
For m = 1 in Theorem 1 we have a following corollary which is generalization of
Theorem A2 for signed measure μ .

COROLLARY 2. Let f (t) be convex function on [M1, M2] and μ be a regular, real

(signed) Borel measure such that
∫ b

a dμ(t) = 1 . Let g : [a, b] → [M1, M2] be a given
function, integrable with respect to μ . If∫ b

a
G
(g(t) − M1

M2 − M1
, s
)

dμ(t) � 0, ∀s ∈ [0, 1] (2.7)

then ∫ b

a
f (g(t)) dμ(t) � f (M1)

(M2 −
∫ b

a g(t)dμ(t)
M2 − M1

)

+f (M2)
(∫ b

a g(t)dμ(t) − M1

M2 − M1

)
(2.8)

If reverse inequality in (2.7) is valid then the reverse inequality in (2.8) is valid , too.
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As a consequenceof Theorem1 andCorollary 2we get a generalizationof Theorem
A3 for non positive measure μ :

THEOREM 2. Let the conditions of Corollary 2 be satisfied and let J be an interval
such that J ⊃ f (I) . If Φ(u, v) is real function defined on J × J , non-decreasing in u ,
then

Φ
[∫ b

a
f (g(t))dμ(t), f

(∫ b

a
g(t)dμ(t)

)]

� max
x∈[M1,M2 ]

Φ
[

M2 − x
M2 − M1

f (M1) +
x − M1

M2 − M1
f (M2), f (x)

]
(2.9)

(= max
θ∈[0,1]

Φ[θf (M1) + (1 − θ)f (M2), f (θM1 + (1 − θ)M2)])

The right-hand side of (4.9) is a nondecreasing function of M2 and a nonincreasing
function of M1 .

The following two Corollaries of Theorem 2 are generalization of Corollaries 1
and 2 from [1] and [3] for non positive measure μ (see [21]).

COROLLARY 3. Let f be a convex function on I = [M1, M2] , (−∞ < m < M <
∞) , such that f ′′(x) � 0 with equality for at most isolated points of I . Suppose that
either (i) f (x) > 0 for all x ∈ I or (ii) f (x) < 0 for all x ∈ I . Let g : [a, b] → [M1, M2]
be a given function such that M1 �

∫ b
a g(t)dμ(t) � M2 where μ is a regular, signed

Borel measure. If (2.7) holds, then∫ b

a
f (g(t))dμ(t) � λ f

(∫ b

a
g(t)dμ(t)

)
(2.10)

holds for some λ > 1 in case (i) or λ ∈ (0, 1) in case (ii).
More precisely: set r = f (M2)−f (M1)

M2−M1
;

if r = 0 then λ = f (M1)
f (xo) suffices for (2.10)

where xo is the unique solution of the equation f ′(x) = 0 ;
if r �= 0 then λ = r

f ′(xo) suffices for (2.10)
where xo is the unique solution of the equation rf (x)− f ′(x)(f (M1)+ r(x−M1)) = 0

COROLLARY 4. Let f be differentiable function on I = [M1, M2] , and f ′

strictly increasing on I . Let g : [a, b] → [M1, M2] be a given function such that

M1 �
∫ b

a g(t)dμ(t) � M2 where μ is a regular, signed Borel measure. If (2.7) then

∫ b

a
f (g(t))dμ(t) � λ + f

(∫ b

a
g(t)dμ(t)

)
(2.11)

for some λ > 1 satisfying 0 < λ < (M2 − M1)(r − f ′(M1)) , where r is defined as in
Corollary 3. More precisely :
λ = f (M1) − f (xo) + r(xo − M1) suffices for (2.11)
where xo is an unique solution of the equation f ′(x) = r.
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2.3. Generalization of a Hadamard inequality

For g(t) = t in Theorem 1 we have the generalization of Fink’s generalization of
Hadamard’s inequality (1.1) for (2m) -convex function, (see [21]):

COROLLARY 5. Let f : [a, b] → R be a (2m) -convex function. If∫ b

a
Gm(

t − a
b − a

, s) dμ(t) � 0, ∀s ∈ [0, 1] (2.12)

where μ is a regular, signed Borel measure then

∫ b

a
f (t) dμ(t)�

m−1∑
k=0

(b−a)2k[f (2k)(a)
∫ b

a
Λk(

b − t
b − a

) dμ(t)+f (2k)(b)
∫ b

a
Λk(

t − a
b − a

) dμ(t)].

(2.13)
If the reverse inequality in (2.12) is valid then the reverse inequality in (2.13) is valid,
too.

2.4. Generealisation of Giaccardi inequality

For the discrete case of Theorem 1 we get an inequality of Petrović and Giaccardi
for convex functions of higher order, generalization of Theorem A4, (see [9]):

COROLLARY 6. Let p and x be two given real n -tuples such that

(xi − x0)

(
n∑

k=1

pkxk − xi

)
� 0, i = 1, .., n (2.14)

x0,

n∑
k=1

pkxk ∈ [M1, M2]

n∑
k=1

pkxk �= x0.

and
n∑

k=1

pkGm

(
xk − x0∑n

j=1 pjxj − x0
, s

)
� 0, ∀s ∈ [0, 1] (2.15)

are valid. If f : [M1, M2] → R is a (2m) -convex function then

n∑
i=1

pif (xi) �
m−1∑
k=0

(
n∑

j=1

pjxj − x0)2k

[
f (2k)(x0)

n∑
i=1

piΛk

(∑n
j=1 pjxj − xi∑n
j=1 pjxj − x0

)

+ f (2k)(
n∑

j=1

pjxj)
n∑

i=1

piΛk

(
xi − x0∑n

j=1 pjxj − x0

)]
(2.16)

If the reverse inequality in (2.15) is valid then the reverse inequality in (2.16) is valid,
too.
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3. Hermite interpolating polynomial and some inequalitiesfor convex functions
of higher order

3.1. Hermite interpolating polynomial

Let −∞ < a < b < ∞ , and a � a1 < a2 ... < ar � b , (r � 2) be given. It is
well known, that for f ∈ Cn[a, b] a unique polynomial PH(t) of degree (n−1) [14], [7]
exists, fulfilling one of the following conditions:
Hermite conditions:

P(i)
H (aj) = f (i)(aj); 0 � i � kj, 1 � j � r,

r∑
j=1

kj + r = n,

in particular:
Simple Hermite or Osculatory conditions: (n = 2m, r = m, kj = 1 for all j )

PO(aj) = f (aj), P′
O(aj) = f ′(bj), 1 � j � m,

Lagrange conditions: ( r = n, kj = 0 for all j )

PL(aj) = f (aj), 1 � j � n,

Type (m, n − m) conditions: ( r = 2, 1 � m � n− 1 , k1 = m− 1, k2 = n−m− 1 )

P(i)
mn(a) = f (i)(aj), 0 � i � m − 1

P(i)
mn(b) = f (i)(bj), 0 � i � n − m − 1,

Two-point Taylor conditions: (n = 2m, r = 2, k1 = k2 = m − 1 )

P(i)
2T(a) = f (i)(a), P(i)

2T(b) = f (i)(b), 0 � i � m − 1.

The associated error |eH(t)| can be represented in terms of the Green’s function
GH(t, s) for the multipoint boundary value problem z(n)(t) = 0 , z(i)(aj) = 0, 0 � i �
kj, 1 � j � r , that is, the following result holds [7]:

THEOREM A 5. Let F ∈ Cn[a, b] , and let PH be its Hermite interpolating
polynomial. Then

F(t) = PH(t) + eH(t)

=
r∑

j=1

kj∑
i=0

Hij(t)F(i)(aj) +
∫ b

a
GH(t, s)F(n)(s)ds, (3.1)

where Hij are fundamental polynomials of the Hermite basis defined by

Hij(t) =
1
i!

ω(t)
(t − aj)kj+1−i

kj−i∑
k=0

1
kj!

[ (t − aj)kj+1

ω(t)

](k)
t=aj

(t − aj)k, (3.2)
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where

ω(t) =
r∏

j=1

(t − aj)kj+1, (3.3)

and GH is the Green’s function, defined by

GH(t, s) =

⎧⎨
⎩
∑l

j=1

∑kj
i=0

(aj−s)n−i−1

(n−i−1)! Hij(t), s � t

−∑l
j=l+1

∑kj
i=0

(aj−s)n−i−1

(n−i−1)! Hij(t), s � t.
(3.4)

for all al � s � al+1, l = 1, ..., r − 1 .

We use the following lemma describing positivity properties of the Green’s func-
tion (3.4), done by Levin [17] (i) and Beesack [18] (ii):

LEMMA A 2. The Green’s function GH(t, s) has the following properties:

(i)
GH(t, s)
ω(t)

> 0, a1 � t � ar, a1 < s < ar, (3.5)

(ii) GH(t, s) � 1
(n − 1)!(b − a)

|ω(t)|, (3.6)

(iii)
∫ b

a
|GH(t, s)|ds =

1
n!
|ω(t)|. (3.7)

3.2. Generalization of Hadamard inequality

By using Theorem A5, Lemma A2 and a condition for the Green’s function, we
prove this theorem (see [22]):

THEOREM 3. Let f : [a, b] → R be (n) -convex function, −∞ � a � a1 <
a2 ... < ar � b � ∞ be given, (r � 2) , kj ∈ N , j = 1, ...r ,

∑r
j=1 kj + r = n , and let

μ be a regular, signed measure on Borel sets.
(I) If ∫ b

a
GH(t, s)dμ(t) � 0, ∀s ∈ [a, b], (3.8)

then ∫ b

a
f (t)dμ(t) �

r∑
j=1

kj∑
i=0

f (i)(aj)
∫ b

a
Hij(t)dμ(t). (3.9)

The reverse inequality in (3.8) implies the reverse inequality in (3.9).

(II) If μ is a positive measure, then
(i) if ω(t) > 0 , the reverse of the inequality in (3.9) holds;
(ii) if ω(t) < 0 , the inequality in (3.9) is always valid.

For the other cases we have the following corollaries (see [22]):
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COROLLARY 7. (I) Let f : [a, b] → R be (n) -convex, and 1 � m � n − 1 be
fixed. If ∫ b

a
Gmn(t, s)dμ(t) � 0, ∀s ∈ [a, b] (3.10)

then∫ b

a
f (t)dμ(t) �

m−1∑
i=0

f (i)(a)
∫ b

a
τi(t)dμ(t) +

n−m−1∑
i=0

f (i)(b)
∫ b

a
νi(t)dμ(t), (3.11)

where

τi(t) =
1
i!

(t − a)i(
t − b
a − b

)n−m
m−1−i∑

k=0

(
n − m + k − 1

k

)
(
t − a
b − a

)k, (3.12)

νi(t) =
1
i!

(t − b)i(
t − a
b − a

)m
n−m−1−i∑

k=0

(
m + k − 1

k

)
(
t − b
a − b

)k. (3.13)

The Green’s function can be explicitly calculated:

Gmn(t, s)=

⎧⎨
⎩
∑m−1

i=0 [
∑m−1−i

p=0

(n−m+p−1
p

)
( t−a

b−a )
p] (t−a)(a−s)n−i−1

i!(n−i−1)! ( b−t
b−a )

n−m, s � t

−∑n−m−1
i=0 [

∑n−m−i−1
q=0

(m+q−1
q

)
( b−t

b−a )
q] (t−b)(b−s)n−i−1

i!(n−i−1)! ( t−a
b−a )

m, s � t.

The reverse inequality in (3.10) implies the reverse inequality in (3.11).
(II) If μ is a positive measure then:

(i) if m and n have the same parity, the reverse of the inequality in (3.11) holds;
(ii) if m and n have different parity, inequality in (3.11) always holds.

COROLLARY 8. (I) Let f ∈ C2m[a, b] be (2m)-convex, and G2T the Green’s
function of the two-point Taylor problem:

G2T(t, s) =
(−1)m

(2m − 1)!

{
pm(t, s)

∑m−1
j=0

(m−1+j
j

)
(t − s)m−1−jqj(t, s), s � t

qm(t, s)
∑m−1

j=0

(m−1+j
j

)
(s − t)m−1−jpj(t, s), s � t,

(3.14)

p(t, s) =
(s − a)(b − t)

b − a
, q(t, s) = p(s, t), ∀t, s ∈ [a, b].

Suppose that the measure μ is such that for all s∫ b

a
G2T(s, t)dμ(t) � 0. (3.15)

Then∫ b

a
f (t)dμ(t) �

m−1∑
i=0

m−1−i∑
k=0

(
m + k − 1

k

)
[f (i)(a)

∫ b

a

(t − a)i

i!
(
t − b
a − b

)m(
t − a
b − a

)kdμ(t)

+ f (i)(b)
∫ b

a

(t − b)i

i!
(
t − a
b − a

)m(
t − b
a − b

)kdμ(t)]. (3.16)

The reverse inequality in (3.15) implies the reverse inequality in (3.16).
(II) If μ is positive, then
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(i) if m is even, the reverse of (3.16) holds;
(ii) if m is odd, (3.16) holds.

COROLLARY 9. (I) Let f : [a, b] → R be (4) -convex, and μ such that for all s∫ b

a
GO(t, s)dμ(t) � 0. (3.17)

Then ∫ b

a
f (t)dμ(t) � f (a)

(b − a)2

∫ b

a
[1 +

2(t − a)
b − a

](t − b)2dμ(t)

+
f (b)

(b − a)2

∫ b

a
[1 − 2(t − b)

b − a
](t − a)2dμ(t) (3.18)

+
f ′(a)

(b − a)2

∫ b

a
(t − a)(t − b)2dμ(t)

+
f ′(b)

(b − a)2

∫ b

a
(t − b)(t − a)2dμ(t),

where

GO(t, s) =

{
(a−s)2

3! ( b−t
b−a)

2[(t − s) + 2 (t−a)(b−s)
b−a ], s � t

(b−s)2

3! ( t−a
b−a)

2[(s − t) + 2 (s−a)(b−t)
b−a ], s � t.

(3.19)

If the reverse inequality in (3.17) is valid, then the reverse inequality in (3.18) is also
valid.
(II) If μ is positive, then the reverse inequality in (3.18) holds.

As a consequence of Theorem 3 for the Lagrange condition n = 2 , we obtain a
Fink inequality (1.1) Theorem A1, (see also [21]).

COROLLARY 10. (I) Let f ∈ C2[a, b] be convex, and GL special Lagrange
Greens’s function defined by

GL(t, s) =

{
(a−s)(t−b)

a−b , s � t
−(b−s)(t−a)

b−a, s � t.
(3.20)

If μ is such a measure that for all s ∈ [a, b]∫ b

a
GL(t, s)dμ(t) � 0, (3.21)

then ∫ b

a
f (t)dμ(t) � f (a)

∫ b

a

b − t
b − a

dμ(t) + f (b)
∫ b

a

t − a
b − a

dμ(t)

= P0

[bf (b) − af (a)
b − a

]
+ P1

[ f (b) − f (a)
b − a

]
, (3.22)

where Pk =
∫ b

a tk dμ(t) , k = 0, 1. The reverse inequality in (3.21) implies the reverse
inequality in (3.22).
(II) If μ is positive, then inequality in (3.22) holds.
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3.3. Generalization of the conversion of the Jensen inequality

By using Theorem A5 we also can get this theorem (see [22]):

THEOREM 4. Let f : [M1, M2] → R be (n) -convex and m, n ∈ N such that
1 � m � n−1. Let g : [a, b] → [M1, M2] be integrable with respect to μ . If μ is such
that ∫ b

a
Gmn(g(t), s)dμ(t) � 0, ∀s ∈ [M1, M2], (3.23)

then∫ b

a
f (g(t))dμ(t) �

m−1∑
i=0

f (i)(M1)
∫ b

a
τi(g(t))dμ(t)+

n−m−1∑
i=0

f (i)(M2)
∫ b

a
νi(g(t))dμ(t),

(3.24)
where τi and νi are defined on [M1, M2] by:

τi(x) =
1
i!

(x − M1)i
( x − M2

M1 − M2

)n−m m−1−i∑
k=0

(
n − m + k − 1

k

)( x − M1

M2 − M1

)k

νi(x) =
1
i!

(x − M2)i
( x − M1

M2 − M1

)m n−m−1−i∑
k=0

(
m + k − 1

k

)( x − M2

M1 − M2

)k
.

If the reverse inequality in (3.23) is valid, then the reverse inequality in (3.24)
holds.

The following corollary is generalizationof TheoremA2 for (2m) -convex function
and signed measure μ .

COROLLARY 11. Let f (t) : [M1, M2] → R be (2m) -convex, g : [a, b] → [M1, M2]
integrable with respect to μ ,and μ such that∫ b

a
G2T(g(t), s)dμ(t) � 0, ∀s ∈ [M1, M2]. (3.25)

Then∫ b

a
f (g(t))dμ(t) �

m−1∑
i=0

m−1−i∑
k=0

(
m + k − 1

k

)
(3.26)

[ f (i)(M1)
∫ b

a

(g(t) − M1)i

i!

(g(t) − M2

M1 − M2

)m(g(t) − M1

M2 − M1

)k
dμ(t)

+ f (i)(M2)
∫ b

a

(g(t) − M2)i

i!

(g(t) − M1

M2 − M1

)m(g(t) − M2

M1 − M2

)k
dμ(t)],

where the Green’s function G2T is defined on [M1, M2] × [M1, M2] . If the reverse
inequality in (3.25) is valid, then the reverse inequality in (3.26) is also valid.

For the Lagrange condition n = 2 , the following corollary is the same generaliza-
tion of Theorem A2 for a signed measure μ as Corollary 2, (see also [21]).
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COROLLARY 12. Let f (t) be convex on [M1, M2] , and g : [a, b] → [M1, M2]
integrable with respect to μ . If μ is such that

∫ b
a dμ(t) = 1 and

∫ b

a
GL(g(t), s) dμ(t) � 0, ∀s ∈ [M1, M2], (3.27)

then

∫ b

a
f (g(t))dμ(t) � f (M1)

(
M2 −

∫ b
a g(t)dμ(t)

M2 − M1

)
+ f (M2)

(∫ b
a g(t)dμ(t) − M1

M2 − M1

)
.

(3.28)

The reverse inequality in (3.27) implies the reverse inequality in (3.28).

By using Corollary 12 we can, also obtain the results which are the generalizations
of Theorem A3 (see [22]).
3.4. Generalization of Giaccardi and Petrović inequality

In discrete case of Theorem 4 we also obtain some interesting inequalities for
convex function of higher order, some being generalizations of the well known ones
mentioned before .

COROLLARY 13. Let p, x ∈ Rn be such that x0 � xi �
∑n

k=1 pkxk x0 ,∑n
k=1 pkxk ∈ [c, d] and

∑n
k=1 pkxk �= x0 . If we choose p = (p1, . . . pn) in such a

way that
n∑

k=1

pkGmN(xk, s) � 0, ∀s ∈ [c, d], (3.29)

then for (N) -convex function f : [c, d] → R and 1 � m � N−1 we have the following
inequality:

n∑
i=1

pif (xi) �
m−1∑
k=0

f (k)(x0)
n∑

i=1

piτk(xi) +
N−m−1∑

k=0

f (k)(
n∑

j=1

pjxj)
n∑

i=1

piνk(xi). (3.30)

The reverse inequality in (3.29) implies the reverse inequality in (3.30).

In case of two-point Taylor conditions, we have the following generalization of
Giaccardi inequality (1.5) for (2m) -convex function (see also [21]):

COROLLARY 14. Let p, x ∈ Rn be such that (2.14) holds, x0,
∑n

k=1 pkxk ∈
[c, d] ,

∑n
k=1 pkxk �= x0 . If

n∑
k=1

pkG2T(xk, s) � 0, ∀s ∈ [c, d], (3.31)
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then for a (2m) -convex function f : [c, d] → R the following inequality holds:

n∑
i=1

pif (xi) �
m−1∑
i=0

m−1−i∑
k=0

(
m + k − 1

k

)
(3.32)

[ f (i)(x0)
n∑

i=1

pi
(xi − c)i

i!

(xi − d
c − d

)m(xi − c
d − c

)k

+ f (i)(
n∑

j=1

pjxj)
n∑

i=1

(xi − d)i

i!

(xi − c
d − c

)m(xi − d
c − d

)k
].

The reverse inequality in (3.31) also implies the reverse inequality in (3.32).

4. Abel-Gontscharoff interpolating polynomial and some inequalities for convex
functions of higher order

4.1. Abel-Gontscharoff interpolating polynomial

Let −∞ < a < b < ∞ , and a � a1 � a2 ... � an � b be given. It is well
known, that for f ∈ Cn[a, b] a unique polynomial P(t) of degree (n − 1) , [7] exists,
fulfilling one of the following conditions:

Abel-Gontscharoff conditions:

P(i)
A (ai+1) = f (i)(ai+1); 0 � i � n − 1,

in particular, for fixed 0 � α � n − 2 :
Two-point right focal conditions:

P(i)
2F(a1) = f (i)(a1), 0 � i � α,

P(i)
2F(a2) = f (i)(a2), α + 1 � i � n − 1,

a � a1 < a2 � b.

The associated error |e2F(t)| can be represented in terms of the Green’s function
G2F(t, s) for the boundary value problem
z(n)(t) = 0 , z(i)(a1) = 0, 0 � i � α, z(i)(a2) = 0, α + 1 � i � n − 1 :

G2F(t, s) =
1

(n − 1)!

{ ∑α
i=0

(n−1
i

)
(t − a1)i(a1 − s)n−i−1, a � s � t

−∑n−1
i=α+1

(n−1
i

)
(t − a1)i(a1 − s)n−i−1, t � s � b.

(4.1)

For n = 2 Green’s function for ‘two-point right focal’ problem is

G2F(t, s) =
{

(a1 − s), a � s � t
−(t − a1), t � s � b.

(4.2)

The following result holds [7]:

THEOREM A 6. Let F ∈ Cn[a, b] , and let P2F be its ’two-point right focal’
interpolating polynomial. Then
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F(t) = P2F(t) + e2F(t)

=
α∑

i=0

(t − a1)i

i!
F(i)(a1) (4.3)

+
n−α−2∑

j=0

[ j∑
i=0

(t − a1)α+1+i(a1 − a2)j−i

(α + 1 + i)!(j − i)!
]
F(α+1+j)(a2)

+
∫ b

a
G2F(t, s)F(n)(s)ds,

where G2F is the Green’s function, defined by (4.1).

We use the following inequalities [2] which describes the positivity property of the
Green’s function (4.1):

LEMMA A 3. The Green’s function G2F(t, s) has the following properties
for fixed 0 � α � n − 2 :

(−1)n−1−αG2F(t, s) � 0, a1 � s, t � a2. (4.4)

4.2. Some inequalities related with the converse of the Jensen inequality

THEOREM 5. (I) Let f : [M1, M2] → R be (n) -convex and α be fixed, 0 �
α � n − 2. Let μ be a regular, signed Borel measure. Let g : [a, b] → [M1, M2] be
integrable with respect to μ . If μ is such that∫ b

a
G2F(g(t), s)dμ(t) � 0, ∀s ∈ [M1, M2], (4.5)

where G2F is defined by (4.1), then∫ b

a
f (g(t))dμ(t) �

α∑
i=0

f (i)(M1)
1
i!

∫ b

a
(g(t) − M1)idμ(t)

+
n−α−2∑

j=0

f (α+1+j)(M2)

[ j∑
i=0

(M1 − M2)j−i

(α + 1 + i)!(j − i)!

∫ b

a
(g(t) − M1)α+1+idμ(t)

]
(4.6)

If the reverse inequality in (4.5) is valid, then the reverse inequality in (4.6) holds.
(II) Let f ∈ Cn[a, b] be ( n )-convex. Suppose that the measure μ is positive, then

(i) if n − α − 1 is even, the reverse of (4.6) holds;
(ii) if n − α − 1 is odd, (4.6) holds.
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Proof. By using Theorem A6, for f (g(t)) we have

f (g(t)) =
α∑

i=0

(g(t) − M1)i

i!
f (i)(M1)

+
n−α−2∑

j=0

[ j∑
i=0

(g(t) − M1)α+1+i(M1 − M2)j−i

(α + 1 + i)!(j − i)!
]
f (α+1+j)(M2)

+
∫ M2

M1

G2F(g(t), s)f (n)(s)ds, t ∈ [a, b].

We can then integrate and use the condition (4.5) to get the result (4.6).
Statement (II) follows from the fact (4.4). �

For the condition n = 2 , the following corollary is some version of Theorem A2
for a signed measure μ , (see also [21],[22]).

COROLLARY 15. Let f (t) be convex on [M1, M2] , and g : [a, b] → [M1, M2] be
integrable with respect to μ . If μ is such that

∫ b
a dμ(t) = 1 and∫ b

a
G2F(g(t), s) dμ(t) � 0, ∀s ∈ [M1, M2], (4.7)

where G2F is defined as (4.2), then∫ b

a
f (g(t))dμ(t) � f (M1) + f ′(M2)

(∫ b

a
g(t)dμ(t) − M1

)
. (4.8)

The reverse inequality in (4.7) implies the reverse inequality in (4.8).

By using Corollary 15 we can obtain the result which is related with Theorem A3
(see [21], [22]):

COROLLARY 16. Let the conditions of Corollary 15 be satisfied, and let J be
an interval such that J ⊃ f (I) . If Φ(u, v) is a real function defined on J × J ,
non-decreasing in u , then

Φ[
∫ b

a
f (g(t))dμ(t), f (

∫ b

a
g(t)dμ(t))]

� max
x∈[M1,M2 ]

Φ
[
f (M1) + (x − M1)f ′(M2), f (x)

]
(4.9)

The right-hand side of (4.9) is a non-decreasing function of M2 , and a non-increasing
function of M1 .

4.3. Some inequalities related with a Hadamard inequality

COROLLARY 17. (I) Let f ∈ Cn[a, b] be ( n )-convex, and G2F the Green’s
function of the ‘two-point right focal’ problem. Suppose that the measure μ is such
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that (4.5) |g(t)=t holds for all s , then

(4.10)∫ b

a
f (t)dμ(t) �

α∑
i=0

f (i)(a)
1
i!

∫ b

a
(t − a)idμ(t)

+
n−α−2∑

j=0

f (α+1+j)(b)
[ j∑

i=0

(a − b)j−i

(α + 1 + i)!(j − i)!

∫ b

a
(t − a)α+1+idμ(t)

]
.

The reverse inequality in (4.5) |g(t)=t implies the reverse inequality in (4.10).
(II) Let f ∈ Cn[a, b] be ( n )-convex. Suppose that the measure μ is positive, then

(i) if n − α − 1 is even, the reverse of (4.10) holds;
(ii) if n − α − 1 is odd, (4.10) holds.

Proof. By using Theorem 5, g(t) = t , we first prove statement (I). Statement (II)
follows from the fact (4.4). �

For the condition n = 2 , we obtain an inequality related with Fink inequality (1.1)
and Corollary 10 (see also [21], [22]).

COROLLARY 18. (I) Let f ∈ C2[a, b] be convex, and G2F the Greens’s function
defined by (4.2). If μ is a measure such that for all s ∈ [a, b]∫ b

a
G2F(s, t)dμ(t) � 0, (4.11)

then ∫ b

a
f (t)dμ(t) � f (a)

∫ b

a
dμ(t) + f ′(b)

∫ b

a
(t − a)dμ(t)

= P0[f (a) − af ′(b)] + P1f
′(b), (4.12)

where Pk =
∫ b

a tk dμ(t) , k = 0, 1. The reverse inequality in (4.11) implies the reverse
inequality in (4.12).
(II) Let f ∈ C2[a, b] be convex. If μ is a positive measure, then inequality (4.12) holds.

Proof. Statement (II) follows from the fact that G2F(s, t) < 0, ∀s, t ∈ [a, b] ×
[a, b]. �

4.4. Some inequalities related with Giaccardi and Petrović inequality

In discrete case we also obtain some interesting inequalities for convex function of
higher order, wich are related with the well known ones mentioned before.

COROLLARY19. Let p, x ∈ Rn be such that x0 � xi �
∑n

k=1 pkxk, x0,
∑n

k=1 pkxk ∈
[c, d] and

∑n
k=1 pkxk �= x0 . If we choose p = (p1, . . . pn) in such a way that

n∑
k=1

pkG2F(xk, s) � 0, ∀s ∈ [c, d], (4.13)
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where G2F is defined in (4.1) then for (N) -convex function f : [c, d] → R and
0 � α � N − 2 we have the following inequality:

n∑
k=1

pkf (xk) �
α∑

i=0

f (i)(x0)
1
i!

n∑
k=1

pk(xk − x0)i (4.14)

+
N−α−2∑

j=0

f (α+1+j)(
n∑

l=1

plxl)

[
j∑

i=1

(x0 −
∑n

l=1 plxl)j−i

(α + 1 + i)!(j − i)!

n∑
k=1

pk(xk − x0)α+1+i

]
.

The reverse inequality in (4.13) implies the reverse inequality in (4.14).

Proof. We take a discrete measure μ in Theorem 5, and g(t) = t for all t ∈ [a, b] .
We can suppose that [c, d] ⊃ [M1, M2] , where M1, M2 are as in Theorem 5. For a
specific choice of M1 and M2, take

M1 = x0, M2 =
n∑

k=1

pkxk,

we have

x0 � xi �
n∑

k=1

pkxk. �

In case N = 2 we have the following type of Petrović inequality (1.5) for convex
function also [21], [22]):

COROLLARY 20. Let p, x ∈ Rn be as Corollary 19. If

n∑
k=1

pkG2F(xk, s) � 0, ∀s ∈ [c, d], (4.15)

where G2F is defined in (4.2), then for a convex function f : [c, d] → R the following
inequality holds:

n∑
k=1

pkf (xk) � f (x0)
n∑

k=1

pk + f ′(
n∑

l=1

plxl)
n∑

k=1

pk(xk − x0). (4.16)

The reverse inequality in (4.15) also implies the reverse inequality in (4.16).
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