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GOLDEN–THOMPSON TYPE INEQUALITIES RELATED

TO A GEOMETRIC MEAN VIA SPECHT’S RATIO

MASATOSHI FUJII, YUKI SEO AND MASARU TOMINAGA

Abstract. We prove a Golden-Thompson type inequality via Specht’s ratio: Let H and K be
selfadjoint operators on a Hilbert space H satisfying MI � H, K � mI for some scalar M > m .
Then

Mh(1)
(
(1 − λ)etH + λetK

) 1
t � e(1−λ )H+λK � Mh(1)−1Mh(t)− 1

t
(
(1 − λ)etH + λetK

) 1
t

holds for all t > 0 and 0 � λ � 1 , where h = eM−m and (generalized) Specht’s ratio Mh(t)
is defined for h > 0 as

Mh(t) =
(ht − 1)h

t
ht−1

e log ht (h �= 1) and M1(1) = 1.

1. Introduction

In the commutative case, if H and K are selfadjoint operators on a Hilbert space
H , then eH+K = eHeK . However, in the noncommutative case, it is entirely no relation
between eH+K and eH , eK under the usual order. The celebrated Golden-Thompson
trace inequality, independently proved by Golden [6], Symanzik [11] and Thompson
[12], says that Tr eH+K � Tr eHeK holds for Hermitian matrices H and K . Afterward,
the Golden-Thompson trace inequality was complemented by Hiai and Petz [7]: Let H
and K be Hermitian matrices and 0 � λ � 1 . Then the inequality

Tr
(
etH �λ etK

)1/t � Tr e(1−λ )H+λK (1.1)

holds for all t > 0 and the left-hand side of (1.1) converges to the right-hand side as
t ↓ 0 . Here X �λ Y denotes the λ -geometric mean of nonnegative matrices X and Y
(in particular, X �1/2 Y = X � Y is the geometric mean), i.e.,

X �λ Y = X1/2(X−1/2YX−1/2)λX1/2 for 0 � λ � 1 .

Moreover, Ando and Hiai [1] completed the complementary counterpart of the
Golden-Thompson trace inequality by virtue of the log majorization.

The purpose of this paper is to investigate some relations between eH+K and eH, eK

under the usual order in terms of Specht’s ratio. Let us recall Specht’s ratio: Specht
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[10] estimated the upper bound of the arithmetic mean by the geometric one for positive
numbers: For x1, · · · , xn ∈ [m, M] with M � m > 0 ,

Mh(1) n
√

x1 · · · xn � x1 + · · · + xn

n
� n

√
x1 · · · xn,

where h = M
m (� 1) is a generalized condition number in the sense of Turing [15] and

(generalized) Specht’s ratio Mh(t) is defined for h > 0 as

Mh(t) =
(ht − 1)h

t
ht−1

e log ht
(h �= 1) and M1(1) = 1 (1.2)

for each t > 0 (cf. [16, 2, 13, 14]). We prove that if H and K are selfadjoint operators
on a Hilbert space H satisfying MI � H, K � mI for some scalar M > m , then

Mh(1)
(
(1 − λ )etH + λetK

)1/t � e(1−λ )H+λK � Mh(1)−1Mh(t)−1/t
(
(1 − λ )etH + λetK

)1/t

holds for all t > 0 and 0 � λ � 1 , where h = eM−m .

2. Preliminaries

We denote by A � 0 if A is a positive operator on a Hilbert space H . In particular,
A > 0 means that A is positive and invertible. First of all, we consider the operator
function derived from the family of power means. Let B, C > 0 and μ ∈ [0, 1] be
given. Then it is defined by

F(s) = FB,C(s) = ((1 − μ)Bs + μCs)
1
s (s ∈ R).

It is known that F(s) is monotone increasing on [1,∞) , i.e., F(s) � F(t) if 1 � s � t ,
and F(s) is not monotone increasing on (0, 1] in general, see [3]. So we discuss the
monotonicity of F(s) under the chaotic order A � B , i.e., logA � logB for A, B > 0 .
The following fact is basic in this paper:

LEMMA 2.1. [3] The operator function F(s) is monotone increasing under the
chaotic order, i.e., F(s) � F(t) if s < t . In particular,

s- lim
h→0

F(h) = e(1−μ) log B+μ log C.

Proof. For readers’ convenience, we cite a proof. It suffices to show that

1
s

log((1 − μ)Bs + μCs) � 1
t

log((1 − μ)Bt + μCt)

for s < t with s, t �= 0 . To prove this, the operator concavity of xr for r ∈ [0, 1] is
available. We first assume 0 < s < t . Then

log((1 − μ)Bt + μCt)
s
t � log((1 − μ)Bs + μCs),

and so logF(t) � logF(s) . Next, if s < t < 0 , then t
s ∈ (0, 1) and hence

log((1 − μ)Bs + μCs)
t
s � log((1 − μ)Bt + μCt).
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Noting t < 0 , we have logF(s) � logF(t) .
Now we prove the second assertion. By the operator concavity of log x and

x − 1 � log x for x > 0 , it implies that for any t > 0

(1 − μ) logB + μ logC =
1
t
((1 − μ) logBt + μ logCt)

� 1
t

log((1 − μ)Bt + μCt)

� 1
t
((1 − μ)Bt + μCt − 1)

= (1 − μ)
Bt − 1

t
+ μ

Ct − 1
t

→ (1 − μ) logB + μ logC (t → +0).

Therefore it follows that

s- lim
t→+0

log((1 − μ)Bt + μCt)
1
t = (1 − μ) logB + μ logC,

so that
s- lim

t→+0
((1 − μ)Bt + μCt)

1
t = e(1−μ) log B+μ log C.

On the other hand, it follows from the identity obtained above that for s > 0

FB,C(−s) = FB−1,C−1(s)−1

→ [e(1−μ) log B−1+μ log C−1

]−1

= e(1−μ) log B+μ log C.

Hence we have the second assertion, which says that s- limh→0 F(h) can be regarded as
F(0) . Therefore, if s < 0 < t , then

F(s) � F(0) � F(t).

Consequently we have the monotonicity of F(s) . �
For the sake of convenience, Nakamoto and one of the authors [3] defined a

geometric mean different from the μ -geometric mean in the sense of Kubo-Ando: For
B, C > 0 and μ ∈ [0, 1] ,

B ♦μ C = e(1−μ) log B+μ log C

is said to be the chaotically μ -geometric mean of B and C .

3. Lemmas

Jensen’s inequality says that if f (t) is a real valued continuous convex (resp.
concave) function and A is a selfadjoint operator on a Hilbert space H , then

(f (A)x, x) � f ((Ax, x)) (resp. f ((Ax, x)) � (f (A)x, x) )
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holds for every unit vector x ∈ H . Mond and Pečarić [9] pointed out that the problem of
determining the upper estimates of the difference and the ratio in Jensen’s inequality is
reduced to solving a single variablemaximization (resp.minimization) problembyusing
the convexity (resp. concavity) of f (t) , cf. [8]. We cite the following complementary
inequality to Jensen’s inequality for the exponential function [4] ([8, Corollary 11], [2]),
based on the Mond-Pečarić method.

LEMMA 3.1. (Furuta). Let A be a selfadjoint operator on a Hilbert space H
satisfying MI � A � mI for some scalar M > m. Then

Mh(t)e(tAx,x) � (etAx, x)

holds for every unit vector x ∈ H and for all t > 0 , where h = eM−m and Mh(t) is
defined as (1.2).

Since the exponential function is not operator monotone, the assumption A � B
does not always assure eA � eB . However, Lemma 3.1 shows that et is order preserving
in the following sense via Specht’s ratio.

LEMMA 3.2. Let A and B be selfadjoint operators on aHilbert space H satisfying
either MI � A � mI or MI � B � mI for some scalar M > m. Then

A � B implies Mh(t)etA � etB for all t > 0 ,

where h = eM−m and Mh(t) is defined as (1.2). In particular,

A � B implies Mh(1)eA � eB.

Proof. Suppose that MI � B � mI . Then it follows that for all t > 0

Mh(t)(etAx, x) � Mh(t)e(tAx,x) by the convexity of et

� Mh(t)e(tBx,x) by A � B and t > 0

� (etBx, x) by Lemma 3.1 and MI � B � mI

holds for every unit vector x ∈ H .
Next, suppose that MI � A � mI . Then we have −B � −A and −mI � −A �

−MI . Hence it follows that e−m−(−M) = eM−m = h and Mh(t)e−tA � e−tB as stated
above. By taking the inverse of both sides, we have Mh(t)etA � etB . �

The chaotic order A � B for A, B > 0 is introduced by the operatormonotonicity
of the logarithmic function, i.e., A � B if logA � logB . The following statement is
equivalent to Lemma 3.2, it makes clear the difference between the usual order and the
chaotic order:

If A � B for A, B > 0 , then Mh(t)At � Bt for all t > 0 .
The following lemma estimates the upper bound of the difference in Jensen’s

inequality [8, Corollary 12]:
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LEMMA 3.3. Let Aj be positive operators on a Hilbert space H satisfying
MI � Aj � mI > 0 (j = 1, 2, · · · , k) for some scalar M > m > 0 . Let f (t) be a real
valued continuous concave function on [m, M] and also let x1, x2, · · · , xk be any finite
number of vectors such that

∑k
j=1 ‖xj‖2 = 1 . Then the following inequality holds;

−β(m, M, f ) � f

⎛
⎝ k∑

j=1

(Ajxj, xj)

⎞
⎠−

k∑
j=1

(f (Aj)xj, xj) (� 0),

where

β(m, M, f ) = min
m�t�M

{
f (M) − f (m)

M − m
(t − m) + f (m) − f (t)

}
.

Proof. For the sake of convenience, we cite a proof. Put t̄ =
∑k

j=1(Ajxj, xj) and

μ = f (M)−f (m)
M−m . Then we have m � t̄ � M . By the concavity of f (t) , we have

k∑
j=1

(f (Aj)xj, xj) − f

⎛
⎝ k∑

j=1

(Ajxj, xj)

⎞
⎠

�
k∑

j=1

((μ(Aj − m) + f (m))xj, xj) − f

⎛
⎝ k∑

j=1

(Ajxj, xj)

⎞
⎠

= μ(t̄ − m) + f (m) − f (t̄)
� β(m, M, f ). �

If we put f (t) = log t in Lemma 3.3, then we have Specht’s ratio as the upper
bound, (cf. [14]):

LEMMA 3.4. Let Aj be positive operators on a Hilbert space H satisfying
MI � Aj � mI > 0 (j = 1, 2, · · · , k) for some scalar M > m > 0 . Let x1, x2, · · · , xk

be any finite number of vectors such that
∑k

j=1 ‖xj‖2 = 1 . Then

logMh(1) � log

⎛
⎝ k∑

j=1

(Ajxj, xj)

⎞
⎠−

k∑
j=1

(logAj xj, xj) (� 0),

where h = M
m and Mh(1) is defined as (1.2).

Proof. If we put f (t) = log t in Lemma 3.3, then we have

β(m, M, f ) =
f (M) − f (m)

M − m
(t0 − m) + f (m) − f (t0),
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where t0 = M−m
log M−log m . Therefore it follows that

f (M) − f (m)
M − m

(t0 − m) + f (m) − f (t0)

= 1 +
M logm − m logM

M − m
− log

(
M − m

logM − logm

)

= 1 − log h
h − 1

− log(h − 1) + log(log h)

= − log

(
(h − 1)h

1
h−1

e log h

)

= − logMh(1). �

Since log t is operator concave, we have

log((1 − λ )A + λB) − ((1 − λ ) logA + λ logB) � 0 (3.1)

for A, B > 0 and 0 � λ � 1 . By using Lemma 3.4, we estimate the upper bound in
(3.1), in which Specht’s ratio appears.

LEMMA 3.5. Let A and B be positive invertible operators on H satisfying
MI � A, B � mI > 0 for some scalar M > m > 0 . Then

logMh(1) � log ((1 − λ )A + λB) − ((1 − λ ) logA + λ logB) (� 0)

for all 0 � λ � 1 .

Proof. For fixed 0 � λ � 1 and unit vector x ∈ H , put A1 = A , A2 = B ,
x1 =

√
1 − λx and x2 =

√
λx in Lemma 3.4. Then we have

logMh(1) � log ((1 − λ )(Ax, x) + λ (Bx, x)) − ((1 − λ )(log Ax, x) + λ (logBx, x)) .

Hence

logMh(1) � log (((1 − λ )A + λB)x, x) − (((1 − λ ) logA + λ logB)x, x)
� (log((1 − λ )A + λB)x, x) − (((1 − λ ) logA + λ logB)x, x) ,

where the second inequality is ensured by the concavity of log t . �

4. Golden-Thompson type inequality

Ando and Hiai [1] show that for every Hermitian matrix H and K and 0 � λ � 1

|||{etH �λ etK}1/t||| � |||e(1−λ )H+λK|||
holds for all t > 0 and |||{etH �λ etK}1/t||| increases to |||e(1−λ )H+λK||| as t ↓ 0 for
any unitarily invariant norm ||| · ||| by using the log-majorization. Related to this, we
give another proof to Lemma 2.1, i.e., For A, B > 0 satisfying MI � A, B � mI > 0 ,
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log ((1 − λ )At + λBt)1/t decreases to (1 − λ ) logA + λ logB as t ↓ 0 in the strong
operator topology. As a matter of fact, since

log ((1 − λ )At + λBt)1/t � (1 − λ ) logA + λ logB

holds for all t > 0 , it follows from Lemma 3.5 that

0 � 1
t

log ((1 − λ )At + λBt) − ((1 − λ ) logA + λ logB)

� 1
t

(logMh(t) + (1 − λ ) logAt + λ logBt) − ((1 − λ ) logA + λ logB)

= logMh(t)1/t.

Moreover, it is known that Mh(t)1/t → 1 as t ↓ 0 by Yamazaki and Yanagida [16], so
that we have

lim
t↓0

log ((1 − λ )At + λBt)1/t = (1 − λ ) logA + λ logB.

We now show Golden-Thompson type inequalities under the usual order in terms
of Specht’s ratio.

THEOREM 4.1. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI � H, K � mI for some scalar M > m. Then

Mh(1)
(
(1 − λ )etH + λetK

)1/t � e(1−λ )H+λK � Mh(1)−1Mh(t)−1/t
(
(1 − λ )etH + λetK

)1/t

holds for all t > 0 and 0 � λ � 1 , where h = eM−m and Mh(t) is defined as (1.2).

Proof. If we put A = eH and B = eK in Lemma 3.5, then we have

log
(
(1 − λ )etH + λetK

)1/t � (1 − λ )H + λK for all t > 0 .

Since MI � (1 − λ )H + λK � mI , it follows from Lemma 3.2 that

Mh(1)
(
(1 − λ )etH + λetK

)1/t � e(1−λ )H+λK.

Next, since etM � etH , etK � etm for t > 0 , then it follows from Lemma 3.5 that

(1 − λ )H + λK =
1
t

(
(1 − λ ) log etH + λ log etK

)
� 1

t

(
log
(
(1 − λ )etH + λetK

)− logMh(t)
)

= log
(
(1 − λ )etH + λetK

)1/t
Mh(t)−1/t.

Hence it follows from Lemma 3.2 that

Mh(1)e(1−λ )H+λK � Mh(t)−1/t
(
(1 − λ )etH + λetK

)1/t
. �

In particular, we obtain lower and upper bounds on eH+K .
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COROLLARY 4.2. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI � H, K � mI for some scalar M > m. Then

Mh(2)
(

etH + etK

2

)2/t

� eH+K � Mh(2)−1Mh(t)−2/t

(
etH + etK

2

)2/t

(4.1)

holds for all t > 0 , where h = eM−m .

By virtue of Theorem 4.1, we have an order relation between e(1−λ )H+λK and(
etH�λ etK

)1/t
under the usual order via Specht’s ratio.

THEOREM 4.3. Let H and K be positive operators on aHilbert space H satisfying
MI � H, K � mI > 0 for some scalar M > m > 0 . Then

Mh(1)Mh(t)1/t
(
etH �λ etK

)1/t � e(1−λ )H+λK � Mh(1)−1Mh(t)−1/t
(
etH �λ etK

)1/t

holds for all t > 0 and 0 � λ � 1 , where h = eM−m and Mh(t) is defined as (1.2).
In particular,

Mh(1)2
(
eH �λ eK

)
� e(1−λ )H+λK � Mh(1)−2

(
eH �λ eK

)
and

Mh(1)2
(
e2H �λ e2K

)
� eH+K � Mh(1)−2

(
e2H �λ e2K

)
.

Proof. By [13], it follows that

Mh(t)etH �λ etK � etH ∇λ etK � etH �λ etK for all t > 0 .

Therefore, we have

logMh(t)1/t(etH �λ etK)1/t � log(etH ∇λ etK)1/t � log(etH �λ etK)1/t for all t > 0 .

We have this Theorem from this fact and Theorem 4.1. �
We recall the arithmetic and harmonic means: A ∇λ B = (1 − λ )A + λB and

A !λB = (A−1 ∇λ B−1)−1 for λ ∈ [0, 1] .

COROLLARY 4.4. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI � H, K � mI for some scalar M > m. Then

Mh(1)
(
etH ∇λ etK

)1/t � e(1−λ )H+λK � Mh(1)−1
(
etH !λ etK

)1/t

holds for all t > 0 and 0 � λ � 1 , where h = eM−m .

It is well-known that

A ∇λ B � A �λ B � A !λ B

for A, B > 0 and λ ∈ [0, 1] . The following corollary is easily implied by the above
corollary, but it is a variant of the arithmetic-geometric mean inequality stated above.
Namely it gives an estimation of the chaotically geometric mean by the arithmetic and
harmonic means, in which the Specht ratio appears.
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COROLLARY 4.5. Let A and B be positive operators on a Hilbert space H
satisfying MI � A, B � mI > 0 for some scalar M > m > 0 and h = M

m . Then

Mh(1) (At ∇λ Bt)
1
t � A ♦λ B � Mh(1)−1 (At !λ Bt)

1
t

holds for all t > 0 and 0 � λ � 1 and particularly

Mh(1) (A ∇λ B) � A ♦λ B � Mh(1)−1 (A !λ B) .

Finally we show the following variant of Theorem 4.1 for t ∈ (0, 1] by using Ky
Fan-Furuta constant ([5]). It is defined for M > m > 0 and p > 1 by

K+(m, M, p) =
(p − 1)p−1

pp
· (Mp − mp)p

(M − m)(mMp − Mmp)p−1
.

It appears in a complementary inequality of Hölder-McCarthy inequality as follows:

LEMMA 4.6. ([5]). If 0 < mI � A � MI and p > 1 , then

(Ax, x)p � (Apx, x) � K+(m, M, p)(Ax, x)p

holds for every unit vector x ∈ H .

THEOREM 4.7. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI � H, K � mI for some scalar M > m. Then

Mh(1)
(
(1 − λ )etH + λetK

)1/t � e(1−λ )H+λK

� K+(emt, eMt,
1
t
)Mh(t)−1/t

(
(1 − λ )etH + λetK

)1/t

holds for all t > 0 and 0 � λ � 1 , where h = eM−m and Mh(t) is defined as (1.2).

Proof. we put A = eH and B = eK , i.e., H = logA and K = logB . The right
hand side is proved as follows:

(e(1−λ ) log A+λ log Bx, x)
� exp[(((1 − λ ) logA + λ logB)x, x)]

= exp[
1
t
((1 − λ )(logAtx, x) + λ (logBtx, x))]

� exp[
1
t
(log(((1 − λ )At + λBt)x, x) − logMh(t))]

= Mh(t)−
1
t (((1 − λ )At + λBt)x, x)

1
t

� Mh(t)−
1
t K+(mt, Mt,

1
t
)−1(((1 − λ )At + λBt)

1
t x, x).

Incidentally, the left hand side is shown in Theorem 4.1. �
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