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Abstract. In this paper, the authors continue a previous study about the broken extremals in vari-
ational problems with differential inclusions. In said paper, we presented a necessary condition
for extremals with corner points that is valid for shapeable sets. This condition has been obtained
by adapting a novel proof of the first Weiertrass-Erdmann condition.

In the present paper we extend the class of shapeable sets and demonstrate that the set

Ω := {z ∈ KC1[a, b] | G1(t, z(t)) � z′(t) � G2(t, z(t)),∀t ∈ [a, b] a.e.}
with G1, G2 ∈ C1 , is shapeable for every t .

Finally, we present two examples, the second being a classic engineering problem: the
optimization of hydrothermal systems.

1. Introduction

The extremal values of the functional

F(z) =
∫ b

a
L(t, z(t), z′(t))dt

on
D = {z ∈ KC1[a, b] | z(a) = α, z(b) = β}

may be achieved in functions with corner points. For KC1[a, b] , we denote the set
of continuous with piecewise continuous derivative functions. In all the paper, when
reference is made to properties of the derivative of a function, these shall be understood
to be fulfilled for the two lateral derivatives.

TheWeiertrass-Erdmannconditions (W-E conditions) show that the discontinuities
of q′ that are permitted at corner points of a local extremal q are limited to those which
preserve the continuity of both{

(i) Lz′(t, q(t), q′(t))
(ii) L(t, q(t), q′(t)) − q′(t)Lz′(t, q(t), q′(t))

The W-E conditions are of crucial importance in determining broken extremals and
sometimes allow one to prove that such extremals do not exist. Although these two
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conditions of continuity have been known since the end of the 19th century [12], they
have been expounded on diverse occasions with insufficient care. Both are correct
when dealing with strong extremals, but only the first is true for weak extremals. An
incorrect formulation of the second of these conditions was expounded by the authors
of [24] and [26], who assumed that the condition was true for the weak minima. The
counterexamples presented in [4-5] show that this assumption was incorrect.

The so-called first W-E condition is not always satisfied in variational problems
where the admissible functions are subject to certain constraints. For example, this
condition is not fulfilled in the problems of reflection of the extremals; one can easily
discover other examples where the condition is also violated.

We shall analyze the first condition and study the possibility of its extension to
variational problems with constraints on the admissible functions.

The classic proofs of the W-E conditions are based on the fact that either the
Gâteaux differential of the functional vanishes at the extremal [15], or [26] employ the
equation

Lz′(t, q(t), q′(t)) = Const. +
∫ t

a
Lz(x, q(x), q′(x))dx (1)

These techniques do not work if the constraints are taken into account, because the
functional need not admit bilateral variations at the extremum, or Equation (1) is simply
not satisfied.

Variational problems in which the derivatives of the admissible functions must
be subject to certain inequality constraints (differential inclusion z′ ∈ E(t, z) ) have
traditionally been dealt with by recurring to a large number of diverse techniques. The
first studies in this field were conducted by Flodin [13] for simpler constraints of the type
A � z′(t) � B and by Follinger, who in [14] deals in a very complex way with a more
general constraint of the type H(t, z(t)) � z′(t) � G(t, z(t)) (for present-day existence
theorems see [6-16]). In [7], Clarke deals with necessary conditions for problems in the
calculus of variations that incorporate inequality constraints of the form f (z, z′) � 0 .
In [8], the author determines necessary conditions, in terms of generalized gradients, for
the existence of an extremal arc for calculus of variations and optimal control problems
with differential multi-inclusion z′ ∈ E(t, z).

In [9], Clarke and Loewen consider an optimal control problem on a fixed time
interval [0, T] , and a variety of necessary conditions are derived for the original optimal
control problem. The same authors, in [10], develop an existence theory for solutions
to the original problem with |z′(t)| < R . In [17-18], Loewen and Rockafellar consider
the classical Bolza problem in the calculus of variations, incorporating endpoint and
velocity constraints through infinite penalties. The integrand L are allowed to be
nondifferentiable. In [19], the authors have recurred to techniques of optimal control
and formulate a sufficient optimality condition for broken extremals in terms of the
solution of the Hamilton-Jacobi-Bellman equation.

In [25], the simplest problem of the calculus of variations is investigated, along
with the corresponding Euler equation. Some new results on the Euler equation are
obtained and a minimizing sequence whose derivatives form a family of equicontinuous
functions at a point is studied. Examples of the problem with singular extremals that
are local minima are given.
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In [21] the simplest problem of the calculus of variations is considered. The
authors aim to prove that the classical second-order conditions formulated in terms of
a conjugate point and Riccati equation can also be generalized to the case of a broken
extremal. However, the type of minimum considered is weaker than a strong minimum
and stronger than a weak minimum. It is called the Θ -weak minimum. Osmolovskii
[22] distinguishes five basic types of minimum: weak minimum, Θ -weak minimum,
Pontryagin minimum, bounded-strong minimum, and strong minimum. The method of
the strengthening of the quadratic conditions is used throughout the paper, and quadratic
conditions are formulated for broken extremals. In [23], the authors obtain sufficient
conditions for positive definiteness of the quadratic form in terms of the Riccati equation
and hence sufficient optimality conditions for broken extremals.

Noble and Schättler [20] develop sufficient conditions for a relative minimum for
broken extremals in an optimal control problem based on the method of characteristics.

In the present paper, the authors continue a previous study [1] into broken extremals
in variational problems with differential inclusions. In said paper, we presented a novel
proof of the first W-E condition. This proof is based on the analysis of the Gâteaux
variations in certain directions which we will call ht0

ε .

DEFINITION 1. Let us take t0 ∈ (a, b) and ε > 0 . We consider the auxiliary
function ht0

ε

ht0
ε (t) :=

⎧⎨
⎩

0 if t ∈ [a, t0 − ε] ∪ [t0 + ε, b]
(t − t0 + ε) if t ∈ [t0 − ε, t0]
−(t − t0 − ε) if t ∈ [t0, t0 + ε]

THEOREM 1. If L(t, z, z′) ∈ C1([a, b]×R
2) and q ∈ KC1[a, b] provides a (weak)

local extremal value for F(z) =
∫ b

a L(t, z(t), z′(t))dt on D = {z ∈ KC1[a, b] | z(a) = α
, z(b) = β} , then ∀t ∈ [a, b] the first condition W-E holds: Lz′(t, q(t), q′(t−)) =
Lz′(t, q(t), q′(t+)) .

The method proposed for the proof can be adapted to study the extremum of the
functional restricted to the sets where

DF(q; ht0
ε ) := lim

x→0+

F(q + xht0
ε ) − F(q)
x

exists. We call these constraints shapeable sets.

2. Shapeable sets

Let us establish the concept of a shapeable set of functions. This will allow us to
introduce a class of constraints on the admissible functions under which the necessary
condition for broken extremals that we present is satisfied.

DEFINITION 2. We will say that ω is W -admisible at q if ∃θ > 0 such that
q + xω ∈ W , ∀x ∈ [0, θ] .
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DEFINITION 3. We will say that a set of functions Ω ⊂ KC1[a, b] is shapeable in
t0 ∈ (a, b) if ∀q ∈ Ω

i) q′(t0−) < q′(t0+) =⇒ ∃ε > 0 such that ht0
ε is Ω− admisible at q .

ii) q′(t0−) > q′(t0+) =⇒ ∃ε > 0 such that −ht0
ε is Ω− admisible at q .

Let us see a necessary condition for broken extremals.

THEOREM2. (THE FIRST W-E GENERALIZED CONDITION). If L(t, z, z′) ∈ C1([a, b]×
R

2) , Ω is shapeable in t0 and q provides a (weak) local minimum value for F(z) =∫ b
a L(t, z(t), z′(t))dt on D = Ω ∩ {z ∈ KC1[a, b] | z(a) = α ∧ z(b) = β} then it

holds that:

(q′(t0−) − q′(t0+)) · (Lz′(t0, q(t0), q′(t0−)) − Lz′(t0, q(t0), q′(t0+))) � 0

We show how, by imposing a certain property on Lz′ , the necessary condition
(Theorem 2) becomes the classic first W-E condition.

THEOREM 3. If L(t, z, z′) ∈ C1([a, b] × R
2) , ψ(x) = Lz′(t0, q(t0), x) is nonde-

creasing, Ω is shapeable at t0 , and q provides a (weak) local minimum value for
F(z) =

∫ b
a L(t, z(t), z′(t))dt on D = Ω ∩ {z ∈ KC1[a, b] | z(a) = α ∧ z(b) = β} ,

then the first W-E condition holds:

Lz′(t0, q(t0), q′(t0−)) = Lz′(t0, q(t0), q′(t0+)).

And it is now obvious that the property that Lz′ is strictly increasing with respect
to z′ allows the existence of extremals with corner points to be rejected.

THEOREM 4. If L(t, z, z′) ∈ C1([a, b] × R
2) , and ψ(x) = Lz′(t, z, x) is strictly

increasing ∀(t, z) ∈ (a, b) × R , Ω is shapeable for every t ∈ [a, b] , and q provides
a (weak) local minimum value for F(z) =

∫ b
a L(t, z(t), z′(t))dt on D = Ω ∩ {z ∈

KC1[a, b] | z(a) = α ∧ z(b) = β} , then q is C1.

In [24] we see, with examples, that the concept of the shapeable set embraces the
constraints considered in the classic obstacle problem and in problems with velocity
constraints.

PROPOSITION 1. If g1, g2 ∈ C1[a, b] , then the set {z ∈ KC1[a, b] | g1(t) � z(t) �
g2(t), ∀t ∈ [a, b]} is shapeable ∀t0 ∈ (a, b).

PROPOSITION 2. If g1, g2 ∈ C[a, b] , then the set {z ∈ KC1[a, b] | g1(t) �
z′(t) � g2(t), ∀t ∈ [a, b]} is shapeable ∀t0 ∈ (a, b).

In the present paper, the class of shapeable constraints is extended and it is demon-
strated that, given two functions G1, G2 ∈ C1 , the set

{z ∈ KC1[a, b] | G1(t, z(t)) � z′(t) � G2(t, z(t)), ∀t ∈ [a, b] a.e.}
is shapeable for each t.

As a consequence of this, and of Theroems 3 and 4, it is once more established
that under adequate conditions of convexity, the broken solutions of certain variational
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problems with differential inclusion constraints satisfy the first classic Weierstrass-
Erdmann condition. It is likewise concluded that, in the case of the Langrangian being
strictly convex with respect to z′ , the minimum value of the functional is necessarily
achieved in functions of class C1 .

Finally we present two examples. The first is of a geometrical type and the second
is a classic engineering problem: the optimization of hydrothermal systems.

3. Shapeable sets and differential inclusions

Employing the following theorem, we shall demonstrate that the set associated
with certain differential inclusion constraints is also shapeable for every t ∈ (a, b) .

THEOREM 5. If G ∈ C1([a, b] × R) , the set

Ω := {z ∈ KC1[a, b] | z′(t) � G(t, z(t)), ∀t ∈ [a, b] a.e.}
is shapeable for every t0 ∈ (a, b).

Proof. Let us assume firstly that

q′(t0−) < q′(t0+) � G(t0, z(t0))

Let
m := min

t∈[a,b]
G′

z(t, q(t))

It is evident that there exists sufficiently small ε and θ so as to verify, for every

(t, x) ∈ [t0 − ε, t0) × [0, θ]

that
q′(t) + x(ht0

ε )′(t) = q′(t) + x < G(t, q(t) + xht0
ε (t)) (1)

and so that, for every t ∈ (t0,t0 + ε]

−1 < (−t + t0 + ε) · m
Employing the Theorem of Lagrange, we shall also have that, for every (t, x) ∈ (t0,t0 +
ε] × [0, θ]

G(t, q(t) + xht0
ε (t)) = G(t, q(t) + x(−t + t0 + ε))

= G(t, q(t)) + x(−t + t0 + ε)G′
z(t, ct)

where ct ∈ [z(t), z(t) + x(−t + t0 + ε)] .
Hence, for every (t, x) ∈ (t0,t0 + ε] × [0, θ]

q′(t) + x(ht0
ε )′(t) = q′(t) − x � G(t, q(t)) + x(−t + t0 + ε) · G′

z(t, ct) (2)
= G(t, q(t) + xht0

ε (t))

In short, (1) and (2) guarantee that ht0
ε is Ω− admissible at t0 .

In the case of
G(t0, z(t0)) � q′(t0−) > q′(t0+)

by analogous reasoning, we reach the conclusion that −ht0
ε is Ω−admissible at t0 . �
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THEOREM 6. If G ∈ C1 , the set

{z ∈ KC1[a, b] | G(t, z(t)) � z′(t), ∀t ∈ [a, b] a.e.}
is shapeable for every t0 ∈ (a, b) .

THEOREM 7. If G1, G2 ∈ C1([a, b]× R) , the set

{z ∈ KC1[a, b] | G1(t, z(t)) � z′(t) � G2(t, z(t)), ∀t ∈ [a, b] a.e.}
is shapeable for every t0 ∈ (a, b) .

Therefore, applyingTheorem3, under adequate conditions of convexity, the broken
solutions to certain variational problems with differential inclusion constraints satisfy
the first Weierstrass-Erdmann condition. It is likewise concluded, applying Theorem 4,
that in the case of the Langrangian being strictly convexwith respect to z′ , the minimum
value of the functional is necessarily achieved in functions of the class C1 .

4. A numerical example

Let us take L ∈ C1[R] with the strictly increasing L′ . Let us consider the problem
of minimizing

F(z) =
∫ 1

0
L(z′(t))dt

on
D = Ω ∩ {z ∈ KC1[0, 1] | z(0) = 0 , z(1) = b}

where

Ω := {z ∈ KC1[0, 1] | z(t) + t � z′(t) � z(t) + t + 2, ∀t ∈ [0, 1]}
We shall denote as:

f s : the solution of the differential equation z′(t) = z(t) + t + 2 with the intial
condition z(0) = 0 .

f i : the solution of the differential equation z′(t) = z(t)+ t with the final condition
z(1) = b .

It is necessary for the solution q to account for the arcs of the extremal (C1 +C2t)
and the boundary arcs (−1− t + C3et o −3− t + C4et ). Hence, since Ω is shapeable
at every point, and by virtue of Theorem 4, its derivative must be continuous and can
only be of the form

q′(t) =

⎧⎨
⎩

−1 + 3et if t ∈ [0,α]
−1 + 3eα if t ∈ [α,α + β ]
−1 + C4et if t ∈ [α + β , 1]

for a certain α, with β =
2

3eα
and C4 = (2 + b)e−1 =

3
eβ

.

We denote by kex the slope of the extremal; kf s = f ′
s (0) ; kf i = f ′

i (1) .
If kf s > b > kf i is fulfilled, the solution is the free extremal (Fig. 1-a): q(t) = bt .
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Let us analyse the cases with boundary arcs in more detail.
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Fig. 1. Solution q.

Case a) If kf s � b; kf i � b , the solution is formed by a boundary arc f s(t) and
an extremal arc tangential to f s(t) (Fig. 1-b) . That is, α + β = 1.

Case b) If kf s � b; kf i � b , the solution is formed by an extremal arc followed
by a boundary arc f i(t) (Fig. 1-c) . Tha is, α = 0.

Case c) If kf s � b � kf i , the solution consists in both boundary arcs and an
extremal arc between these (Fig. 1-d).

This example shows how the assertion of Theorem 4 can exclude the presence of
the corner points and therefore the unique solution is obtained in a much simpler way
than by means of any traditional method (for example, optimal control or an equivalent
Caratheodory formulation).

5. A hydrothermal problem

A hydrothermal system is made up of hydraulic and thermal power plants which
during a definite time interval must jointly satisfy a certain demand in electric power.
Thermal plants generate power at the expense of fuel consumption (which is the object of
minimization), while hydraulic plants obtain power from the energy liberated by water
that moves a turbine; a limited amount of water being available during the optimization
period.

In prior studies [11-2], it has been proven that the problem of optimization of the
fuel costs of a hydrothermal system with m thermal power plants may be reduced
to the study of a hydrothermal system made up of one single thermal power plant,
called the thermal equivalent. In the present paper, we consider a hydrothermal system
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with one hydraulic power plant and m thermal power plants that have been substituted
by their thermal equivalent. With these conditions, we present the problem from the
Electrical Engineering perspective to then go on to resolve the mathematical problem
thus formulated.

5.1. Hydrothermal statement of the problem

The problem consists in minimizing the cost of fuel needed to satisfy a certain
power demand during the optimization interval [0, T] . Said cost may be represented by
the functional

F(P(t)) =
∫ T

0
Ψ(P(t))dt

where Ψ is the function of thermal cost of the thermal equivalent and P(t) is the power
generated by said plant. Moreover, the following equilibrium equation of active power
will have to be fulfilled

P(t) + H(t, z(t), z′(t)) = Pd(t), ∀t ∈ [0, T]

Pd(t) being the power demand and H(t, z(t), z′(t)) the power contributed to the system
at the instant t by the hydraulic plant, where: z(t) is the volume that is discharged up
to the instant t (in what follows, simply volume) by the plant, and z′(t) the rate of
water discharge at the instant t of the plant.

Taking into account the equilibrium equation, the problem reduces to calculating
the minimum of the functional

F(z) =
∫ T

0
Ψ

(
Pd(t) − H

(
t, z(t), z′(t)

))
dt

If we assume that b is the volume of water that must be discharged during the entire
optimization interval, the following boundary conditions will have to be fulfilled

z(0) = 0, z(T) = b

For the sake of convenience, we assume throughout the paper that they are sufficiently
smooth and are subject to the following additional assumptions.

Let us assume that the cost function Ψ : R
+ −→ R

+ satisfies Ψ′(x) > 0,
∀x ∈ R

+ and thus is strictly increasing. This restriction is totally natural: it reads more
cost to more generated power. Let us assume as well that Ψ′′(x) > 0, ∀x ∈ R

+ and is
therefore strictly convex. The models traditionally employed meet this restriction.

Let us assume that the hydraulic generation H(t, z, z′) : ΩH = [0, T] × R
+ ×

R
+ −→ R

+ is strictly increasing with respect to the rate of water discharge z′ , with
Hz′ > 0 . Let us also assume that H(t, z, z′) is concavewith respect to z′ , i.e. Hz′z′ � 0 .
The real models meet these two restrictions, and the former means more power to a
higher rate of water discharge.

We see that we only admit non-negative thermal power (P(t)) and we will solely
admit non-negative volumes (z(t)) and rates of water discharge (z′(t)) , therefore we
may present the mathematical problem in the following terms.
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6. Variational statement of the problem

We will call Πb the problem of minimization of the functional

F(z(t)) =
∫ T

0
L(t, z(t), z′(t))dt

with L of the form

L(t, z(t), z′(t)) = Ψ(Pd(t) − H(t, z(t), z′(t)))

over the set
D = Ω ∩ {z ∈ KC1[0, T] | z(0) = 0 , z(T) = b}

where
Ω := {z ∈ KC1[0, T] | 0 � H(t, z(t), z′(t)) � Pd(t)}

So the problem involves inequality non-holonomic constraints in the derivative z′(t) .
Let us take Ψ ∈ C1[R] , (fuel cost) strictly convex, Pd ∈ C1([0, T]) and H ∈
C1([0, T] × R

2) (strictly increasing with respect to its second component).
It is easy to see that Ω is shapeable if we bear in mind that H is strictly increasing

with respect to z′ and that it may be expressed as

Ω := {z ∈ KC1[0, T] | G1(t, z(t)) � z′(t) � G2(t, z(t)), ∀t ∈ [0, T]}
where H(t, z(t), G1(t, z(t))) = 0 and H(t, z(t), G2(t, z(t))) = Pd(t) .

It is necessary for the solution q to account for the arcs of the extremal and the
boundary arcs (q′(t) = 0 or H(t, q′(t), q(t)) � Pd(t) ). Hence, since Ω is shapeable
at every point, and by virtue of Theorem 4, its derivative must be continuous.

If z satisfies Euler’s equation for the functional

F(z) =
∫ T

0
L(t, z(t), z′(t))dt

for every t ∈ [α,α+β ] , where L(t, z(t), z′(t)) = Ψ (Pd(t) − H(t, z(t), z′(t))) , we have
that

Lz(t, z(t), z′(t)) − d
dt

(
Lz′(t, z(t), z′(t))

)
= 0

If we divide Euler’s equation by Lz′(t, z(t), z′(t)) < 0 , ∀t , we have that

Lz(t, z(t), z′(t))
Lz′(t, z(t), z′(t))

−
d
dt

[Lz′(t, z(t), z′(t))]

Lz′(t, z(t), z′(t))
= 0

and, integrating, we have

−Lz′(t, z(t), z′(t))·exp

[
−

∫ t

α

Hz(s, z(s), z′(s))
Hz′(s, z(s), z′(s))

ds

]
= −Lz′(α, z(α), z′(α)) = K ∈ R

+

We shall call the preceding relation the coordination equation for z(t) , and the positive
constant K will be termed the coordination constant of the extremal.
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In real problems, H is decreasingwith respect to z (Hz < 0 ) and Hz′ is increasing
with respect to time (Hz′t > 0 ). This allows us to assert in a simple way that the
optimal thermal power P(t) = Pd(t) − H(t, z(t), z′(t)) is decreasing in the intervals
corresponding to the extremal arcs. Effectively, with the above relations, the exponential

exp

[
−

∫ t

0

Hz(s, z(s), z′(s))
Hz′(s, z(s), z′(s))

ds

]

is increasing with respect to time, and so for the coordination constant to be maintained,
the expression

−Lz′(t, z(t), z′(t)) = Ψ′ (Pd(t) − H(t, z(t), z′(t))
) · Hz′(t, z(t), z′(t))

(with Hz′ > 0 ) leads us to the conclusion that the optimal thermal power is decreasing.
This circumstance allows us to assert that there exists α , β ∈ [0, T] such that the

solution q satisfies
⎧⎨
⎩

H(t, q′(t), q(t)) = 0 if t ∈ [0,α]
free extremal if t ∈ [α,α + β ]

H(t, q′(t), q(t)) = Pd(t) if t ∈ [α + β , T]

where β may be calculated from α.
In these conditions, the aim is to consider for very α ∈ [0, T] the function qα

∈ C1[0, T] that fulfills qα(0) = 0 and the following conditions
⎧⎨
⎩

H(t, q′α(t), qα(t)) = 0 if t ∈ [0,α]
free extremal if t ∈ [α,α + βα ]

H(t, q′α(t), qα(t)) = Pd(t) if t ∈ [α + βα , T]

and to determine the value of α for which the final volume condition qα(T) = b is
satisfied. All this may be done, at least in an approximate way, using simple numerical
techniques.

A program was elaborated using the Mathematica package which resolves the
optimization problem and was then applied to a hydrothermal system made up of the
thermal equivalent and a hydraulic plant.

For the fuel cost model of the equivalent thermal plant, we use the quadratic model

Ψ(P(t)) = α + βP(t) + γP(t)2

The units for the coefficients are: α in ($/h) ; β in ($/h.Mw) ; γ in ($/h.MW2) .
The hydro-plant’s active power generation is given by

Ph(t) = −A(t)z′(t) − Bz′(t)z(t) − Cz′(t)2

where the coefficients A , B and C are

A(t) =
−1
G

By(S0 + t · i), B =
By

G
, C =

BT

G
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We consider that the transmission losses for the hydro-plant are expressed by Kirch-
mayer’s model, with the following loss equation: bl · (Ph(t))

2 . So

H(t) = Ph(t) − bl · (Ph(t))
2

The units for the coefficients of the hydro-plant are: the efficiency G in (m4/h.Mw) ,
the restriction on the volume b in (m3) , the loss coefficient bl in (1/Mw) , the natural
inflow i in (m3/h) , the initial volume S0 in (m3) , the coefficients BT in (m−2.h) and
the coefficients By in (m−2) (parameters that depend on the geometry of the tanks).

The data for the thermal and hydraulic plants are summarized in Table I.

α β γ G i
9127.31 19.8841 0.0012718 570.834 ·103 301.952 ·106

S0 BT By bl

407.808 ·108 219.597 ·10−8 149.5 ·10−11 0

Table I.- Coefficients

The values of the power demand (in Mw ) were adjusted to the following curve

Pd(t) = 350 + 5t(24 − t)

An optimization interval of 24 h. was considered, and a final volume b = 90.120 · 106

m3 .
Fig. 2 presents the plots of power demand (Pd ) and thermal power (Pt ).

6 12 18 24
t (h)

200

400

600

800

1000

P (Mw)

Pt

Pd

Figure 2. A hydrothermal example.

The method of resolution may be consulted in more detail in [3].

7. Conclusions

This paper continues a previous study by the authors into broken extremals in
variational problems with differential inclusions.

In particular, it is demonstrated that, given certain functions G1, G2 of the class
C1 , the set

{z ∈ KC1[a, b] | G1(t, z(t)) � z′(t) � G2(t, z(t)), ∀t ∈ [a, b] a.e.}
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is shapeable for every t .
Finally, we present two examples. The first is of the geometrical type and the

second is a classic engineering problem: the optimization of hydrothermal systems.
These examples show how the theory developed can exclude the presence of the corner
points, thus obtaining the unique solution in a very simple way.
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