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GOLDEN-THOMPSON TYPE INEQUALITIES RELATED
TO A GEOMETRIC MEAN VIA SPECHT’S RATIO

MASATOSHI FuUJII, YUKI SEO AND MASARU TOMINAGA

Abstract. We prove a Golden-Thompson type inequality via Specht’s ratio: Let H and K be
selfadjoint operators on a Hilbert space H satistying MI > H,K > ml for some scalar M > m .
Then

1 1
My (1) ((1 — A)elfl +zeﬂ<)’ > d=MHAAK 5 0 (1)~ M, (1)~ 1 ((1 —A)e +/1e'K)’

holds forall 7> 0 and 0 <A < 1, where i = M~ and (generalized) Specht’s ratio My,(r)
is defined for 7 > 0 as

W DR
Mh(t):ﬁ (h#1) and M(1)=1.

1. Introduction

In the commutative case, if H and K are selfadjoint operators on a Hilbert space
H , then ef*X = ¢feK | However, in the noncommutative case, it is entirely no relation
between e*K and e’, eX under the usual order. The celebrated Golden-Thompson
trace inequality, independently proved by Golden [6], Symanzik [11] and Thompson
[12], says that Tr e/ tK < Tr efeX holds for Hermitian matrices H and K . Afterward,
the Golden-Thompson trace inequality was complemented by Hiai and Petz [7]: Let H
and K be Hermitian matrices and 0 < A < 1. Then the inequality

Tr (etH ﬁ}’ etK) 1/t < Tr e(l*)L)H%’ﬁ,K (11)

holds for all 7 > 0 and the left-hand side of (1.1) converges to the right-hand side as
t 1 0. Here X t, Y denotes the A -geometric mean of nonnegative matrices X and Y
(in particular, X #;, ¥ = X Y is the geometric mean), i.e.,

Xt Y =XV2(x"1Pyx— 12 x12 for0< A<,

Moreover, Ando and Hiai [1] completed the complementary counterpart of the
Golden-Thompson trace inequality by virtue of the log majorization.

The purpose of this paper is to investigate some relations between e X and e, e
under the usual order in terms of Specht’s ratio. Let us recall Specht’s ratio: Specht
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[10] estimated the upper bound of the arithmetic mean by the geometric one for positive
numbers: For xi,--- ,x, € [m,M] with M >m >0,

X +...+x
Mh(l)nxl"'xn> % 2 nxl"'xm

where h = Y% (> 1) is a generalized condition number in the sense of Turing [15] and
(generalized) Specht’s ratio M (¢) is defined for & > 0 as

Mh(t)z% (h#1) and M;(1) =1 (1.2)

foreach ¢t > 0 (cf. [16, 2, 13, 14]). We prove that if H and K are selfadjoint operators
on a Hilbert space H satisfying MI > H,K > ml for some scalar M > m, then

My(1) (1 = 2)e + Ae)" = DK > 4 (1) M ()7 (1= A)e + Ae)

holds forall £ >0 and 0 < A < 1, where h = M.

2. Preliminaries

We denoteby A > 0 if A is a positive operator on a Hilbert space H . In particular,
A > 0 means that A is positive and invertible. First of all, we consider the operator
function derived from the family of power means. Let B, C > 0 and u € [0, 1] be
given. Then it is defined by

F(s) = Fpcls) = (1 — w)B' + uC")+ (s €R).

Itis known that F(s) is monotone increasing on [1,00),1i.e., F(s) < F(r) if 1 < s <1,
and F(s) is not monotone increasing on (0, 1] in general, see [3]. So we discuss the
monotonicity of F(s) under the chaotic order A > B, i.e., logA > logB for A, B > 0.
The following fact is basic in this paper:

LEMMA 2.1. [3] The operator function F(s) is monotone increasing under the
chaotic order, i.e., F(s) < F(t) if s < t. In particular,

s-lim F(h) = o(1—1)log B+uulog C
h—0

Proof. For readers’ convenience, we cite a proof. It suffices to show that

1 ) 1
Slog((1 = p)B’ + uC’) < —log((1 — p)B' + puc’)

for s < t with s,¢ # 0. To prove this, the operator concavity of x" for r € [0, 1] is
available. We first assume 0 < s < ¢. Then

log((1 — p)B' + uC")? > log((1 — u)B* + uC®),
and so log F(t) > log F(s). Next, if s <t < 0, then £ € (0,1) and hence

log((1 — u)B* + uC*)5 > log((1 — u)B' + uc").
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Noting ¢ < 0, we have log F(s) < log F(¢).
Now we prove the second assertion. By the operator concavity of logx and
x —1 > logx for x > 0, it implies that for any 7 > 0

1
(1 —u)logB+ plogC = ?((1 — ) logB + ulog C')
1
<+ log((1 ~ )B' + uC)
1
< (L= p)B +uc = 1)

B -1 C-1
=1 -p)——tu—

— (1 —pu)logB+ ulogC (t — +0).

Therefore it follows that

s- lim log((1 — w)B' + uCt = (1—u)logB+ plogC,
—H

so that

IRt - ¢ 1\t _ ,(1—u)log B+ulog C
s r1—1>n+]0((1 u)B'+ucChr =e .

On the other hand, it follows from the identity obtained above that for s > 0

FB,C(*S) = FB*‘,C*I (S)il
_ [e(l—u) logBilJrulogC*l]—l

— p(1—H)log Btulog C_
Hence we have the second assertion, which says that s-lim,_,o F(h) can be regarded as
F(0). Therefore, if s <0 < 7, then
F(s) < F(0) < F(¢).
Consequently we have the monotonicity of F(s). O

For the sake of convenience, Nakamoto and one of the authors [3] defined a
geometric mean different from the p -geometric mean in the sense of Kubo-Ando: For

B,C>0and u € [0,1],

B <>“ C = e(l—u)logBJrulogC

is said to be the chaotically u -geometric mean of B and C.

3. Lemmas

Jensen’s inequality says that if f(¢) is a real valued continuous convex (resp.
concave) function and A is a selfadjoint operator on a Hilbert space H, then

(f (A)x,x) = ((Ax,x))  (resp. f((Ax,x)) = (f(A)x,x))
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holds for every unit vector x € H. Mond and Pe¢arié [9] pointed out that the problem of
determining the upper estimates of the difference and the ratio in Jensen’s inequality is
reduced to solving a single variable maximization (resp. minimization) problem by using
the convexity (resp. concavity) of f (z), cf. [8]. We cite the following complementary
inequality to Jensen’s inequality for the exponential function [4] ([8, Corollary 11], [2]),
based on the Mond-Pecari¢ method.

LEMMA 3.1. (Furuta). Let A be a selfadjoint operator on a Hilbert space H
satisfying MI > A > ml for some scalar M > m. Then

Mh(t)e(tAx,x) > (etAx7 )C)

holds for every unit vector x € H and for all t > 0, where h = eM=™ and M,(t) is
defined as (1.2).

Since the exponential function is not operator monotone, the assumption A > B
does not always assure ¢! > ef . However, Lemma 3.1 shows that ¢’ is order preserving
in the following sense via Specht’s ratio.

LEMMA3.2. Let A and B be selfadjoint operators on a Hilbert space H satisfying
either MI > A > ml or MI > B > ml for some scalar M > m. Then

A>B implies  My(t)e > '8 forall t >0,
where h = eM=" and M,(t) is defined as (1.2). In particular,

A>B implies  Mj,(1)e* > €.

Proof. Suppose that MI > B > ml . Then it follows that for all # > 0

My (1)(ex, x) = My(1)e™ by the convexity of ¢’

Z
> M, (1)e ™) byA > Bandt >0
> (e’x,x) by Lemma 3.1 and MI > B > ml

holds for every unit vector x € H.

Next, suppose that MI > A > ml. Then we have —B > —A and —ml > —A >
—MI . Hence it follows that e ="~ “(-m) = eM=m = h and My(t)e=™ > e~'B as stated
above. By taking the inverse of both sides, we have Mj,(t)e”* > ¢B. O

The chaotic order A > B for A, B > 0 is introduced by the operator monotonicity
of the logarithmic function, i.e., A > B if logA > log B. The following statement is
equivalent to Lemma 3.2, it makes clear the difference between the usual order and the
chaotic order:

If A> B for A, B> 0, then M,(1)A" > B’ forall t > 0.

The following lemma estimates the upper bound of the difference in Jensen’s
inequality [8, Corollary 12]:
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LEMMA 3.3. Let A; be positive operators on a Hilbert space H satisfying
MI>A>2ml>0 (j=1,2,--- k) for some scalar M > m > 0. Let f(t) be a real
valued continuous concave function on [m, M| and also let x1,x,- -+ ,x; be any finite

number of vectors such that ZJ]f:l lxj||? = 1. Then the following inequality holds;

k

k
—Bm,M.f) = | D (A,x5) | =D (FA)x,x) (=0),
=1

j=1
where

m<t<M M—m

B(m.M.f) = min {Mu—m) T f(m) —f(t)}-

Proof. For the sake of convenience, we cite a proof. Put 7 = Z]; (Ajxj,x;) and

u= A >_m( . Then we have m < 7 < M. By the concavity of f (¢), we have

k

SF@A)xx) —f | D> (A, x)

J=1 j=1

k k

> 3 (W = m) 47 o)) = | D (Aps)
= u(t—m) +f(m)—f(1)

> B(m,M,f). O

If we put () = logs in Lemma 3.3, then we have Specht’s ratio as the upper
bound, (cf. [14]):

LEMMA 3.4. Let A; be positive operators on a Hilbert space H satisfying
MIZA;>2ml>0 (j=1,2,- )forsomescalar M >m>0. Let x;,x3,- - ,Xx
be any finite number of vectors such that Z L I%]? = 1. Then

k k
log My(1) > log [ > (A7) | =D (logA;x;,x) (> 0),
j=1 j=1

where h =2 and M, (1) is defined as (1.2).

Proof. If we put f () = log# in Lemma 3.3, then we have

Blom ) =TT ) i) — 1 (),
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where #, = logﬂl\ill%ﬁgm' Therefore it follows that
M —
LD 2T 1y w4 m) (0

Mlogm—mlogM_10 M—m
M—m logM — logm

logh
- hOg - log(h — 1) + log(log h)

1

(h— 1)h7=T

= 71 _—
0g< elogh

—logM,(1). O

Since logt is operator concave, we have
log((1—A)A+AB)— ((1 —A)logA+ AlogB) >0 (3.1)

for A, B> 0 and 0 < A < 1. By using Lemma 3.4, we estimate the upper bound in
(3.1), in which Specht’s ratio appears.

LEMMA 3.5. Let A and B be positive invertible operators on H satisfying
MI > A,B > ml > 0 for some scalar M > m > 0. Then

logM;(1) = log ((1 —A)A+AB) — ((1 — A)logA + AlogB) (> 0)
forall 0 <A < 1.

Proof. For fixed 0 < A < 1 and unit vector x € H, put Ay = A, A, = B,
x1 =+v1—Ax and x, = V/Ax in Lemma 3.4. Then we have

logMp(1) > log ((1 — A)(Ax,x) + A(Bx,x)) — ((1 — A)(log Ax,x) + A (log Bx, x)) .
Hence

logM;(1) > log (((1 = A)A+ AB)x,x) — (((1 — A)logA + A log B)x, x)

P>
> (log((1 = A)A + AB)x,x) — (((1 — A)logA + A log B)x, x) ,

where the second inequality is ensured by the concavity of logz. [

4. Golden-Thompson type inequality
Ando and Hiai [1] show that for every Hermitian matrix H and K and 0 < A < 1
[11{e™ g eI < [[le! =AY

holds for all # > 0 and |||{e™ #; ¢K}'/*||| increases to |||e!~*)H+*K||| as ¢ | O for
any unitarily invariant norm ||| - ||| by using the log-majorization. Related to this, we
give another proof to Lemma 2.1, i.e., For A, B > 0 satisfying MI > A,B > ml > 0,
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log ((1 — A)A’ —&-/lB’)l/t decreases to (1 — A)logA + AlogB as ¢t | 0 in the strong
operator topology. As a matter of fact, since

log (1 — A)A" + AB)" > (1 — A)logA + A log B
holds for all # > 0, it follows from Lemma 3.5 that

0< —log((1=A)A"+AB") — ((1 —A)logA + A logB)

| — o~ =

< = (logM, () + (1 — A)logA" + Alog B") — ((1 — A)logA + A log B)

t
= log M, (0)"/".

Moreover, it is known that M;,(f)'/" — 1 as ¢ | 0 by Yamazaki and Yanagida [16], so
that we have

lilr(l)llog((l — M)A+ AB)"" = (1= A)logA + A log B.
t

We now show Golden-Thompson type inequalities under the usual order in terms
of Specht’s ratio.

THEOREM 4.1. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI > H,K > ml for some scalar M > m. Then

My(1) (1 = 2)e™ + Ae®) " = =PI S 4 (1)~ M () (1= A)e™ + Ae)

holds forall t >0 and 0 < A < 1, where h = eM=™ and M,,(t) is defined as (1.2).

Proof. 1f we put A = ¢/ and B = X in Lemma 3.5, then we have
log (1= A)e™ + 2.e%)" > (1= 2)H+ Ak forall £> 0.
Since MI > (1 — A)H + AK > ml , it follows from Lemma 3.2 that
Mi(1) (1= 2)e™ + e®) 1" > =P 2K,
Next, since e™ > ¢ K > ™ for t > 0, then it follows from Lemma 3.5 that

(1—A)H+AK == ((1 — A)loge™ + Aloge'™)

~ | =N =

> — (log ((1 — A)e™ + Ae'™) — log My(1))
=log ((1 —A)e™ + AetK)l/ch(t)_l/’.
Hence it follows from Lemma 3.2 that

My (1)el'=PHI2K 5 pp () =1 (1= 2)e™ 4 Ae) . O

In particular, we obtain lower and upper bounds on e *X
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COROLLARY 4.2. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI > H,K > ml for some scalar M > m. Then

e 4 oK 2/t B B et 4 oK 2/t
M;(2) (T) > MK > My (2) 7 My (1)1 (T) (4.1)

holds for all t > 0, where h = eM-m,

1-A)H+AK

By virtue of Theorem 4.1, we have an order relation between el and

1 . .
(eT4;e™) /" under the usual order via Specht’s ratio.

THEOREM4.3. Let H and K be positive operators on a Hilbert space H satisfying
MI > H,K > ml > 0 for some scalar M > m > 0. Then

Mu(D)My(0)17 (¢ 1 )" > 0-PHHAK 5 a1, (1), (1)1 (¢ 5 %)

holds forall t >0 and 0 < A < 1, where h = ™™™ and My (t) is defined as (1.2).

In particular,
Mh(l)z (eH ﬁ)t eK) > e(l—A)HJrAK > Mh(l)—2 (eH ﬁl eK)

and
Mh(l)z (€2H ﬁ)t 62K) 2 eH+K 2 Mh(l)iz (62H ﬁl 62K) )

Proof. By [13], it follows that
M, ()™ 15 e = ™ v, ® > My, o forall t > 0.
Therefore, we have
log My (1) (e 1, e®)V/" > log(e™ V; )" > log(e™ ) )V forall t > 0.
We have this Theorem from this fact and Theorem 4.1. [

We recall the arithmetic and harmonic means: A V3 B = (1 — A)A + AB and
ALB=(A"'V, B~)"! for A € [0, 1].

COROLLARY 4.4. Let H and K be selfadjoint operators on a Hilbert space H
satisfying M1 > H,K > ml for some scalar M > m. Then

Mh(l) (etH vl eTK)l/t 2 e(l—l)H%*AK 2 Mh(l)—l (etH '/1 etK)l/t
holds forall t >0 and 0 < A < 1, where h = M=,
It is well-known that
AV, B>Af) B>A!, B

for A, B> 0 and A € [0, 1]. The following corollary is easily implied by the above
corollary, but it is a variant of the arithmetic-geometric mean inequality stated above.
Namely it gives an estimation of the chaotically geometric mean by the arithmetic and
harmonic means, in which the Specht ratio appears.
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COROLLARY 4.5. Let A and B be positive operators on a Hilbert space H
satisfying M1 > A,B > ml > 0 for some scalar M > m > 0 and h = % Then

1
t

My(1) (A" V5 B)T > A, B > My (1)~ (A" 1; BY)
holds for all t > 0 and 0 < A < 1 and particularly
My(1)(AV,B) > A0 B>My(1)™' (A1 B).

Finally we show the following variant of Theorem 4.1 for 7 € (0, 1] by using Ky
Fan-Furuta constant ([5]). It is defined for M > m > 0 and p > 1 by

p-y_ gr—wy
pP (M — m)(mMP — Mmp)P—!

K+(m>M7p) =

It appears in a complementary inequality of Holder-McCarthy inequality as follows:

LEMMA 4.6. ([5]). If 0 < ml < A< MI and p > 1, then
(Ax,x)" < (APx,x) < Ky (m, M, p)(Ax, x)"

holds for every unit vector x € H.

THEOREM 4.7. Let H and K be selfadjoint operators on a Hilbert space H
satisfying MI > H,K > ml for some scalar M > m. Then

Mh(l) ((1 _ A)etH —I—AetK)l/t > e(l—)L)H+)LK

1
> K (M, M) 7 (1= 2)e + 2ek) !
holds for all t >0 and 0 < A < 1, where h = eM=™ and M,(t) is defined as (1.2).

Proof. weput A = ef! and B = ¢X,ie., H =logA and K = logB. The right
hand side is proved as follows:

(el A logATA oz )
> expl(((1— 4) log A + A log B)x, )
= explL (1~ A)(logA'x, ) + A(log B'x, )]
> expl(log((1 — )" + B')x,) — log M (1))
= My(1) 77 (((1 = A)A" + AB")x,x)7
)"

My(6)~ Ko (m!, M, 1)—1(((1—A)AI+ABI)% %).

Incidentally, the left hand side is shown in Theorem 4.1. [
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