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HEINZ AND MCINTOSH INEQUALITIES, ALUTHGE
TRANSFORMATION AND THE SPECTRAL RADIUS

DERMING WANG

(communicated by T. Furuta)

Abstract. Employing Heinz and Mclntosh inequalities, this paper presents a simplified proof of
Yamazaki’s characterization of the spectral radius: If 7}, is the n-th Aluthge transformation of
a bounded linear operator T, then the sequence {[|Ty[|};,2, converges to the spectral radius of
T.

1. Introduction

Let T be a bounded linear operator on a Hilbert space with spectrum o(7). The
spectral radius r(T) of T is defined by

r(T) = sup{|A|: A € o(T)}.
It is well known that the spectral radius may be characterized as
r(T) = lim ||T4]["/%. ()

Employing a norm inequality of Heinz and a laborious scheme, Yamazaki [6] recently
obtained a new characterization (Theorem 3 below) of the spectral radius as the limit
of the norm of the n-th Aluthge transformation of 7. In this paper we will further
employ a norm inequality due to MclIntosh to give a simplified proof of Yamazaki’s
characterization.

2. Preliminaries

For a bounded linear operator 7, we will write Tp = 7, and throughout the
discussion, T and T, will be used interchangeably. Let T = T, = Uy|Ty| be the polar
decomposition of 7. Following [1], we define

Ty = |To|"*Us|To| /%
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The operator 7; is known as the Aluthge transformation, or first Aluthge transforma-
tion of 7. Let Ty = U,|T;| be the polar decomposition of T;. The second Aluthge
transformation 7, of T is defined by

T = ‘T1‘1/2U1‘T1‘1/2.

Inductively, if T, = U,|T,| is the polar decomposition of the n-th Aluthge transforma-
tion, one defines the (n + 1) -st Aluthge transformation as

n+l |T ‘1/2U |T ‘1/2
Yamazaki’s characterization of the spectral radius is
Tim (|7, | = (7). @)

3. The Result

Our proof, by Lemmas 1-4 and Theorem 3 below, employs the following two
thoerems. The first theorem is the Mclntosh inequality, the second, the Heinz inequality.

THEOREM 1 ([5], [2, Theorem 1]). For bounded linear operators A,B and X,
IA*XBI| < [IAA*X]|"/?||IXBB*||'.

THEOREM 2 ([3], [4]). For positive operators A and B, and bounded linear
operator X,
lA“XB*(| < [|AXB]“[|X]["~*,
forall 0 < o < 1.

For the Aluthge transformations defined above, it is apparent that ||7,,+1| < ||T,||
for all n > 0. Moreover, it is known that o(T,,) = o(T) for all n > 0. Consequently,
the sequence {||T,[}52, is a decreasing sequence which is bounded below by (7).
This yields our first lemma.

LEMMA 1. Thereis an s > r(T) for which hm [|Tu|| = s.
To prove (2), we need only show that s = r(T). Our next lemma shows that for
any positive integer k, the sequence {||7%||}2°, is decreasing.
LEMMA 2. For any positive integer k,
1T < T
forall n > 0. Consequently, the decreasing sequence {||T||}22,, is convergent.
Proof. By Theorem 1, we have
IToll = N7 2T O T2
< MTIT = Ul IT Ul T2
< IT-
O

Using Theorem 2, Lemma 3 was essentially proven by Yamazaki [6, Lemma 3].
For the sake of completeness, we reproduce the proof here.
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LEMMA 3. For any positive integer k,
1Tl < IT 2T 2,
forall n > 0.

Proof. By Theorem 2, we have

[y

Tl 2Ty~ Ul Tl 2]

Tl T3 Ual Tl 121 T3 Ul
k+1 2y rk—1y11/2
[any I /R

NN

O

The next lemma shows that the decreasing sequence {||7%]|}5°, converges to s,
where s = lim ||T,|| is as in Lemma 1.
n—oo

LEMMA 4. For any positive integer k, lim || TX| = s*.
n—oo

Proof. We will prove the lemma by induction. Since lim ||7,|| = s by Lemma

1, the lemma is proven for k = 1. Assume the lemma is proven for 1 < k < m. By
Lemma 3,

I < T I T = Y2 < Tl ATl 2T ) 2 3)
Let lim || T""!|| = ¢. The existence of the limit follows from Lemma 2. Taking limits,
the i};;l)li?:tion hypothesis and (3) show that
ML T ST g,
It follows that ¢ = s"*!, and the proof is complete. [
We are now ready to prove Yamazaki’s characterization of the spectral radius.
THEOREM 3 ([6]). For any bounded linear operator T,
Tim [|T; | = r(T).

Proof. 1t follows from Lemmas 2 and 4 that, for each positive integer k, the
decreasing sequence {||7%||'/%}2°, converges to s. Therefore,

s < ||T|M 4)
forall n and k. Now fix an n. If #(T) < s, then (1) would imply that
I3V < s

for sufficiently large k. Clearly this is a contradiction to (4). Therefore, we must have
s = r(T), and the result follows from Lemma 1. O
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