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GENERAL HILBERT’S AND HARDY’S INEQUALITIES

MARIO KRNIC AND JOSIP PECARIC

(communicated by B. Opic)

Abstract. In this paper we make some further generalizations of well known Hilbert’s inequality
and its equivalent form in two dimensional case. We also derive some results on Hardy’s
inequality. Then we apply our general results to homogeneous functions. A reverses of Hilbert’s
inequality are also given in integral case. Many other results of this type in recent years, follows
as a special case of our results.

1. Introduction

Let us, firstly, repeat the well known Hilbert’s inequality and its equivalent form
in both integral and discrete case

THEOREM A. If f and g € L*[0,00), then the following inequalities hold and are

equivalent
* % f(@)80) < * )
/0 /0 +y dxdy < n(/ﬂ f (x)dx/o g (x)dx> ,

([ ) e [

where 1 and T* are the best constants.

and

THEOREM B. The following inequalities hold and are equivalent

sz+n<ﬂ<2an S b ) ,

m=1 n=1 m=1

oo o] 2 e}
B (55) w50

m=1

where 1 and T* are the best constants.
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In recent years there were lots of generalizations of these theorems. Let’s mention
some of the authors who gave many results: Jichang, Yang , Hong Yong, Gavrea,
Peachey, Rassias.

Brneti¢ and Pecari¢ ([2],[3]) considered the case when the kernel is K(x,y) =
(x 4+ y)~*, and they obtained the following result in both equivalent forms:

1 1
THEOREM C. If s >0, —+ — =1, p > 1, then the following inequalities hold

)4 q
[ f)gy)
/0 / oty 2P

1
o P i
< P(/ xl_erp(A‘_Az)fp(x)dx) (/ xl_er‘f(Az_A‘)g"(x)dx) , (1)
0 0

[es} os} p
/ y<s1><p1>+p<A1Az>( / f ) de) dy
0 o (x4
< PP(/ x15+P(A1A2)fP(x)dx) (2)
0
where P = B(1 — Ayp,s — 1 —I-Azp)%B(l —Aig,s — 1 —|—A1q)é, A € (

1—s 1
Ay € (—S, —) and B is a beta function.
p p

and are equivalent

and

Further, Jichang and Rassias gave more general results ([7]), concerning symmet-
rical homogeneous functions. More precisely, they obtained following

1 1
THEOREM D. Let p > 1, — + — = 1, K(x,y) be nonnegative, symmetrical and
p
1
homogeneous function of degree —s, max{—, =} <'s, K(1,y) be strictly decreasing
P 9
o0
function of 'y, f(x), g(y) nonnegative functions and 1(r) = / K(l,u)u_%. Then
0

the following inequality is valid

/ab /ab K(x,y)f (x)g(y)dxdy

1

< ( [ (ta-ota.0)vs <x>"dx> F ( A (1<p>—<o<p,y>)y“g<y>qdy> e

where

ax!-+ ! i G 1
o(r,x) = (—) / K(1,u)u rdu + <E) / K(1,u)u’" 7 2du.
0 0

X
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In this paper we obtain some general results for estimating the integral

/ / K(x,y)f (x)g(v)dui (x)di (7),

and we apply those results on kernel K(x,y). We obtain many inequalities which are
generalizations of the previously mentioned results. We also apply reverse Holder’s
inequality ([14]) to obtain reverse inequalities. So let’s start with the general case.

2. General case

In this section we shall state our general results. We suppose that all integrals
converges and shall omit these types of conditions. So we have following
1 1
THEOREM 1. If — 4 — =1 with p > 1 and K(x,y),f (x),8(v), ¢(x), y(y) be

nonnegative functions, then the following inequalities hold and are equivalent

/ / 63 ()8 ()t (x)din ()

1 1

< ([ otorray wram <x>)" ([ voreoeoranm)’ @
and
Lo rwor ([ Koy s )) i) (5)
< / OV F(X)f (¥ dyir (4),
where F(x) = /Q If,/(g)yp) dup(y) and G(y K

If 0 < p < 1, then the reverse mequalltles in (4) and (5) are valid as well as the

inequality
[ oo+ [ K3t ) aa (o
< / v (»)1G(y)g(y) dua(y). (6)
Q

Proof. We start with the following identity

[ [ ko @i widus) = [ [ ke 02 e0) 2 du o).

Now, if we apply Holder’s inequality, we obtain

/ / K, 9)f (x)g(3)dts (x)dbas (v)
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<(/ w(x)”F(x)f(x)”dm(x))’% ([ voremstrano) ’

Let us show that the inequalities (4) and (5) are equivalent. Suppose that the inequality
(4) is valid. If we put

p—1
5y) = G(y)”’t/f(y)”( [ ks <x>) ,

1 1
taking into account — + — = 1 and using (4), we have
P 9

[ 6w o( / Kol () ) i)

/ / (x, Y)f (x)g(v)dp (x)dua (y)

<([ m(X)”F(X)f(X)”dul(X)>p ( [ vor6oet )’

L

_ ( / O F(f (x)duy (x)),,

.(/QG()’)ll’lI/(Y)p(/QK(X,y)f(x)d‘ul(x)>pd‘u2(y))6

from where we have (5).
Now let’s suppose that the inequality (5) is valid. By applying Holder’s inequality and

(5), we obtain
/ / (26, y)f ()& (v)dhu (x)dpa(y)

= / (uf(y)lG(y)-% / K(x,y>f<x>dul<x>)w<y>c<y>%g<y>du2<y>
Q Q

1

< (Lot vt ( [ Koo ) o)’

([ worcueoyane )’

1 1

(/Q(P(x)pF(x)f(x)pdﬂl(x)) ' </Qllf(y)qG(y)g(y)qu2(y)> ‘.

N



GENERAL HILBERT’S AND HARDY’S INEQUALITIES 33

so we have (4). While inequality (4) is valid, the inequality (5) holds, too.
We obtain the reverse inequalities in a similar way, by using reverse Holder’s inequality
([14]). That completes the proof. O

REMARK 1. Equality in the previous theorem is possible if and only if it holds in

Holder’s inequality i.e.
o)\’ _ v)\*
(rorges) =x(es)

wherefrom we obtain f (x)? = K;@(x)~?+9 and g(y)? = Koy (y)~?+9 | for arbitrary
constants K| and K. It is possible only if

/ Fx)p(x) %du (x) < 0o and / GO () Pdua(y) < oo.
Q Q

Otherwise, inequalities in the Theorem 1 are strict.

It is of great importance to consider the case when the functions F(x) and G(y),
from the Theorem 1, are bounded. More precisely, we have the following result

1 1
THEOREM 2. Let —+— =1 withp > 1, K(x,y),f (x),8(y), o(x ( ) be non-
P q

K(x,y)
vy dup(y) <

G (x). Then the following inequalities hold and are eqmvalent

/ / K, 9)f (x)g(3)dts (x)dbas(v)

1 1

<(/ <p(X)”F1(x)f(X)”dM1(X)>p ([voreoeeraem)

/QGl( ) Py (y) (/ny x)dp (x )) du(y)

< / Q0 Fy (x)f (o) (x), (8)
Q

If0<p<1, F(x) > Fi(x) and G(y) < G1(y), then the reverse inequalities in (7)
and (8) are valid as well as the inequality

[ ot ( [ Koo duz()>dM1(X)

< / v ()G (y)g(y)dua(y). )
Q

negative functions and F(x) = / x) <
Q

and
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3. Hardy type inequalities

Inequalities (5) and (8) are so called Hardy type inequalities. Now we shall
consider some special cases of Hardy’s inequalities. If we put

h(y), x <
ke = { g 15

in Theorem 1, where Q = [a, b], a < b, we obtain following result

1 1
THEOREM 3. Let — + — = 1 with p > 1, and let h(y), f(x), g(y), o(x), w(y)

p
be nonnegative functions. Then the following inequalities hold and are equivalent

/ / () (X))

< ( / oty o / bH(y)duz(y))dm <x>> ﬁ

: ( / b w(y)qg(y)qh(y)( / ytp(X)qdm(x))duz(y)> (10)

and

[ ([ ottano)' ™ ([ s sty

</ aterr o / ")) )i (), (1)

where H(y) = h(y)w(y)™?. If 0 < p < 1, then the reverse inequalities in (10) and
(11) are valid. Further, if p < 0, then the inequality (11) is valid, as well as the reverse
in (10).

Also, if we put

_J 0, x<y
K(xy) = { h(y), x>y

in Theorem 1 we have

1 1
THEOREM 4. Let — + — = 1 with p > 1, and let h(y), f(x), g(v), o(x), w(y)

P q
be nonnegative functions. Then the following inequalities hold and are equivalent

A / ()i (<) () < ( [ otrrr( [ Hom)a <x>> ﬁ

- ( / w0800 / gl 1ag (X))duz(y)> (12
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and

[ 10 [ otwsasnn) " ([ 5w e

< / b oeyf (o / XH(y)duz(y))dm(X)- (13)

If 0 < p < 1, thenthe reverse inequalities in (12) and (13) are valid. Further, if p <0,
then the inequality (13) is valid, as well as the reverse in (12).

Note that some authors obtained similar inequalities of Hardy type. Such inequal-
ities can be found in [1] and [16]. See also [10] (page 163).
Further,we shall consider some special cases of Theorems 3 and 4. Namely, if we

1
put A(y) = —, @(x) = x*, w(y) = y* in these theorems, we obtain following results
y

1 1
COROLLARY 1. Let —+ — =1 with p > 1, and let f (x), g(y) be nonnegative

P 4q
SJunctionsand 0 < a < b < co. Then the following inequalities hold and are equivalent

b rx K (A1—Ag) phz P
/a / £l )yg(y)dxdy pjép (/ 2 1= (3)" I dx)
: (/uby"“‘z‘/‘l) 1 - (g)liqu g(y)"dy> E (14)
/byP(AlAz)p 1— E l_qu o /yf(x)dx

\1*4A1|1 -’ (A1—Ay) pho p
< EFTWE x” - (—) V(x) dx (15)

for any constants Ay # . 7 and A # O such that all integrals converges. If a = 0,
inequalities (14) and (15) hold under the condition 1 — gA; > 0, and the case b = oo
holds if pA;, > 0. The reverse inequalities, when p < 1, are fulfilled as in Theorem 3.

P

and

1 1
COROLLARY 2. Let —+ — = 1 with p > 1, and let f (x), g(y) be nonnegative

P
Sfunctionsand 0 < a < b < co. Then the following inequalities hold and are equivalent

A0 A (A1—Az) NP
/a /y 7yg 4 dxdy < pzzlp (/ xP - (—) V(X) dx)
: (/abyq"*”l) 1- (S)liqu g(y)qdy> 6 (16)

1

14
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b A 1 b
/ yP(AlfAz)fp 1— (S)l ! p(/y f(x)dx)pdy

l—qA I=p X\ PA2
pA21|| /pr‘ —A)|q (;) V(X)de (17)

for any constants A, # 1 7 and A; # 0 such that all integrals converges. If a = 0,

inequalities (16) and (17) hold under the condition pA, < 0, and the case b = oo

holds if 1 —qA; < 0. The reverse inequalities, when p < 1, are fulfilled as in Theorem
4.

and

We see that the cases ¢ = 0 and » = oo have additional conditions on the
constants A; and A, . For example, if @ = 0 and b = oo, we have

1 1
COROLLARY 3. Let — + — = 1. Then the following inequalities hold

//f Y trdy
(e

if p>1, A1<5, Ay >0,

00 y p — I=p
/O yp(Al_AZ)<£/0f(x)dx> dy ;]AAZI” / xpz‘h Az de (19)

ifp>1, A1<$, Ay >0orp<0, A1<$, Ay <0,

|1—qu” (A =42) £ (x)Pdix A g gy )
s [ o) ([resrs) o

ifp>1, A1>5, Ay <O,

(A1 —Ay) ‘1_‘IA1|1_p % (Ar—Ay)
[Ty (5 rwas ) ay < BB [t apas )

ifp>1, A1>$, Ay <0 orp <0, A1>§, Ay > 0.

The reverse in (18) holds if p < 0, A1 < é, Ay <QorO0<p<l1, A > é, A, >0,
and the reverse in (19) holds if 0 <p < 1, A} > é, Ay > 0 . Further, the reverse in
(20) is valid if p < 0, Ay > é, Ay, >00r0<p<l1, A < é, A; < 0, as well as
the reverse in (21)if 0 <p <1, A} < é, A; <O0.

and
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Note that the inequalities in Corollary 3 are strict (see Remark 1).

1 —qA|'P
REMARK 2. Let’s put p(A; — A;) = € and observe the constant qull
PA2
as the function of A;. We obtain that this function reaches the minimum value in
1+¢
Al = i, if p > 1 or p <0, and the maximum if 0 < p < 1. Therefrom we

obtain inequalities

[ [

(/000 x°f (X)”dx)% (/Ooo yg(lﬂl)g(y)qdy)é (22)

ifp>1,e<p—1 (thereverseif p<0,e>p—1lor0<p<l,e>p—1),

/OOO yeP ( /Oyf (x)dx)pdy <

ifp>l,e<p—1lorp<0,e>p—1 (thereverseif 0<p<1,e>p—1),

/ / f dxdy
( /OOO *f (x)”dx)% ( /0 ) ye“"”g(y)qdy)é (24)

ifp>1,e>p—1 (thereverseif p<0,e<p—1lor0<p<l,e<p—1),

/OOO yeP ( /yoof(x)dx> pdy <

ifp>1l,e>p—lorp<0,e<p—1 (thereverseif 0 <p<1,e<p—1).
We see that ‘8

_r
e—p+1

p

p * € P dx
/Oxf(x)d (23)

e—p+1

_r
e—p+1

p

p o0
m A .ng (x)pdx, (25)

1 ‘ is the best possible constant. Note also that for € = 0 we

[ (L)oo [ sor

These results are the generalizations of Kufner’s paper [9]. Moreover, if € = p — k we
obtain results from [14].

obtain inequality

1—k k—1
REMARK 3. If we put a =0, A = P , Ay = 5 in Corollary 1, the
rq p

inequality (15) becomes

[ ([ roaars (G25) [0 G) 7 e
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if 1 —gA; > 0. Itis easy to see that the inequality is strict, which is the result from [4].

1—k k—1
Further, by putting b = oo, A = L , Ay = 5
p

rq
a\ PA2 1—gA,
<1 () a1 (2) <
b y

1—qgA
1- (%) Lif1— gA; > 0 and pA; > 0, so from the inequalities (14) and (15) we
obtain

in the inequality (17), we

again obtain the result from [4].

A
REMARK 4. It is obvious that ‘1 — (b)p ’

b % b q
/ / LO80) 4oy < ( / WA (P dX> ( / yq“”‘)g(y)qdy) ,
b y b
/ P 1Az>p< / )f(x)dx)pdyéK” / HIMTAIf (x)Pd,

where 1 1
o ll—aal () (a)PAZ " (a)l_qu '
\pA2|’l’ b b
1—k k—1
Now, if A = L , Ay = 5 then the second inequality is the result from
rq
[5]-

4. Homogeneous functions

In this section we apply our main results to homogeneous functions. Recall that
for homogeneous function of degree —s, s > 0, equality K(zx,7y) = t *K(x,y) is
satisfied.

1 1
THEOREM 5. Let —+— =1 with p > 1 andlet K(x,y) be homogeneous function
P 4

of degree —s, s > 0, strictly decreasing in both variables x and y. Then the following
inequalities hold and are equivalent

/ / (6, y)f (9)g(y)dxdy

: :
S ( / (k(pA2) — @1 (pAz, x))x! —TPldi—A)p (x)”dx>

L
q

b
: (/ (k(2 =5 — gA1) = 92(2 — s — gA1, ) )y' I Ag(y )"dY> (26)

and
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b
/ (k(2 =5 — gA1) — 02(2 — s — gA1, y)) TyPm D DHplAI—A)

(] Koy (as) dy

b
< [ (kipa) = @u(pas, ) A (e, 27)
1—s5 1 1—s 1 [e%e]
where A; € (——,—), Ay € ,—,ka:/ K(1,u)u"%du and
e (D) e () ke = [ k(L)
a l—a 1 X s+a—1 1
1o, x) = <—) / K(l,u)u*adu+ (—> / K(u,l)u”"‘*zdu,
X 0 b o

a s+a—1 1 1—a 1
o,(a,y) = (—) / K(u, D' ™ du + <X> / K(1,u)u=%du.
Yy 0 b 0

If0<p<1, b=oco and K(x,y) is strictly decreasing in x and strictly increasing

11—
in y, then the reverses in (26) and (27) are valid for any A; € (-, S) and
q

1—s 1
Ay € (—s7 —) as well as the inequality
2

q

/ (k(pAg) _q)l(pALx))l—qx(ql)(s1)+q(A2A1)(/ K(x,y)g(y)dy) dx

< / (k(2 — 5 — gA1) — @2(2 — 5 — gAy,y))y' H1 A=A g(y)eay,

Furtherif 0 < p < 1, a = 0 and K(x,y) is strictly increasing in x and strictly
11—

decreasing in y, then the reverses in (26) and (27) are valid for any A, € (-, S)

q

l—s 1
and A; € (—S7 —) as well as the inequality
p D

q

b b
/ (k(pAg) _q)l(pALx))l—qx(ql)(s1)+q(A2A1)(/ K(x,y)g(y)dy) dx
0 0

b
< /0 (k(2 — s — A1) — @2(2 — 5 — Ay, y))y' A=A g(y)eay.
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Proof. We prove inequality (26). If we put ¢@(x) = x*' and y(y) = y** in Theorem 1,

we obtain
/ / (x, y)f (x)g(v)dxdy
b 7
(/ f )Pt st A2>(/ K(l,u)u_pAzdu)dx>

1
b z q
( / g(y)"yl_”"<A2_A‘>< / K(l,u)u‘”““‘zdu)dy>

b

Here, we used substitution « = > . Further, it can be easily shown (see [7]) that if
X

y
I(y) = yOH/ K(1,u)u"%duct < 1, then
0

y
' (y) :ya_z/ ul_awmt. (28)
0 u

Now, since

b o a
/. K(L,u)u"du = / K(1,u)u "du —/ K(1,u)u "du
a 0 0

b
—/ K (u, 1)u"~2du,
0

b

we obtain, using (28), /X K(1,u)u"du < k(pAs) — ¢1(pAz,x) and analogously

N

/a K(1,u)u™ 7 2du < k(2 — s — gA1) — ¢2(2 — s — gA1,y), and the result follows
%
l—-s 1
from Theorem 2. Note also that from (28) we obtain conditions A; € (—s7 —) and
9 4

I1—s 1
AQE( s,—). O
p p

REMARK 5. If the function K(x,y) from previous theorem is symmetrical, then

11 1
k(2 —s—qA1) = k(gA;). So, if max{—, —} < s, then we can put A; = A, = — in

P q rq
Theorem 5 and obtain Theorem D from the Introduction.

If @ =0 and b = oo in the previous theorem, we obtain inequalities for arbitrary
nonnegative homogeneous function of degree —s.
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1 1
COROLLARY 4. If — 4+ — = 1 with p > 1 and K(x,y) is homogeneous function
q

of degree —s, then the following inequalities hold and are equivalent

/0°° /O‘X’ K (x,y)f (x)g(y)dxdy

1

o0 P oo q
<L</O xl—s+p(A1—Az)f(x)pdx> (/0 yl—s+q(Az—A1)g(y)qdy> ; (29)

and oo 0 P
/ y(p—l)(s—l)er(Al—Az)(/ K(,Xj’y)f ()C)dX)
0 0
< / A IPAIAD (1P (30)
0
1—s 1 -5 1

where A, € (—S7 =), Ay €( s’ —)and L= k(pAz)’L’k(2 -8 qu)é'

q P

If 0 < p < 1, then the reverse inequalities in (29) and (30) are valid for any A, €
11— 1—s 1
(=, _s) and A, € (—S, —), as well as the inequality
q p p

q
oo o 1
/ x<41><s1>+q<AzAl>( / K(x,y)g(y)dY)
0 0

<L‘1/ ylfAH’Q(AZ*AI)g(y)‘Idy.
0

Note that in previous Corollary all the inequalities are strict (see Remark 1).
Now, we shall make some generalizations of Theorem 5. If we use substitution
u=x+A and v=y+ A we have

1 1
THEOREM 6. Let —+— =1 with p > 1 andlet K(x,y) be homogeneous function

P q
of degree —s, s > 0, strictly decreasing in both variables x and y. Then the following
inequalities hold and are equivalent

b b
/ / K(x+ A,y + A)f (x)g(y)dady

1
14

b
< (/ (k(pA2) — w1 (pA2,x, 4)) (x + A)! Pl (x)de>

b
(/ (k(2—s—qA1)—1//2(2—s—qu,y,/l))(y+?t)1‘”"(AZ‘A”g(y)‘fdy> (31)
and

b
/ (k2 =5 — A1) — y2(2 — s — gA1,y, A)) " (y + A) DO
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(/ Ko+ 2.y + 21 (W)

b
< / (k(pA2) — i (pAa,x, A)) (x + 2) =P —4)f ()P, (32)

1—s 1 1—s 1
where A| € (—S -), Ay € (—S7 —) and
9 49 p p

a—i—)t 1—a 1 Y x—l—)L s+a—1 1 -
y(a,x,A) = (er?L) /0 K(1,u)u du+(b+ﬂt> /0 K(u, Du du,

sto—1
l//g(a,y,/l):<ajr_i> /Kul T2y +<y+)t> /Klu ~*d
y

If0<p<1, b=oc and K(x,y) is strictly decreasing in x and strictly increasing
11—

in y, then the reverses in (31) and (32) are valid for any Ay € (-, s) and
q9 4

-5 1
A€ (—S, —) as well as the inequality
p p

e 1- ) (s— _
| (kpaa) = v pn.2))' o oot

(/Oo K(x+ 2,y + A)g0)d )qu

</OO (k2 =5 = A1) = v2(2 = s = qAL,y, 4)) (v + A)' 70N g (y)dy.

REMARK 6. If the function K(x,y) from Theorem 6 is symmetrical and 0 <

2A 2 2A
1-— <s,0<1—— <s,then, by putting A} = A, = — in the theorem, we
rq

p q
obtain results of Jichang and Rassias ([7]).
Another way of generalizing Theorem 5 arises from the substitution u = Ax* and
V= Byﬁ . More precisely, we have the following

1 1
THEOREM 7. Let —+— =1 with p > 1 andlet K(x,y) be homogeneous function

P q
of degree —s, s > 0, strictly decreasing in both variables x and y. Then the following
inequalities hold and are equivalent

b b
/ / K(4x, ByP)f ()g(y)dxdy

b
<M</ (k(pAz) gl(PAz, )) o(l—s)+ap(A; Az)(al)(pl)f(x)pdx>

1
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1

b
(/ (k(2—s—qA1)—42(2—s—qA1,y))yB“‘*‘)*B"(AZ_A‘>‘<B‘”<"_”g(y)"dy> (33)
and

b
1- (s _ _
/ (k(2 =5 —qA1) — L2 — 5 — gAy,y)) PP DE DA EAL

- ( / " K(Ax B (x)dx) "y

b
< Mp/ (k(pA2) — &1 (pAz, x))x* I =9t api=A) =(@=Dp=Dg (x)p gy (34)

where Ay e (A5 1y ay e (A28 Ly M= artpbatR gt A
p

q9 4 p

and

a a(l=y) pl ¥ a(sty—1) ,l
Gy, x) = (—) / K(1,u)u"du + (—) / K (u, V)" ~2du,
X 0 b 0

a Bls+y—1) 1 y B(l—y) ,1
G(y,y) = (—) / K(u, V)"~ *du + (E) / K(1,u)u""du.
y 0 0

If0<p<1, b=oc and K(x,y) is strictly decreasing in x and strictly increasing
11—

in y, then the reverses in (33) and (34) are valid for any A, € (-, s) and

q

-5 1
A€ (—S, —) as well as the inequality
p p

/ (k(pA2) — Gi(pAs, x)) '~ xGDla=Draaite—an) to
0 q
( / K(Ax*, By )g(y)dy) dx
S M"/ (k(2 =5 — qA1) — (2 — 5 — gAy,y))yP -9 Pl ma) =B Ng (yyagy.

Further, if 0 < p < 1, a = 0 and K(x,y) is strictly increasing in x and strictly
1—s
)

decreasing in y, then the reverses in (33) and (34) are valid for any A, € (-,
q

l—-s 1
and Ay € (—s, —) as well as the inequality
p p

b
/ (k(pA2) — £ (pAa, x)) '~ xl= D=1 +ag(d—An) tol
0
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( /0 b K(Ax*, By )g(y)dy) '

b
< M /0 (k(2 =5 — gA1) — L(2 — 5 — gAy, y))yP - Pl A =(B=Dla Vg (y)aqy,

If a =0 and b = oo, we have the inequalities for arbitrary nonnegative homogeneous
function of degree —s

1 1
THEOREM 8. Let — + — = 1 with p > 1, A;B,a, > 0 and let K(x,y) be

homogeneous function of degree —s. Then the following inequalities hold and are
equivalent

/ooo /Ooo K(Ax", By )f (x)g(y)dxdy

p

_ N(/(X) xa(l—s)+ocp(A1—A2)—((X—1)(p—1)f (X)de>
0

L
o] q
. (/0 yﬁ(ls)+ﬁq(AzA1)(ﬁl)(ql)g(y)qdy> (35)

and
oo [eS) p
/ yﬁ(Pl)(S1)+ﬁP(A1A2)+ﬁl</ K(Axa,Byﬁ)f(x)dx> dy
0 0
< NP / 7 yeli=s o (A=A~ (=D p=D (1) iy, (36)
0
-5 1 -5 1 . .
where A} € (——, =), Az € ( ,—), N=L-M, and L is defined in Corollary
q p

q
4 and M in Theorem 7.

If 0 < p < 1, then the reverse inequalities in (35) and (36) are valid for any A, €
11— 1—s 1

(=, _s) and A, € (—S, —) as well as the inequality
q9 4 p p

o0 o 1
/0 x*(g=D(s—1)+ag(Ar—A)+a—1 </0 K(Axa,Byﬁ)g(y)dy) dx

< N / VB9 +Balaa=4) = (B=1)(a=D (1) gy
0

We also give the results in discrete case.

THEOREM 9. If {a,} and {b,} are nonnegative real sequences, K(x,y) is ho-
mogeneous function of degree —s strictly decreasing in both parameters x and v,
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1 1
—+—-=1,p>1, AB,a, > 0, then the following inequalities hold
2
Z ZK(AmO‘,BnB)ambn
m=1 n=1
o] 1
< N( Z ma(l—SH(Xp(Al—AzH(p—1)(1—06)amp> !
m=1
oo 1
. (Znﬁ(lsHﬁq(AzAlH(q1)(1ﬁ)bnq) " (37)
n=1
and

o0 o0 )4
3 BB ( S K(Am®, Bnﬁ)am>

n=1 m=1
< NP Z moc(l—s)Jquu(Al—Az)Jr(P—1)(1—0¢)amP7 (38)
m=1
where N is defined in previous theorem,
l—s a—1, 1 l—-s B—1, 1 ) )
Ay € (max{ ,——1}, =), A2 € (max{ =). In particular, in-

og " Bp p
equalities (37) and (38) are equivalent.

Proof. We prove inequality (37). Put @(Am*) = (Am"‘)A‘WLD‘*é and y(BnP) =
1

(BnPY*" % "7 in Theorem 1. Since gA; + g 1z 0ad phot 5 — 120, the
> K(Am®, BnP -~ K(Am®™, BnP
functions F(Am*) = Z (mi”f) and G(BnP) = Z (mi”f) are strictly
n=1 (BnB)pA2+371 n=1 (Axa)quJrail
K(Am®, ByP)

decreasing, wherefrom we have F(Am®) < / dy and G(BnP) <
0

> K(Ax*,BnP)
0 (Axa)qAﬁé—l

Theorem 9 is a generalization of our paper ([8]), where we considered the function
K(x,y) =

(B 1!

dx and the result follows from Theorem 2. [

- . We'll explore such functions in the following section.

1
(x+)
5. Examples

In this section we continue with some special homogeneous functions. We will
use the Theorems 1 and 2 but shall use various methods to estimate the integrals of type

b

/X K(1,u)u™“du.
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symmetrical homogeneous

1
At first, we’ll discuss the case when K(x,y) = G
xX+y)°

function of degree —s.

1 1
COROLLARY 5. Let — + — =1 with p > 1. Then the following inequalities hold
q

and are equivalent

and
b N —p b P
1 S 1 s K
/ 1__(9)2__(X)z yE-1 / f(x) dy
a 2%y 2% a (x+Y)
b
s s\P laglx%'__ﬂyl »
<83 [ (1 ') 2(b)> FPds. (40)
2—5 2—3s
Proof. We use the proof of Theorem 5, where A} = 5 Ay = 5 and also the
q P
inequality

il 1 s s s
M gu>za B, 1
/a Aot 29853 a>t

which can easily be proved. Now the result follows from the Theorem 2. [

REMARK 7. Furthermore, if we use A-G inequality

Leays  Loxye o ays
then the inequalities (39) and (40) become

[
<B(%7%)(1 - (%)‘%) (/b “Elp(x )de>% (/aby‘%"‘lg(y)"dy)
[ ([ (){g;)sdx)”dy
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< (3(3%)(1 - (Z)ii))p/abxxf*Plf(x)”dx?

which is the result from [13]. These inequalities also generalize [12], and if we put
p = q = 2 in these inequalities, we obtain the result of Yang ([23]). Note also that the
case a = 0 and b = oo was proved by Brneti¢ and Pecarié in [3]; it’s Theorem C from
the Introduction.

REMARK 8. It is interesting to consider another special case of Corollary 5, namely

1 . . . .

s=1,A = 2 and A, = W In this case we do not estimate integrals as in the proof,
q

we can easily calculate them, so we have the following inequalities

/b/”f(x)g(y)dxd
oy 0

b P
< (/ (nZarctg\/i2arctg §>x§1f(x)pdx>

1

b q
. (/ (71' — 2arctg\/% —2arctg \/E)y%_lg(y)qdy> (41)
a y
and

b 1—p b 4
/(ﬂ2arctg\/;23rctg\/§) y’f_1 &dx dy
a b y a Xty
b X a\ r_,
< m—2arctg bfZarctg — )x27 f (x)Pdx (42)
g X

If 0 < p < 1, then the reverse inequalities are also valid. Furthermore, it is easy
to see that the function

f ) =arctg\/§+arctg\/§, a<x<bh,
X

reaches the minimum value arctg { g in vab, so the inequalities (41) and (42)
1

< <7r4arctg i‘/%) (/abng(x)”dxy (/abyglg(y)qdy>q

become
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and

[N1pS)

b b P b
[ oe e [

which are the generalizations of Yang’s results in [23]. The second inequality can be
found in [13].

On the other hand, we obtain another general types of inequalities for K(x,y) =
—— . It is the content of the following
(x+y)°
1 1 . L .
THEOREM 10. If — + — =1 with p > 1, then the following inequalities hold and
q

[ [

1 1

b P b q
éQ(/ x1s+p(A1A2)f(x)de> (/ y1s+q(AzA1)g(y)qdy> (43)
b b P
/ y<P1>(S1>+p(A1Az>(/ S () de) dy
a « (xFY)

b
<@ [ e (44)

are equivalent

and

-5 1 -5 1 1
for A € (Ts, 5), Ay € (Ts,[—)) and Q = kll(pAz)Il’klz(qu);’ where

d bl

a!=1—al=1) u-“ 1 —pA2 1-— qu
k[(O!) :/ oyl (1 T u)fdu and ll = p ,lz = p .

b(blfl,alfl)

Proof. We use the proof of Theorem 5, but for an estimate of the integral

b

X —Oo

/ L
a (L4u)

b
x

—o
we use the fact that the function f(x) = / (IMT)du’ x € (0,00), reaches the
a u)’
I g !
maximum value for x = b — ba , = ! oc. O
a — bt s

2
Now, if we put A} = A, = i in the previous theorem, we have following
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1 1
COROLLARY 6. Let —+— =1, p > 1 and s > 2—min{p, q} . Then the following
P 9q

inequalities hold and are equivalent

/ab /abf(ixjrgy( <O (/b “f(X)”dxy(/abyl“g(y)‘]dy>é

b b b b
/a y<s—1><p—1>< / ( jf‘i)sdx> dy < Q” ) X' 7f (x)Pdx,

2_ 1 2_ 1
Ql :km( s)pkarfo( s)q.
qs q

and

where

REMARK 9. Similarly, if A; =
[ [

<’<%(2;S></j “Erelf(y )de)
/aby%l (/b (f ix;ydx)pdy < (" 3 S>>p / e Eel

which are the main results in [11].

(44) from Theorem 10 become

ST
VRS
:\

o
k<|
~lg
+
s
—
N—
£
<
~

and

(ST

Further, we shall consider some other types of homogeneous functions. Observe
Y

n
that K(x,y) = — is symmetrical homogeneous function of degree —1, so we have
— X

the following

1 1
COROLLARY 7. If — + — =1 with p > 1, then the following inequalities hold

/ /00 In g(y)dxdy
R( /0 ey (x)”dX>F ( /0 oOy‘“’”Al)zs’(y)qvly)é

and are equivalent
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o] X In2 P >
/ =) / “uum:@<m/ WA ()P,
0 0 y—X 0

2

and

/A

1 1
where A; € (0,-), A, € (0,—) and R = - >
q p (sinpAam)? (singA )4

1 1
If 0 < p < 1, then the reverses are valid for any A, € (—,0) and A, € (0,=).
q p

REMARK 10. Let us put p(A; — Az) = € and observe the constant R from the
previous corollary as the function of A;. We obtain that, for p > 1, R reaches the

.. . T+ €
minimum value if A; =

. If € =0, then the minimum value is —, so we
in

obtain the inequality from [7] and R is the best possible constant.

Finally, if K(x,y) = , we again don’t use other estimates except

max{x, y}
Holder’s inequality because we can calculate all the integrals that we have estimated
before.

1 1
COROLLARY 8. Let — + — =1 with p > 1. Then the following inequalities hold

/ [ s
1 1
[oe] P o0 q
< T(/ xl_erp(Al_AZ)f(x)pdx) (/ yl—s+q(Az 1) g(y )qdy>
0 0

and are equivalent

and - - ,
/ y(l’l)(SI)JrP(AlAz)(/ 7f(x) dx) dy
0 o max{x,y}*
<7 / TR e,
0
1-s 1 -5 1 L 1
where A € (T, 5), Ay € (T,I;) and T = k(pA2)?Pk(gA1)7 where k(o) =

— er et If 0 < p < 1, then the reverses of these inequalities are valid for
— Ky —
1—s )

1 1- 1
anyAle(—,—s) and A; € ( )=
q9 4 p p

REMARK 11. If we put p(A; —A;) = € and observe the constant 7' from Corollary

8 as the function in A;, we obtain that, for p > 1, T reaches the minimum value if
2—s—¢
A= s8¢ . If ¢ =0, then the minimum value is p4s , SO wWe
(p+s—2)(q+s-2)

p
obtain the inequality from [7] and T is the best possible constant.
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