GOLDEN-THOMPSON TYPE INEQUALITIES RELATED TO A GEOMETRIC MEAN VIA SPECHT'S RATIO

Masatoshi Fujii, Yuki Seo and Masaru Tominaga

Abstract. We prove a Golden-Thompson type inequality via Specht's ratio: Let H and K be selfadjoint operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I$ for some scalar $M>m$. Then

$$
M_{h}(1)\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{\frac{1}{t}} \geqslant e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(1)^{-1} M_{h}(t)^{-\frac{1}{t}}\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{\frac{1}{t}}
$$

holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$, where $h=e^{M-m}$ and (generalized) Specht's ratio $M_{h}(t)$ is defined for $h>0$ as

$$
M_{h}(t)=\frac{\left(h^{t}-1\right) h^{\frac{t}{h^{t}-1}}}{e \log h^{t}} \quad(h \neq 1) \quad \text { and } \quad M_{1}(1)=1
$$

1. Introduction

In the commutative case, if H and K are selfadjoint operators on a Hilbert space H, then $e^{H+K}=e^{H} e^{K}$. However, in the noncommutative case, it is entirely no relation between e^{H+K} and e^{H}, e^{K} under the usual order. The celebrated Golden-Thompson trace inequality, independently proved by Golden [6], Symanzik [11] and Thompson [12], says that $\operatorname{Tr} e^{H+K} \leqslant \operatorname{Tr} e^{H} e^{K}$ holds for Hermitian matrices H and K. Afterward, the Golden-Thompson trace inequality was complemented by Hiai and Petz [7]: Let H and K be Hermitian matrices and $0 \leqslant \lambda \leqslant 1$. Then the inequality

$$
\begin{equation*}
\operatorname{Tr}\left(e^{t H} \sharp \lambda e^{t K}\right)^{1 / t} \leqslant \operatorname{Tr} e^{(1-\lambda) H+\lambda K} \tag{1.1}
\end{equation*}
$$

holds for all $t>0$ and the left-hand side of (1.1) converges to the right-hand side as $t \downarrow 0$. Here $X \not \sharp_{\lambda} Y$ denotes the λ-geometric mean of nonnegative matrices X and Y (in particular, $X \sharp_{1 / 2} Y=X \sharp Y$ is the geometric mean), i.e.,

$$
X \not \sharp_{\lambda} Y=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{\lambda} X^{1 / 2} \quad \text { for } 0 \leqslant \lambda \leqslant 1 \text {. }
$$

Moreover, Ando and Hiai [1] completed the complementary counterpart of the Golden-Thompson trace inequality by virtue of the log majorization.

The purpose of this paper is to investigate some relations between e^{H+K} and e^{H}, e^{K} under the usual order in terms of Specht's ratio. Let us recall Specht's ratio: Specht

Mathematics subject classification (2000): 47A30, 47A63.
Key words and phrases: operator inequality, Specht's ratio, Kantorovich type inequality, positive operator, Golden-Thompson inequality.
[10] estimated the upper bound of the arithmetic mean by the geometric one for positive numbers: For $x_{1}, \cdots, x_{n} \in[m, M]$ with $M \geqslant m>0$,

$$
M_{h}(1) \sqrt[n]{x_{1} \cdots x_{n}} \geqslant \frac{x_{1}+\cdots+x_{n}}{n} \geqslant \sqrt[n]{x_{1} \cdots x_{n}}
$$

where $h=\frac{M}{m}(\geqslant 1)$ is a generalized condition number in the sense of Turing [15] and (generalized) Specht's ratio $M_{h}(t)$ is defined for $h>0$ as

$$
\begin{equation*}
M_{h}(t)=\frac{\left(h^{t}-1\right) h^{\frac{t}{h^{t}-1}}}{e \log h^{t}} \quad(h \neq 1) \quad \text { and } \quad M_{1}(1)=1 \tag{1.2}
\end{equation*}
$$

for each $t>0$ (cf. [16, 2, 13, 14]). We prove that if H and K are selfadjoint operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I$ for some scalar $M>m$, then
$M_{h}(1)\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t} \geqslant e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(1)^{-1} M_{h}(t)^{-1 / t}\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t}$
holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$, where $h=e^{M-m}$.

2. Preliminaries

We denote by $A \geqslant 0$ if A is a positive operator on a Hilbert space H. In particular, $A>0$ means that A is positive and invertible. First of all, we consider the operator function derived from the family of power means. Let $B, C>0$ and $\mu \in[0,1]$ be given. Then it is defined by

$$
F(s)=F_{B, C}(s)=\left((1-\mu) B^{s}+\mu C^{s}\right)^{\frac{1}{s}}(s \in \mathbb{R})
$$

It is known that $F(s)$ is monotone increasing on $[1, \infty)$, i.e., $F(s) \leqslant F(t)$ if $1 \leqslant s \leqslant t$, and $F(s)$ is not monotone increasing on $(0,1]$ in general, see [3]. So we discuss the monotonicity of $F(s)$ under the chaotic order $A \gg B$, i.e., $\log A \geqslant \log B$ for $A, B>0$. The following fact is basic in this paper:

LEMMA 2.1. [3] The operator function $F(s)$ is monotone increasing under the chaotic order, i.e., $F(s) \ll F(t)$ if $s<t$. In particular,

$$
\text { s- } \lim _{h \rightarrow 0} F(h)=e^{(1-\mu) \log B+\mu \log C}
$$

Proof. For readers' convenience, we cite a proof. It suffices to show that

$$
\frac{1}{s} \log \left((1-\mu) B^{s}+\mu C^{s}\right) \leqslant \frac{1}{t} \log \left((1-\mu) B^{t}+\mu C^{t}\right)
$$

for $s<t$ with $s, t \neq 0$. To prove this, the operator concavity of x^{r} for $r \in[0,1]$ is available. We first assume $0<s<t$. Then

$$
\log \left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{s}{t}} \geqslant \log \left((1-\mu) B^{s}+\mu C^{s}\right)
$$

and so $\log F(t) \geqslant \log F(s)$. Next, if $s<t<0$, then $\frac{t}{s} \in(0,1)$ and hence

$$
\log \left((1-\mu) B^{s}+\mu C^{s}\right)^{\frac{t}{s}} \geqslant \log \left((1-\mu) B^{t}+\mu C^{t}\right)
$$

Noting $t<0$, we have $\log F(s) \leqslant \log F(t)$.
Now we prove the second assertion. By the operator concavity of $\log x$ and $x-1 \geqslant \log x$ for $x>0$, it implies that for any $t>0$

$$
\begin{aligned}
(1-\mu) \log B+\mu \log C & =\frac{1}{t}\left((1-\mu) \log B^{t}+\mu \log C^{t}\right) \\
& \leqslant \frac{1}{t} \log \left((1-\mu) B^{t}+\mu C^{t}\right) \\
& \leqslant \frac{1}{t}\left((1-\mu) B^{t}+\mu C^{t}-1\right) \\
& =(1-\mu) \frac{B^{t}-1}{t}+\mu \frac{C^{t}-1}{t} \\
& \rightarrow(1-\mu) \log B+\mu \log C \quad(t \rightarrow+0)
\end{aligned}
$$

Therefore it follows that

$$
\text { s- } \lim _{t \rightarrow+0} \log \left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{1}{t}}=(1-\mu) \log B+\mu \log C
$$

so that

$$
\text { s- } \lim _{t \rightarrow+0}\left((1-\mu) B^{t}+\mu C^{t}\right)^{\frac{1}{t}}=e^{(1-\mu) \log B+\mu \log C}
$$

On the other hand, it follows from the identity obtained above that for $s>0$

$$
\begin{aligned}
F_{B, C}(-s) & =F_{B^{-1}, C^{-1}(s)^{-1}} \\
& \rightarrow\left[e^{(1-\mu) \log B^{-1}+\mu \log C^{-1}}\right]^{-1} \\
& =e^{(1-\mu) \log B+\mu \log C}
\end{aligned}
$$

Hence we have the second assertion, which says that s- $\lim _{h \rightarrow 0} F(h)$ can be regarded as $F(0)$. Therefore, if $s<0<t$, then

$$
F(s) \ll F(0) \ll F(t)
$$

Consequently we have the monotonicity of $F(s)$.
For the sake of convenience, Nakamoto and one of the authors [3] defined a geometric mean different from the μ-geometric mean in the sense of Kubo-Ando: For $B, C>0$ and $\mu \in[0,1]$,

$$
B \diamond_{\mu} C=e^{(1-\mu) \log B+\mu \log C}
$$

is said to be the chaotically μ-geometric mean of B and C.

3. Lemmas

Jensen's inequality says that if $f(t)$ is a real valued continuous convex (resp. concave) function and A is a selfadjoint operator on a Hilbert space H, then

$$
(f(A) x, x) \geqslant f((A x, x)) \quad(\text { resp. } f((A x, x)) \geqslant(f(A) x, x))
$$

holds for every unit vector $x \in H$. Mond and Pečarić [9] pointed out that the problem of determining the upper estimates of the difference and the ratio in Jensen's inequality is reduced to solving a single variable maximization (resp. minimization) problem by using the convexity (resp. concavity) of $f(t)$, cf. [8]. We cite the following complementary inequality to Jensen's inequality for the exponential function [4] ([8, Corollary 11], [2]), based on the Mond-Pečarić method.

Lemma 3.1. (Furuta). Let A be a selfadjoint operator on a Hilbert space H satisfying $M I \geqslant A \geqslant m I$ for some scalar $M>m$. Then

$$
M_{h}(t) e^{(t A x, x)} \geqslant\left(e^{t A} x, x\right)
$$

holds for every unit vector $x \in H$ and for all $t>0$, where $h=e^{M-m}$ and $M_{h}(t)$ is defined as (1.2).

Since the exponential function is not operator monotone, the assumption $A \geqslant B$ does not always assure $e^{A} \geqslant e^{B}$. However, Lemma 3.1 shows that e^{t} is order preserving in the following sense via Specht's ratio.

Lemma 3.2. Let A and B be selfadjoint operators on a Hilbert space H satisfying either $M I \geqslant A \geqslant m I$ or $M I \geqslant B \geqslant m I$ for some scalar $M>m$. Then

$$
A \geqslant B \quad \text { implies } \quad M_{h}(t) e^{t A} \geqslant e^{t B} \quad \text { for all } t>0
$$

where $h=e^{M-m}$ and $M_{h}(t)$ is defined as (1.2). In particular,

$$
A \geqslant B \quad \text { implies } \quad M_{h}(1) e^{A} \geqslant e^{B}
$$

Proof. Suppose that $M I \geqslant B \geqslant m I$. Then it follows that for all $t>0$

$$
\begin{aligned}
M_{h}(t)\left(e^{t A} x, x\right) & \geqslant M_{h}(t) e^{(t A x, x)} & & \text { by the convexity of } e^{t} \\
& \geqslant M_{h}(t) e^{(t B x, x)} & & \text { by } A \geqslant B \text { and } t>0 \\
& \geqslant\left(e^{t B} x, x\right) & & \text { by Lemma 3.1 and } M I \geqslant B \geqslant m I
\end{aligned}
$$

holds for every unit vector $x \in H$.
Next, suppose that $M I \geqslant A \geqslant m I$. Then we have $-B \geqslant-A$ and $-m I \geqslant-A \geqslant$ $-M I$. Hence it follows that $e^{-m-(-M)}=e^{M-m}=h$ and $M_{h}(t) e^{-t A} \geqslant e^{-t B}$ as stated above. By taking the inverse of both sides, we have $M_{h}(t) e^{t A} \geqslant e^{t B}$.

The chaotic order $A \gg B$ for $A, B>0$ is introduced by the operator monotonicity of the \log arithmic function, i.e., $A \gg B$ if $\log A \geqslant \log B$. The following statement is equivalent to Lemma 3.2, it makes clear the difference between the usual order and the chaotic order:

If $A \gg B$ for $A, B>0$, then $M_{h}(t) A^{t} \geqslant B^{t}$ for all $t>0$.
The following lemma estimates the upper bound of the difference in Jensen's inequality [8, Corollary 12]:

Lemma 3.3. Let A_{j} be positive operators on a Hilbert space H satisfying $M I \geqslant A_{j} \geqslant m I>0(j=1,2, \cdots, k)$ for some scalar $M>m>0$. Let $f(t)$ be a real valued continuous concave function on $[m, M]$ and also let $x_{1}, x_{2}, \cdots, x_{k}$ be any finite number of vectors such that $\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=1$. Then the following inequality holds;

$$
-\beta(m, M, f) \geqslant f\left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right)-\sum_{j=1}^{k}\left(f\left(A_{j}\right) x_{j}, x_{j}\right)(\geqslant 0)
$$

where

$$
\beta(m, M, f)=\min _{m \leqslant t \leqslant M}\left\{\frac{f(M)-f(m)}{M-m}(t-m)+f(m)-f(t)\right\} .
$$

Proof. For the sake of convenience, we cite a proof. Put $\bar{t}=\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)$ and $\mu=\frac{f(M)-f(m)}{M-m}$. Then we have $m \leqslant \bar{t} \leqslant M$. By the concavity of $f(t)$, we have

$$
\begin{aligned}
& \sum_{j=1}^{k}\left(f\left(A_{j}\right) x_{j}, x_{j}\right)-f\left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right) \\
& \geqslant \sum_{j=1}^{k}\left(\left(\mu\left(A_{j}-m\right)+f(m)\right) x_{j}, x_{j}\right)-f\left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right) \\
& =\mu(\bar{t}-m)+f(m)-f(\bar{t}) \\
& \geqslant \beta(m, M, f) . \quad \square
\end{aligned}
$$

If we put $f(t)=\log t$ in Lemma 3.3, then we have Specht's ratio as the upper bound, (cf. [14]):

Lemma 3.4. Let A_{j} be positive operators on a Hilbert space H satisfying $M I \geqslant A_{j} \geqslant m I>0(j=1,2, \cdots, k)$ for some scalar $M>m>0$. Let $x_{1}, x_{2}, \cdots, x_{k}$ be any finite number of vectors such that $\sum_{j=1}^{k}\left\|x_{j}\right\|^{2}=1$. Then

$$
\log M_{h}(1) \geqslant \log \left(\sum_{j=1}^{k}\left(A_{j} x_{j}, x_{j}\right)\right)-\sum_{j=1}^{k}\left(\log A_{j} x_{j}, x_{j}\right)(\geqslant 0)
$$

where $h=\frac{M}{m}$ and $M_{h}(1)$ is defined as (1.2).
Proof. If we put $f(t)=\log t$ in Lemma 3.3, then we have

$$
\beta(m, M, f)=\frac{f(M)-f(m)}{M-m}\left(t_{0}-m\right)+f(m)-f\left(t_{0}\right)
$$

where $t_{0}=\frac{M-m}{\log M-\log m}$. Therefore it follows that

$$
\begin{aligned}
\frac{f(M)-f(m)}{M-m}\left(t_{0}-m\right) & +f(m)-f\left(t_{0}\right) \\
= & 1+\frac{M \log m-m \log M}{M-m}-\log \left(\frac{M-m}{\log M-\log m}\right) \\
= & 1-\frac{\log h}{h-1}-\log (h-1)+\log (\log h) \\
= & -\log \left(\frac{(h-1) h^{\frac{1}{h-1}}}{e \log h}\right) \\
= & -\log M_{h}(1) .
\end{aligned}
$$

Since $\log t$ is operator concave, we have

$$
\begin{equation*}
\log ((1-\lambda) A+\lambda B)-((1-\lambda) \log A+\lambda \log B) \geqslant 0 \tag{3.1}
\end{equation*}
$$

for $A, B>0$ and $0 \leqslant \lambda \leqslant 1$. By using Lemma 3.4, we estimate the upper bound in (3.1), in which Specht's ratio appears.

Lemma 3.5. Let A and B be positive invertible operators on H satisfying $M I \geqslant A, B \geqslant m I>0$ for some scalar $M>m>0$. Then

$$
\log M_{h}(1) \geqslant \log ((1-\lambda) A+\lambda B)-((1-\lambda) \log A+\lambda \log B)(\geqslant 0)
$$

for all $0 \leqslant \lambda \leqslant 1$.
Proof. For fixed $0 \leqslant \lambda \leqslant 1$ and unit vector $x \in H$, put $A_{1}=A, A_{2}=B$, $x_{1}=\sqrt{1-\lambda} x$ and $x_{2}=\sqrt{\lambda} x$ in Lemma 3.4. Then we have

$$
\log M_{h}(1) \geqslant \log ((1-\lambda)(A x, x)+\lambda(B x, x))-((1-\lambda)(\log A x, x)+\lambda(\log B x, x))
$$

Hence

$$
\begin{aligned}
\log M_{h}(1) & \geqslant \log (((1-\lambda) A+\lambda B) x, x)-(((1-\lambda) \log A+\lambda \log B) x, x) \\
& \geqslant(\log ((1-\lambda) A+\lambda B) x, x)-(((1-\lambda) \log A+\lambda \log B) x, x)
\end{aligned}
$$

where the second inequality is ensured by the concavity of $\log t$.

4. Golden-Thompson type inequality

Ando and Hiai [1] show that for every Hermitian matrix H and K and $0 \leqslant \lambda \leqslant 1$

$$
\left\|\left|\left|\left\{e^{t H} \sharp \lambda e^{t K}\right\}^{1 / t}\right|\|\leqslant\|\right|\left|e^{(1-\lambda) H+\lambda K}\right|\right\| \mid
$$

holds for all $t>0$ and $\left\|\left|\left|\left\{e^{t H} \sharp \lambda e^{t K}\right\}^{1 / t}\right| \|\right.\right.$ increases to $\left\|\left\|e^{(1-\lambda) H+\lambda K} \mid\right\|\right.$ as $t \downarrow 0$ for any unitarily invariant norm $\|\|\cdot\|\|$ by using the log-majorization. Related to this, we give another proof to Lemma 2.1, i.e., For $A, B>0$ satisfying $M I \geqslant A, B \geqslant m I>0$,
$\log \left((1-\lambda) A^{t}+\lambda B^{t}\right)^{1 / t}$ decreases to $(1-\lambda) \log A+\lambda \log B$ as $t \downarrow 0$ in the strong operator topology. As a matter of fact, since

$$
\log \left((1-\lambda) A^{t}+\lambda B^{t}\right)^{1 / t} \geqslant(1-\lambda) \log A+\lambda \log B
$$

holds for all $t>0$, it follows from Lemma 3.5 that

$$
\begin{aligned}
0 & \leqslant \frac{1}{t} \log \left((1-\lambda) A^{t}+\lambda B^{t}\right)-((1-\lambda) \log A+\lambda \log B) \\
& \leqslant \frac{1}{t}\left(\log M_{h}(t)+(1-\lambda) \log A^{t}+\lambda \log B^{t}\right)-((1-\lambda) \log A+\lambda \log B) \\
& =\log M_{h}(t)^{1 / t}
\end{aligned}
$$

Moreover, it is known that $M_{h}(t)^{1 / t} \rightarrow 1$ as $t \downarrow 0$ by Yamazaki and Yanagida [16], so that we have

$$
\lim _{t \downarrow 0} \log \left((1-\lambda) A^{t}+\lambda B^{t}\right)^{1 / t}=(1-\lambda) \log A+\lambda \log B
$$

We now show Golden-Thompson type inequalities under the usual order in terms of Specht's ratio.

THEOREM 4.1. Let H and K be selfadjoint operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I$ for some scalar $M>m$. Then
$M_{h}(1)\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t} \geqslant e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(1)^{-1} M_{h}(t)^{-1 / t}\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t}$
holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$, where $h=e^{M-m}$ and $M_{h}(t)$ is defined as (1.2).
Proof. If we put $A=e^{H}$ and $B=e^{K}$ in Lemma 3.5, then we have

$$
\log \left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t} \geqslant(1-\lambda) H+\lambda K \quad \text { for all } t>0
$$

Since $M I \geqslant(1-\lambda) H+\lambda K \geqslant m I$, it follows from Lemma 3.2 that

$$
M_{h}(1)\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t} \geqslant e^{(1-\lambda) H+\lambda K}
$$

Next, since $e^{t M} \geqslant e^{t H}, e^{t K} \geqslant e^{t m}$ for $t>0$, then it follows from Lemma 3.5 that

$$
\begin{aligned}
(1-\lambda) H+\lambda K & =\frac{1}{t}\left((1-\lambda) \log e^{t H}+\lambda \log e^{t K}\right) \\
& \geqslant \frac{1}{t}\left(\log \left((1-\lambda) e^{t H}+\lambda e^{t K}\right)-\log M_{h}(t)\right) \\
& =\log \left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t} M_{h}(t)^{-1 / t}
\end{aligned}
$$

Hence it follows from Lemma 3.2 that

$$
M_{h}(1) e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(t)^{-1 / t}\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t}
$$

In particular, we obtain lower and upper bounds on e^{H+K}.

Corollary 4.2. Let H and K be selfadjoint operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I$ for some scalar $M>m$. Then

$$
\begin{equation*}
M_{h}(2)\left(\frac{e^{t H}+e^{t K}}{2}\right)^{2 / t} \geqslant e^{H+K} \geqslant M_{h}(2)^{-1} M_{h}(t)^{-2 / t}\left(\frac{e^{t H}+e^{t K}}{2}\right)^{2 / t} \tag{4.1}
\end{equation*}
$$

holds for all $t>0$, where $h=e^{M-m}$.
By virtue of Theorem 4.1, we have an order relation between $e^{(1-\lambda) H+\lambda K}$ and $\left(e^{t H} \sharp_{\lambda} e^{t K}\right)^{1 / t}$ under the usual order via Specht’s ratio.

THEOREM 4.3. Let H and K be positive operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I>0$ for some scalar $M>m>0$. Then

$$
M_{h}(1) M_{h}(t)^{1 / t}\left(e^{t H} \sharp \lambda e^{t K}\right)^{1 / t} \geqslant e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(1)^{-1} M_{h}(t)^{-1 / t}\left(e^{t H} \sharp \lambda e^{t K}\right)^{1 / t}
$$

holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$, where $h=e^{M-m}$ and $M_{h}(t)$ is defined as (1.2).
In particular,

$$
M_{h}(1)^{2}\left(e^{H} \sharp \lambda e^{K}\right) \geqslant e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(1)^{-2}\left(e^{H} \sharp \lambda e^{K}\right)
$$

and

$$
M_{h}(1)^{2}\left(e^{2 H} \sharp \lambda e^{2 K}\right) \geqslant e^{H+K} \geqslant M_{h}(1)^{-2}\left(e^{2 H} \sharp \lambda e^{2 K}\right) .
$$

Proof. By [13], it follows that

$$
M_{h}(t) e^{t H} \nexists_{\lambda} e^{t K} \geqslant e^{t H} \nabla_{\lambda} e^{t K} \geqslant e^{t H} \not \sharp_{\lambda} e^{t K} \quad \text { for all } t>0 \text {. }
$$

Therefore, we have

$$
\log M_{h}(t)^{1 / t}\left(e^{t H} \not \sharp_{\lambda} e^{t K}\right)^{1 / t} \geqslant \log \left(e^{t H} \nabla_{\lambda} e^{t K}\right)^{1 / t} \geqslant \log \left(e^{t H} \not \sharp_{\lambda} e^{t K}\right)^{1 / t} \quad \text { for all } t>0 .
$$

We have this Theorem from this fact and Theorem 4.1.
We recall the arithmetic and harmonic means: $A \nabla_{\lambda} B=(1-\lambda) A+\lambda B$ and $A!_{\lambda} B=\left(A^{-1} \nabla_{\lambda} B^{-1}\right)^{-1}$ for $\lambda \in[0,1]$.

Corollary 4.4. Let H and K be selfadjoint operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I$ for some scalar $M>m$. Then

$$
M_{h}(1)\left(e^{t H} \nabla_{\lambda} e^{t K}\right)^{1 / t} \geqslant e^{(1-\lambda) H+\lambda K} \geqslant M_{h}(1)^{-1}\left(e^{t H}!_{\lambda} e^{t K}\right)^{1 / t}
$$

holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$, where $h=e^{M-m}$.
It is well-known that

$$
A \nabla_{\lambda} B \geqslant A \sharp_{\lambda} B \geqslant A!_{\lambda} B
$$

for $A, B>0$ and $\lambda \in[0,1]$. The following corollary is easily implied by the above corollary, but it is a variant of the arithmetic-geometric mean inequality stated above. Namely it gives an estimation of the chaotically geometric mean by the arithmetic and harmonic means, in which the Specht ratio appears.

COROLLARY 4.5. Let A and B be positive operators on a Hilbert space H satisfying $M I \geqslant A, B \geqslant m I>0$ for some scalar $M>m>0$ and $h=\frac{M}{m}$. Then

$$
M_{h}(1)\left(A^{t} \nabla_{\lambda} B^{t}\right)^{\frac{1}{t}} \geqslant A \diamond_{\lambda} B \geqslant M_{h}(1)^{-1}\left(A^{t}!_{\lambda} B^{t}\right)^{\frac{1}{t}}
$$

holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$ and particularly

$$
M_{h}(1)\left(A \nabla_{\lambda} B\right) \geqslant A \diamond_{\lambda} B \geqslant M_{h}(1)^{-1}\left(A!_{\lambda} B\right)
$$

Finally we show the following variant of Theorem 4.1 for $t \in(0,1]$ by using Ky Fan-Furuta constant ([5]). It is defined for $M>m>0$ and $p>1$ by

$$
K_{+}(m, M, p)=\frac{(p-1)^{p-1}}{p^{p}} \cdot \frac{\left(M^{p}-m^{p}\right)^{p}}{(M-m)\left(m M^{p}-M m^{p}\right)^{p-1}}
$$

It appears in a complementary inequality of Hölder-McCarthy inequality as follows:
Lemma 4.6. ([5]). If $0<m I \leqslant A \leqslant M I$ and $p>1$, then

$$
(A x, x)^{p} \leqslant\left(A^{p} x, x\right) \leqslant K_{+}(m, M, p)(A x, x)^{p}
$$

holds for every unit vector $x \in H$.
THEOREM 4.7. Let H and K be selfadjoint operators on a Hilbert space H satisfying $M I \geqslant H, K \geqslant m I$ for some scalar $M>m$. Then

$$
\begin{aligned}
M_{h}(1)\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t} & \geqslant e^{(1-\lambda) H+\lambda K} \\
& \geqslant K_{+}\left(e^{m t}, e^{M t}, \frac{1}{t}\right) M_{h}(t)^{-1 / t}\left((1-\lambda) e^{t H}+\lambda e^{t K}\right)^{1 / t}
\end{aligned}
$$

holds for all $t>0$ and $0 \leqslant \lambda \leqslant 1$, where $h=e^{M-m}$ and $M_{h}(t)$ is defined as (1.2).
Proof. we put $A=e^{H}$ and $B=e^{K}$, i.e., $H=\log A$ and $K=\log B$. The right hand side is proved as follows:

$$
\begin{aligned}
&\left.\left(e^{(1-\lambda)}\right) \log A+\lambda \log B x, x\right) \\
& \geqslant \exp [(((1-\lambda) \log A+\lambda \log B) x, x)] \\
&=\exp \left[\frac{1}{t}\left((1-\lambda)\left(\log A^{t} x, x\right)+\lambda\left(\log B^{t} x, x\right)\right)\right] \\
& \geqslant \exp \left[\frac{1}{t}\left(\log \left(\left((1-\lambda) A^{t}+\lambda B^{t}\right) x, x\right)-\log M_{h}(t)\right)\right] \\
&=M_{h}(t)^{-\frac{1}{t}}\left(\left((1-\lambda) A^{t}+\lambda B^{t}\right) x, x\right)^{\frac{1}{t}} \\
& \geqslant M_{h}(t)^{-\frac{1}{t}} K_{+}\left(m^{t}, M^{t}, \frac{1}{t}\right)^{-1}\left(\left((1-\lambda) A^{t}+\lambda B^{t}\right)^{\frac{1}{t}} x, x\right)
\end{aligned}
$$

Incidentally, the left hand side is shown in Theorem 4.1.

REFERENCES

[1] T. ANDO AND F. HIAI, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197, 198 (1994), 113-131.
[2] J. I. Fujii, S. Izumino and Y. SEo, Determinant for positive operators and Specht's theorem, Sci. Math., 1 (1998), 307-310.
[3] M. Fujii and R. NaKamoto, A geometric mean in the Furuta inequality, Sci. Math. Japon., to appear.
[4] T. Furuta, Extensions of Mond-Pečarić generalization of Kantorovich inequality, preprint.
[5] T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2 (1998), 137-148.
[6] S. GOLDEN, Lower bounds for Helmholtz function, Phys. Rev., 137 (1965), B1127-B1128.
[7] F. Hiai and D. Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl., 181 (1993), 153-185.
[8] J. Mićı́ć, Y. SEO, S.-E. TaKAhasi and M. Tominaga, Inequalities of Furuta and Mond-Pečarić, Math. Ineq. Appl., 2 (1999), 83-111.
[9] B. Mond and J. E. Pečarić, Convex inequalities in Hilbert spaces, Houston J. Math., 19 (1993), 405-420.
[10] W. Specht, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[11] K. Symanzik, Proof and refinements of an inequality of Feynman, J. Math. Phys., 6 (1965), 1155-1156.
[12] C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys., 6 (1965), 469480.
[13] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
[14] M. Tominaga, Specht's ratio and logarithmic mean in the Young inequality, preprint.
[15] A. M. Turing, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math., 1 (1948), 287-308.
[16] T. Yamazaki and M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37-50.

Masatoshi Fujii
Department of Mathematics Osaka Kyoiku University Asahigaoka, Kashiwara Osaka 582-8582, Japan
e-mail: mfujii@cc.osaka-kyoiku.ac.jp
Yuki Seo
Tennoji Branch, Senior Highschool
Osaka Kyoiku University, Tennoji
Osaka 543-0054, Japan
e-mail: yukis@cc.osaka-kyoiku.ac.jp

Masaru Tominaga
Department of Mathematical Science Graduate school of science and technology

Niigata University
Niigata 950-2181, Japan
e-mail: m-tommy@sweet.ocn.ne.jp

