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Abstract. In this paper, we propose and analyze implicit resolvent dynamical systems associated
with mixed quasi variational inequalities by using the techniques of the resolvent operators. We
prove that the globally asymptotic stability of these dynamical systems requires monotonicity of
the operator. We also discuss some special cases, which can be obtained from our main results.

1. Introduction

Variational inequalities theory has witnessed an explosive growth in theoretical
advances, algorithmic development and applications across all disciplines of pure and
applied sciences. This theory provides a unified and novel treatment of equilibrium
problems arising in economics, finance, transportation, elasticity and structural analysis,
see [1–27]. It combines novel theoretical and algorithmic advances with new domain
of applications. As a result of interaction between different branches of mathematical
and engineering sciences, we now have a variety of techniques to suggest and analyze
various iterative algorithms for solving variational inequalities and related optimization
problems. Though the problems in each of these areas may look completely different,
the resulting algorithms can be very closely related. Using the projection technique,
one can show that the variational inequalities are equivalent to the fixed-point problem.
This equivalence has been used [5–8, 20, 21, 25–27] to suggest and analyzed a projected
dynamical system, in which the right-hand side of the ordinary differential equation is a
projection operator. Projected dynamical systems are characterized by a discontinuous
right-hand side. The discontinuity arises from the constraints governing the applications
in question. The novel feature of the projected dynamical system is that the set of the
stationary points of the dynamical systems corresponds to the set of the solutions of
the variational inequalities. Consequently, the equilibrium problems which can be
formulated in the setting of variational inequalities can now be studied in the more
general setting of the dynamical systems. They are intrinsically as framework for
creating behavioral model for describing disequilibrium trajectories of real economics
and physical process prior to reaching steady states. Furthermore, Xia and Wang [26]
have shown that the projected dynamical systems can be used effectively in designing
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neural network for solving variational inequalities. The neural network are computing
systems composed of highly interconnected simple information processing units, and
thus can solve variational inequalities and optimization problems in execution times at
the order of magnitude mush faster than most iterative algorithms for general purpose
digital computers.

In recent years variational inequalities have been extended and generalized in
several directions using novel and innovative techniques. A useful and an important
generalization is called the mixed quasi variational inequalitiy introduced and studied in
[1, 4, 12, 13, 15, 16, 19] to tackle the complicated and complex problems arising in fluid
flow through porous media, elasticity and structural analysis. Due to the presence of the
bifunction in the formulation of these mixed quasi variational inequalities, projection,
resolvent methods and their variant forms can’t be extended and modified for mixed
quasi variational inequalities. There are no such type of dynamical systems for mixed
quasi variational inequalities. In this paper, we show that such type of dynamical
systems can be suggested for mixed quasi variational inequalities. It is known [19]
that if the bifunction involving the variational inequalities is proper, convex and lower-
semicontinuous in the first argument, then mixed quasi variational inequalities are
equivalent to the fixed-points. We use this alternative equivalent formulation to suggest
implicit dynamical systems associated with mixed quasi variational inequalities. We
use these dynamical systems to prove the uniqueness of a solution of mixed quasi
variational inequalities, which requires only the Lipschitz continuity of the operator.
This approach does not need any type of monotonicity. Secondly, if the bifunction is
skew-symmetric and the operator is monotone, then we show that the implicit resolvent
dynamical systems have globally asymptotic stability property. Since the mixed quasi
variational inequalities include (quasi) variational inequalities and several optimization
problems as special cases, our result continue to hold for these problems. Our results
can be viewed as significant and unified extensions of the known results in this area.

2. Formulations and basic facts

Let Rn be a Euclidean space, whose inner product and norm are denoted by 〈 · , ·〉
and ‖ · ‖ respectively. Let K be a closed convex set in Rn and A : Rn −→ Rn be a
nonlinear operator. Let ϕ(. , .) : Rn × Rn −→ R ∪ {+∞} be a continuous bifunction.
We consider the problem of finding u ∈ Rn such that

〈A(u), v− u〉 + ϕ(v, u) − ϕ(u, u) � 0, ∀v ∈ Rn. (1)

Problem (2.1) is called the mixed quasi variational inequality. It has been shown that
a large class of obstacle, unilateral, contact, free, moving, and equilibrium problems
arising in regional, physical, mathematical, engineering and applied sciences can be
studied in the unified and general framework of the mixed quasi variational inequalities
(2.1), see [1, 4, 8, 12–14, 18–20].

For ϕ(v, u) = ϕ(v) , ∀u ∈ Rn, problem (2.1) reduces to finding u ∈ Rn such that

〈A(u), v − u〉 + ϕ(v) − ϕ(u) � 0, ∀v ∈ Rn, (2)

which is called the mixed variational inequality or variational inequality of the second
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kind. For the recent state-of-the-art, see [1, 4, 9–13, 17–19] and the references therein.
If ϕ is an indicator function of a closed convex set K in Rn , then problem (2.2)

is equivalent to finding u ∈ K such that

〈Au, v− u〉 � 0, ∀v ∈ K, (3)

which is known as the classical variational inequality introduced and studied by Stam-
pacchia [24] in 1964. For the recent state-of-the-art, see [1–27] and the references
therein.

We also need the following well known results and concepts.

DEFINITION 2.1. For all u, v ∈ Rn , the operator A : Rn −→ Rn is said to be
(a) monotone, if

〈A(u) − A(v), u − v〉 � 0.

(b) Lipschitz continuous, if there exists a constant β > 0 such that

‖Au − Av‖ � β‖u − v‖.

DEFINITION 2.2. The bifunction ϕ(. , .) is said to be skew-symmetric, if,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) � 0, ∀u, v ∈ Rn. (4)

Clearly, if the bifunction ϕ(. , .) is linear in both arguments, then,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) = ϕ(u − v, u − v) � 0, ∀u, v ∈ Rn,

which shows that the bifunction ϕ(. , .) is nonnegative.

DEFINITION 2.3. Let A be a maximal monotone operator, then the resolvent oper-
ator associated with A is defined

JA(u) = (I + ρA)−1(u), ∀u ∈ Rn,

where ρ > 0 is a constant and I is the identity operator.

REMARK 2.1. It is well known that the subdifferential ∂ϕ(. , .) of a convex, proper
and lower-semicontinuous function ϕ(. , .) : Rn × Rn −→ R ∪ {+∞} is a maximal
monotone with respect to the first argument. We define its resolvent by

Jϕ(u) = (I + ρ∂ϕ(. , u))−1) ≡ (I + ρ∂ϕ(u))−1, (5)

where ∂ϕ(u) ≡ ∂ϕ(. , u), unless otherwise specified. For more details, see [19].

The resolvent operator Jϕ(u) defined by (2.5) has the following characterization,
which has important and significant applications in variational inequalities and opti-
mization.

LEMMA 2.1. For a given u ∈ Rn, z ∈ Rn satisfies the inequality

〈 u − z, v − u〉 + ρϕ(v, u) − ρϕ(u, u) � 0, ∀v ∈ Rn, (6)

if and only if

u = Jϕ(u)z,

where Jϕ(u) is resolvent operator defined by (2.5).
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Note that for ϕ(v, u) = ϕ(v) , ∀u ∈ Rn, Lemma 2.1 is well known, see, for
example [18].

Using Lemma 2.1, one can easily show that the mixed quasi variational inequalities
are equivalent to the fixed-point problem, which is the motivation of our next result.

LEMMA 2.2. [19]. The function u ∈ Rn is a solution of problem (2.1) if and only
if u ∈ Rn satisfies the relation

u = Jϕ(u)[u − ρA(u)], (7)

where ρ > 0 is a constant and Jϕ(u) = (I + ρ∂ϕ(. , u))−1 is the resolvent operator.

Lemma 2.2 implies that the quasi variational inequality (2.1) is equivalent to the
fixed-point formulation. This alternative formulation has been used to discuss the
existence of the solution and to suggest iterative methods for the quasi variational
inequalities and related optimization problems, see [19].

We now define the residual vector R(u) by the relation

R(u) = u − Jϕ(u)[u − ρA(u)]. (8)

Invoking Lemma 2.2, we see that u ∈ Rn is a solution of the mixed quasi variational
inequality (2.1) if and only if u ∈ Rn is a zero of the equation

R(u) = 0. (9)

We now use the fixed-point formulation (2.7) to consider the following dynamical
system

du
dt

= λ{Jϕ(u)[u − ρA(u)] − u}, u(t0) = u0 ∈ Rn, (10)

associated with the mixed quasi variational inequality (2.1), where λ is a constant.
Here the right hand side is related to the resolvent and is discontinuous on the boundary.
It is clear from the definition that the solution to (2.10) always stays in the constraint set.
This implies that the qualitative results such as the existence, uniqueness and continuous
dependence of the solution on the given data of (2.10) can be studied.

For ϕ(. , .) = ϕ(v), ∀u ∈ H, the dynamical system (2.10) ie equivalent to:

du
dt

= λ{Jϕ [u − ρA(u)] − u}, u(t0) = u0 ∈ Rn. (11)

This dynamical system has been studied by Noor [21]. These dynamical systems de-
scribe the disequilibrium adjustment processes, which may produce important transient
phenomena prior to the achievement of a steady state. It has been shown that such
type of the dynamical systems are useful for computational schemes. From the view
point of neural computation, the structure of these systems are simple and can be easily
implemented in a parallel circuit, see, for example, [7, 8, 25, 26].

DEFINITION 2.2. The dynamical system is said to converge to the solution set
K∗ of (2.1) if, irrespective of the initial point, the trajectory of the dynamical system
satisfies

lim
t−→∞ dist (u(t), K∗) = 0, (12)
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where

dist (u, K∗) = inf
v∈K∗ ‖u − v‖.

It is easy to see that, if the set K∗ has a unique point u∗ , then (2.12) implies that

lim
t−→∞ u(t) = u∗.

If the dynamical system is still stable at u∗ in the Lyapunov sense, then the dynamical
system is globally asymptotically stable at u∗ .

DEFINITION 2.3. The dynamical system is said to be globally exponentially stable
with degree η at u∗ if, irrespective of the initial point, the trajectory of the system u(t)
satisfies

‖u(t) − u∗‖ � μ1‖u(t0) − u∗‖exp(−η(t − t0)), ∀ t � t0,

where μ1 and η are positive constants independent of the initial point. It is clear
that globally exponential stability is necessarily globally asymptotical stability and the
dynamical system converges arbitrarily fast.

LEMMA 2.4. (Gronwall [7]). Let û and v̂ be real-valued nonnegative conitnuous
functions with domain {t : t � t0} and let α(t) = α0(|t− t0|) , where α0 is a monotone
increasing function. If, for t � t0 ,

û(t) � α(t) +
∫ t

t0

û(s)v̂(s)ds,

then

û(t) � α(t)exp

{∫ t

t0

v̂(s)ds

}
.

We also need the following condition.

ASSUMPTION 2.1. ∀ u, v, w ∈ Rn, the operator Jϕ(u) satisfies the condition

‖Jϕ(u)w − Jϕ(v)w‖ � ν‖u − v‖,
where ν > 0 is a constant.

3. Main results

In this section we study the main properties of the implicit dynamical systems and
analyze the global stability of the systems. First of all, we discuss the existence and
uniqueness of the dynamical system (2.10) and this is the main motivation of our next
result.

THEOREM 3.1. Let the operator A be a Lipschitz continuous operator and let
Assumption 2.1 hold. Then, for each u0 ∈ Rn , there exists a unique continuous solution
u(t) of dynamical system (2.10) with u(t0) = u0 over [t0,∞) .
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Proof. Let

G(u) = λ{Jϕ(u)[u − ρA(u)] − u},
where λ > 0 is a constant. ∀u, v ∈ Rn , and using Assumption 2.1, we have

‖G(u) − G(v)‖ � λ{‖Jϕ(u)[u − ρA(u)] − Jϕ(v)[v − ρA(v)]‖ + ‖u − v‖}
� λ‖u − v‖ + λ‖Jϕ(u)[u − ρA(u)]− Jϕ(u)[v − ρA(v)]‖

+λ‖Jϕ(u)[v − ρA(v)] − Jϕ(v)[v − ρA(v)]‖
� λ{‖u − v‖ + ‖u − v + ρ(A(u) − A(v))‖ + μ‖u − v‖}
� λ{2 + μ + ρβ}‖u− v‖,

where β > 0 is a Lipschitz constant of the operator A . This implies that the operator
G(u) is a Lipschitz continuous in Rn . So, for each u0 ∈ Rn , there exists a unique
and continuous solution u(t) of the implicit dynamical system of (2.10), defined in a
interval t0 � t < T with the initial condition u(t0) = u0 . Let [t0, T) be its maximal
interval of existence; we show that T = ∞ . Consider

‖G(u)‖ = λ‖Jϕ(u)[u − ρA(u)] − u‖
� λ{‖Jϕ(u)[u − ρA(u)] − Jϕ(u)[u]‖ + ‖Jϕ(u)[u] − Jϕ(u∗)[u]‖
+ ‖Jϕ(u)[u∗] − Jϕ(u∗)[u∗]‖ + ‖Jϕ(u∗)[u∗] − u‖}
� λρ‖A(u)‖+ λμ‖u − u∗‖ + λμ‖u − u∗‖ + λ‖Jϕ(u∗)[u∗]‖ + λ‖u‖
= λ (1 + β1 + 2μ)‖u‖+ λ{2μ‖u∗‖ + ‖Jϕ(u∗)[u∗]‖}

for any u ∈ Rn , then

‖u(t)‖ � ‖u0‖ +
∫ t

t0

‖Tu(s)‖ds

� (‖u0‖ + k1(t − t0)) + k2

∫ t

t0

‖u(s)‖ds,

where k1 = λ (2μ)‖u∗‖+λ‖Jϕ(u∗)[u∗]‖ and k2 = λ (1+β1+2μ) . Hence, by invoking
Lemma 2.4, we have

‖u(t)‖ � {‖u0‖ + k1(t − t0)}ek2(t−t0), t ∈ [t0, T).

This shows that the solution u(t) is bounded on [t0, T) . So T = ∞ . �
We now study the stability of the implicit dynamical system (2.10). The analysis

is in the spirit of Noor [20, 21] and Xia and Wang [26].

THEOREM 3.2. Let A be a pseudomonotone Lipschitz continuous operator and let
Assumption 2.1 hold. If the bifunction ϕ(. , .) is skew-symmetric, then the dynamical
system (2.10) is stable in the sense of Lyapunov and globally converges to the solution
subset of (2.1).

Proof. Since the operator A is a Lipschitz continuous operator, it follows from
Theorem 3.1, that the dynamical system (2.12) has a unique continuous solution u(t)
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over [t0, T) for any fixed u0 ∈ Rn . Let u(t) = u(t, t0; u0) be the solution of the initial
value problem (2.12). For a given u∗ ∈ Rn , consider the following Lyapunov function

L(u) = λ‖u − u∗‖2, u ∈ Rn. (1)

It is clear that lim
n→∞L(un) = +∞ whenever the sequence {un} ⊂ Rn and lim

n→∞ un =
+∞ . Consequently, we conclude that the level sets of L are bounded. Let u∗ ∈ Rn be
a solution of (2.1). Then

〈A(u∗), v − u∗〉 + ϕ(v, u∗) − ϕ(u∗, u∗) � 0, ∀v ∈ H

which implies that

〈A(v), v − u∗〉 + ϕ(v, u∗) − ϕ(u∗, u∗) � 0, (2)

since the operator A is monotone.
Taking v = Jϕ(u)[u − ρA(u)] in (3.2), we have

〈AJϕ(u)[u − ρA(u)], Jϕ(u)[u − ρA(u)]− u∗〉
+ϕ(Jϕ(u)[u − ρA(u)], u∗) − ϕ(u∗, u∗) � 0. (3)

Setting v = u∗, u = Jϕ(u)[u − ρA(u)], and z = u − ρA(u) in (2.6), we have

〈 Jϕ(u)[u − ρA(u)] − u + ρA(u), u∗ − Jϕ(u)[u − ρA(u)]〉
+ρϕ(u∗, Jϕ(u)[u − ρA(u)]) − ρϕ(Jϕ(u)[u − ρA(u)], Jϕ(u)[u − ρA(u)]) � 0. (4)

Adding (3.3), (3.4), using the skew-symmetricity of ϕ(. , .) , and from (2.8), we obtain

〈−R(u), u∗ − u + R(u)〉 � 0,

which implies that

〈 u − u∗, R(u)〉 � ‖R(u)‖2. (5)

Thus, from (2.8), (2.10), (3.1) and (3.5), we have

d
dt

L(u) =
dL
du

du
dt

= 2λ 〈 u − u∗, Jϕ(u)[u − ρA(u)] − u〉
= 2λ 〈 u − u∗,−R(u)〉
� −2λ‖R(u)‖2 � 0.

This implies that L(u) is a global Lyapunov function for the implicit dynamical system
in (2.10) and the implicit dynamical system (2.10) is stable in the sense of Lyapunov.
Since {u(t) : t � t0} ⊂ K0 , where K0 = {u ∈ Rn : L(u) � L(u0)} and the function
L(u) is continuously differentiable on the bounded and closed set Rn , it follows from
LaSalle’s invariance principle that the trajectorywill converge to Ω , the largest invariant
subset of the following subset:

E =
{

u ∈ Rn :
dL
dt

= 0

}
.
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Note that, if dL
dt = 0 , then

‖u − Jϕ(u)[u − ρA(u)]‖2 = 0,

and hence u is an equilibrium point of the implicit dynamical system (2.10), that is,

du
dt

= 0.

Conversely, if du
dt = 0 , then it follows that dL

dt = 0 . Thus, we conclude that

E =
{

u ∈ Rn :
du
dt

= 0

}
= K0 ∩ K∗,

which is nonempty, convex and invariant set containing the solution set K∗ . So

lim
t−→∞ dist (u(t), E) = 0.

Therefore, the implicit dynamical system (2.10) converges globally to the solution set
of (2.1). In particular, if the set E = {u∗} , then

lim
t−→∞ u(t) = u∗.

Hence the system (2.10) is globally asymptotically stable. �

THEOREM 3.3. Let the operator A be Lipschitz continuous with a constant β > 0
and let Assumption 2.1 hold. If λ < 0 , then the implicit dynamical system (2.10) con-
verges globally exponentially to the unique solution of the quasi variational inequalities
(2.1).

Proof. From Theorem 3.1, we see that there exists a unique continuously differen-
tiable solution of the implicit dynamical system (2.10) over [t0,∞). Then, (2.10) and
(3.1), we have

dL
dt

= 2λ 〈 u(t) − u∗, Jϕ(u(t))[u(t) − ρA(u(t))] − u(t)〉
= −2λ‖u(t)− u∗‖2 + 2λ 〈 u(t) − u∗, Jϕ(u(t))[u(t) − ρA(u(t))] − u∗〉 , (6)

where u∗ ∈ Rn is the solution of the quasi variational inequality (2.1), that is,

u∗ = Jϕ(u∗)[u∗ − ρA(u∗)].

Now, using the Assumption (2.1) and Lipschitz continuity of the operator A , we have

‖Jϕ(u)[u − ρA(u)] − Jϕ(u∗)[u∗ − ρA(u∗)]‖
� ‖Jϕ(u)[u − ρA(u)]− Jϕ(u∗)[u − ρA(u)]‖
+ ‖Jϕ(u∗)[u − ρA(u)]− Jϕ(u∗)[u∗ − ρA(u∗)]‖
� μ‖u − u∗‖ + ‖u − u∗ − ρ(Au − Au∗)‖
� μ‖u − u∗‖ + ‖u − u∗‖ + ρβ‖u − u∗‖
� (1 + μ + ρβ)‖u − u∗‖. (7)
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From (3.6) and (3.7), we have

d
dt
‖u(t) − u∗‖2 � 2αλ‖u(t) − u∗‖2,

where
α = μ + ρβ .

Thus, for λ = −λ1 , where λ1 is a positive constant, we have

‖u(t) − u∗‖ � ‖u(t0) − u∗‖e−αλ1(t−t0),

which shows that the trajectory of the solution of the implicit dynamical system (2.10)
will globally exponentially converge to the unique solution of the quasi variational
inequalities (2.1). �

Conclusions

We have suggested some implicit resolvent dynamical systems associated with the
quasi variational inequalities. We have proved the global asymptotical stability of the
systems for monotone operators. The suggested dynamical systems can be used in
designing recurrent neural networks for solving solving quasi variational inequalities
and optimization problems. Thus, these implicit dynamical systems have wide appli-
cability than the existing optimization neural networks. We hope that the theoretical
results obtained in this paper may provide a different approach for stability analysis,
computation, analysis and design of new neural networks.
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