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Abstract. In the present investigation, by making use of fractional calculus operator, two theorem
involving certain inequalities of multivalent functions and their derivatives which are analytic in
the open unit disk are stated. In addition, some interesting and/or mentioned results which will
be important for Analytic and Geometric Function Theory (see, [1], [4], and also [2]) are also
pointed.

1. Introduction and Definitions

Let .7 (p) denote the class of functions f (z) of the form:

fle)=Z+ i ar (peN:={1,2 3, ---}), (1.1)
k=p+1

which are analytic and multivalent in the open unitdisk U= {z € C: || < 1}.
A function f (z) € 7 (p) issaid to beinthe class . (p; o) of multivalently starlike
(or, starlike when p = 1) of order o in U if it satisfies the inequality:

. (zf '(2)
f@@)

On the other hand, a function f(z) € 7 (p) is said to be in the class €(p;a) of
multivalently convex (or, convex when p = 1) of order o in U if it also satisfies the
inequality:

>>O£ (zeU;0< a<p;peN). (1.2)

#"(2)
1'(2)

%’e(lJr )>oc (zeU;0< a<p;peN). (1.3)
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Furthermore, a function f (z) € 7 (p) is said to be in the class .2 (p; &) of multivalently
close-to-convex (or, close-to-convex when p = 1) of order o in U if it satisfies:

#e (L) >0 cevoca<ppen) 4

(See, for details, Duren [4], Goodman [1], and see also, Srivastava and Owa [2].)
We now denote by 74 (p) and #4'(p) the subclasses of functions f (z) in .7 (p)
which satisfy:

when 6 >0
when 6 < 0,

(1.5)

o) D0 =+ DED™f (2) — (p — w)DES (2)] { <
P(p =+ 1)D:f (z) = Tlp + D)2+ >

| ==

and

e {Z{(Dé‘f @)DE™F (@) + (DA () DEH (2) — (DE7 ()]} }
ADEF ()P (2) = (p — W)(DES (2))

13

(zeU;0#0,peN;0< u<1),

when 8 > 0

when § < 0, (1.6)

| =S| —

respectively. In (1.5), (1.6), and throughout this paper, D% denotes an operator of
fractional calculus, which is defined as follows (cf., [2], [5], [6], and, see (also), for
example, [7-9]):

DEFINITION 1. Leta function f (z) be analytic in a simply-connected region of the
z-plane containing the origin. The fractional integral of order u is defined by

gy L[ f(8)
D) = o | L e (>0 (1.7
and fractional derivative of order u is defined by
S Y A (9
Df;f(z)_md—z/o Lo 0<u<. (18)

where the multiplicity of (z — £)*~! involved in (1.7) and that of (z — &)™* in (1.8)
are removed by requiring log(z — &) to be real when z — & > 0.

DEFINITION 2. Under the hypotheses of Definition 1, the fractional derivative of
order m + u is defined by

DIRF(2) = %Dé‘f(z), (meNg:=NU{0}:0<pu<1). (L9
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We note that 7 = 7 (1),
G1(:8) = 70 (1), &(w: 8) = 7,2 (1),
A (piu) =7 (p), Zi(piu) = #{ (),
h(pip) = 74 (p), Zalpin) = V2, (p),
(p: 8) = 75 (p), Bs5(p: 8) = #5 (p),
Api8) =13 () and  Bu(ps8) = W3 (p).

In proving the main results, we shall need the following Lemma known as Jack’s
Lemma in the literature.

LEMMA. (cf., [3]). Let w(z) be non-constant and analytic in U with w(0) = 0.
If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point zy, then

20w (20) = ew(z0), (1.10)

where c is real number and ¢ > 1.

2. The Main Results

An application of the above Lemma leads to

THEOREM 1. Let z € Ujp e NOKS u < 1,0<a<Tp+1)/Tp—-—u+1),
and f(z) € T (p). If the function f (z) belongs to the class ”1/,15 (p), then

Re (Dgf(z)> > a. (2.1)

P—H

Proof. First of them, Definition 1 readily privides us the following fractional
derivative formula for a pover function :

Mk+1)
DAy = —— ) _oeu L0<u<1). 2.2
Then, under the hypothesis of Theorem 1, define w(z) by

)

Difx) T+l \ [ T+l °
(w F(p—u+1)) ‘<r<p—u+1>“) v@. @3

where the value of
DZ I (P 1 ° I 2.4

is taken to be as its principal value. Then, clearly w(z) is an analytic function in U and
w(0) = 0. Upon differentiating both sides of (2.3) with repect to the variable z, we
have that

(Dé‘f(Z) Lip+1) ))‘“

PR IF'p—u+1
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y <D§+“f(Z) e _H)D?f(z)> w(2) (2.5)

ZI’*#*I p—H B o

By using of (2.3) in (2.5), we then find that

L(p—p+ DD () = (p—wDif )] 12w (z)

= . 2.6
o+ DY) T+ D s 8 wid 26
If now we suppose that
max w(2)| = [w(z0)| =1 (z € Usw(zo) # 0). (2.7)
Z|x 120
and apply Jack’s Lemma, we find that
20w (z0) = ew(zo) (¢ = 1,20 € U), (2.8)
and also setting z = zo in (2.6), we easily obtain that
o D0 =+ DEDHF () — (p — w)DES (2)]
L(p—u+1)D:f (z) —Tlp + )= |
=20
- 1zgw'(z0)\ ¢ [ >+ when§>0
= e (3 we) ) "5 <) whens <o, 29)

which obviously contradicts our hypothesis that f (z) € “I/MS (p). Therefore, we must
have |w(z)| < 1 (z € U), and it immediately follows from (2.3) that

D) Tp+1) | L(p+ 1) 0
P H _F(pu+1)’ <(F(pu+1)_a> ’

which implies to the assertion in (2.1). This evidently completes the proof of the
Theorem 1.

(2.10)

We next derive

THEOREM 2. Let z€ U, peN, O0<u<1, 0<a<p,and f(z) € T(p). If
the function f (z) belongs to the class V/f (p), then

D (2)
Fe| —r——= | >a O<u+oa<p). (2.11)
( Df (2)
Proof. Under the hypothesis of Theorem 2, we again define a function w(z) by
s
D f (2) 5
— o )| = —u—a)’w(), (2.12)
( D:f (2)

where the value of

S
DI
(ﬁ(l’ﬂ)) (6#£0;,peN;0<u<l) (2.13)
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is considered to be as its principal value. From the logarithmic derivation of both sides
of (2.12), we easily recieve:

H(DEf (2))(D:f (2)) + 2(DES (2)) (DI (2)) — (D f (2))°]}
2(DEf (2))(D:f (2)) — (p — )(DES (2))?

_lav(z)
5 w(z)

It is easy to see that the defined function w(z) satisfies the conditions of the Lemma.
If we make use of the same technique as in the proof of the Theorem 1 in the equality
(2.14), then we easily arrive at the desired proof of the Theorem 2. Therefore, its details
need not be presented.

(zeU;d0#0;peN;0< u<1). (2.14)

We clearly get that the main results (Theorems 1 and 2) have many useful conse-
quences concerning analytic and/or multivalently analytic functions. To state them, it
will be sufficient to choose suitable values of the papameters J, @, o and/or p. Some
of them are the following:

If we first take p = 1 in Theorems 1 and 2 together with definition (1.5) and
(1.6), respectively, then &(u;0) = ”//“5(1), &(u;8) = Wu‘s(l)7 and we then have the
following results:

COROLLARY 1. Let ze U, 0SS u<1, 0<a< 1/T2—u), and f(z) € T
If the function f (z) belongs to the class & (u, 5), namely it satisfies:

e T2 W)[zD:f (2) — (1 — w)DEF (2)] { <
[(2 — w)Dif (z) — 2!+ >

we(557) > o
-

COROLLARY 2. Let z€e U, 0 < u <1, 0< a<1, and f(z) € T. If the
function f (z) belongs to the class &(u;95), namely it satisfies the inequality:

e {Z{(Dé.‘f @)DE™F () + 2D @)(D2F () — (DE*F ()]} }
ADEF (2D () = (1= w)(DES (2))2

<% when 6 >0
>3

when § >0
when 6 < 0,

| =] —

then

when 6 < 0,

i
Re Zzﬂif(z) > o
D:f (2)
If we set § = 1 in Theorem 1 together with definition (1.5), then < (p;u) =
7 (p) and we also obtain:

then
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COROLLARY 3. Let ze U, peN, 0<u<1, 0<a<I(p+1)/Tp—u+1),
and f(z) € T (p). If the function f(z) belongs to the class </ (p; ), namely it

satisfies:

e T =0+ DD (@) — (0~ wDEF @] | _
I'(p—u+ DDYf(z) —T(p 4 1)zp—+ ’
then

Be (Dé‘f(Z)> -

P—H
If we let 6 = 1 in Theorem 2 together with definition (1.6), then % (p;u) =
#(p) and we recieve:
COROLLARY 4. Let ze U, peN, 0<u<1, 0<a<p,and f(z) € T(p).
If the function f (z) belongs to the class % (p; 1), namely it satisfies:
e {z{(Dé.*f (D1 () +2(DEf (DD (2)) = (DEf <z>>21}} -
2DEf (2D (2) = (p = w)(DEF (2))?

then

2D; M (2)
He <7D?f(z) > > o

By taking 8 = —1 in Theorem 1 together with definition (1.5), then @4 (p; u) =
7" (p) and we also get:

COROLLARY 5. Let z€e U, peN, 6 #0, 0<a<TI'(p+1)/T(p—u+1), and
f(2) € T(p). If the function f (z) belongs to the class < (p; ), namely it satisfies:

%e{w — i+ DEDY (@) — (p— wDEf ()] } _—

C(p—u+ DD (2) —T(p+ 1)+

then

Fe <@) > a.

i

By setting 0 = —1 in Theorem 2 together with definition (1.6), then %, (p; u) =
#* (p) and we have:

COROLLARY 6. Let z€ U, peN, 0 #£0; 0< a<p, and f(2) € T(p). If the
Sunction f (z) belongs to the class %, (p; 8), namely it satisfies:
e {Z{(Dé‘f @)DEF () + (DA () (D24 () — (DL <z>>2]}} -
2DEf (2))(D: ™ () = (p — w)(DES (2))?

then

(@) , ,
%’e(f(z) ) >o, e, f(z)e S (p;a).

By letting u = 0 in Theorem 1 together with definition (1.5), then 2#(p;d) =
79 (p) and we arrive at:
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COROLLARY 7. Let z€ U, peN, 6 #£0, 0< a< 1, and f(2) € T(p). If the
Sfunction f (z) belongs to the class <#5(p; ), namely it satisfies:

%e(w){ <Lt when §>0

flr) =2 > 5 when § <0

)

then

21

!/
Re (f (Z)> >o, e, f(2)e X (p;a).
By putting 1 = 0 in Theorem 2 together with definition (1.6), then %;(p;d) =
#3(p) and we have:

COROLLARY 8. Let z€ U, peN, 0 #0;, 0< a<p, and f(2) € T (p). If the
Sunction f (z) belongs to the class %5(p;0), namely it satisfies:

%e{z{(f(Z))(f’(Z)) +2[(f () (f"(2) — (f’(Z))z}}}{ <
Zf (2)f'(z) — p(f (2))?] >

when 8§ > 0
when § <0

| =i —

then

" (2) . .
He <f’(z) > >a, ie., f(z)e¥(p;a).

If we take 4 — 1— in Theorem 1 together with definition (1.5), then < (p; §) =
¥4 (p) and we also get:

COROLLARY 9. Let z€ U, peN, 0 #0, 0< a<p, and f(2) € T (p). If the
Sunction f (z) belongs to the class </4(p; ), namely it satisfies:

Gte (Zf”@ ~(p- l)f(z)> { <k when >0

f(z) — 21 > 5  when 6 <0

b

then

He (f’(z)) >o, e, f(2)eA(p;a).

!
If we take 4 — 1— in Theorem 2 together with definition (1.6), then %B4(p; ) =
#3 (p) and we obtain:
COROLLARY 10. Let z€ U, peN, § #0; 0 < a <p, and f(z) € T (p). If
the function f (z) belongs to the class Bu(p; 0), namely it satisfies:
Re {Z{f’(Z)f”(Z) +2lf (2" (2) — (f”(z))2]}} { < % when & >0
/ F'@f(@) = (= D) >5  when§ <0

)

then

1
Re (ié?) >a, ie, f(z)€€(pa)
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