

HIGHER DIMENSIONAL COMPACTNESS OF HARDY OPERATORS INVOLVING OINAROV-TYPE KERNELS

PANKAJ JAIN, PAWAN K. JAIN AND BABITA GUPTA

(communicated by J. Pečarić)

Abstract. The compactness of the higher dimensional generalized Hardy operator $(\mathcal{K}f)(x) = \int_{S_x} k(x,y) f(y) dy$ and its conjugate operator \mathcal{K}^* has been characterized for the case 1 < p, $q < \infty$. This is done by reducing the problem to the corresponding one dimensional situation.

1. Introduction

The L^p - L^q boundedness and compactness of the generalized Hardy operator $(Lf)(s) = \int_0^s l(s,t)f(t)dt$ involving the so called "Oinarov kernel" l(s,t) has been a subject of investigation during the last decades. A good account of such work can be found in [6], [8], [9], [10] and the references therein. Also, the boundedness and compactness of L has been studied in the framework of general Banach function spaces defined over \mathbb{R}^+ , see, e.g., [7].

Our aim, in this paper, is to study the L^p - L^q compactness of an N -dimensional analogue of the operator L defined by

$$(\mathcal{K}f)(x) = \int_{S_x} k(x, y) f(y) dy, \quad x \in E$$

where E and S_x are certain cones in \mathbb{R}^N (defined below) and show that the compactness of \mathcal{K} can be characterized in terms of the compactness of the one dimensional operator L. We also study the corresponding conjugate operator \mathcal{K}^* . Such reduction for some other operators can be found in [3], [5]. In [12], the author works with smoothly starshaped regions and studies the boundedness of \mathcal{K} in terms of the boundedness of L under the special case when $L(s,t) \equiv 1 \equiv L(s,t)$. The class of smoothly star-shaped regions is larger than the one considered here. However, in our case, we dispense with the smoothness condition. Further, if there is no confusion, we use the same notations L and L0 for cones as done by Sinnamon [12] for star-shaped regions. In the general case the boundedness of L1 has been studied in [13].

The paper is organized in the following manner: In Section 2, we collect certain preliminaries which is required for the main results in this paper. The reduction of the

Mathematics subject classification (2000): 46E35, 26D10.

Key words and phrases: Hardy operator, Oinarov kernel, boundedness, compactness.

compactness of $\mathcal K$ in terms of the compactness of L for $1 < p, q < \infty$ has been done in Section 3 and subsequently in this section, the precise weight characterization for the compactness of $\mathcal K$ in the case $1 is given. Finally, in Section 4, the case <math>1 < q < p < \infty$ has been discussed as well as the conjugate operator $\mathcal K^*$ has been studied. There is no ambiguity in the symbol L being used for the space as well as for the operator. It is clear with the context. Moreover, in the case of a space, the symbol L is followed by a superscript, e.g., L^p , L^q etc.

2. Preliminaries

Let $\Omega \subseteq \mathbb{R}^N$. For a weight function u on Ω , we shall denote by $L^p(\Omega,u)$, $1 \leqslant p < \infty$, the weighted Lebesgue space which is the set of all measurable functions f defined on Ω such that

$$||f||_{p,\Omega,u}:=\left(\int_{\Omega}|f(x)|^pu(x)dx\right)^{\frac{1}{p}}<\infty.$$

It is known that for $1 \le p < \infty$, $L^p(\Omega, u)$ is a Banach space and for $1 , it is reflexive too. If the duality on the weighted Lebesgue space <math>L^p(\Omega, u)$, 1 , is defined by

 $\langle f, g \rangle = \int_{\Omega} f(x)g(x)dx, \quad g \in L^{p}(\Omega, u)$

then we can identify the conjugate space of $L^p(\Omega, u)$ by $L^{p'}(\Omega, u^{1-p'})$, $p' = \frac{p}{p-1}$ being the conjugate index of p, i.e.

$$[L^p(\Omega, u)]^* = L^{p'}(\Omega, u^{1-p'}).$$

For a bounded linear operator T between two normed linear spaces X and Y, we denote by T^* , the conjugate of T acting between Y^* and X^* .

Consider the generalized Hardy operator $L:L^p((0,\infty),\nu)\to L^q((0,\infty),u)$ defined by

 $(Lf)(s) := \int_0^s l(s,t)f(t)dt, \quad s > 0,$

where the kernel l(s,t) is defined for $0 < t < s < \infty$ and $l(s,t) \ge 0$. The kernel l(s,t) is called *Oinarov* if

(i) l(s,t) is increasing in the first variable, i.e.,

$$l(s_1, t) \le l(s_2, t), \quad for \quad 0 < s_1 < s_2;$$
 (2.1)

(ii) l(s,t) is decreasing in the second variable, i.e.,

$$l(s, t_1) \le l(s, t_2), \quad for \quad 0 < t_2 < t_1;$$
 (2.2)

(iii) there exist positive constants c_1, c_2 such that

$$c_1[l(s,r) + l(r,t)] \le l(s,t) \le c_2[l(s,r) + l(r,t)], \quad 0 < t < r < s.$$
 (2.3)

Such kernels were introduced by Bloom and Kermen [2]. However, because of the considerable work done with these kernels by Oinarov [9], [10], these are named after him.

The conjugate operator L^* to L is given by

$$(L^*g)(s) := \int_s^\infty l(t,s)g(t)dt, \quad s > 0.$$

Let \sum_N be the unit sphere in \mathbb{R}^N , i.e., $\sum_N = \{x \in \mathbb{R}^N : |x| = 1\}$, where |x| denotes the Euclidean norm of the vector $x \in \mathbb{R}^N$. Let A be a measurable subset of \sum_N . We denote by E, a measurable cone in \mathbb{R}^N and is defined by

$$E = \left\{ x \in \mathbb{R}^N : x = s\sigma; 0 \leqslant s < \infty, \sigma \in A \right\}.$$

Let $S_x, x \in \mathbb{R}^N$ denote part of E with 'radius' $\leq |x|$, i.e.,

$$S_x = \{ y \in \mathbb{R}^N : y = s\sigma, 0 \leqslant s \leqslant |x|, \sigma \in A \}.$$

Let E be a cone in \mathbb{R}^N . We consider the N- dimensional generalized Hardy operator

$$(\mathcal{K}f)(x) = \int_{S_x} k(x, y) f(y) dy, \quad x \in E$$

where the kernel k(x, y) is defined on $E \times E$ for $|y| \le |x|$ and is such that $k(x, y) \ge 0$. Following the one dimensional case, the kernel k(x, y) is called *Oinarov* if the following are satisfied:

(i) k is increasing in the first argument, i.e.,

$$k(x_1, y) \leqslant k(x_2, y), \quad |x_1| \leqslant |x_2|, y \in E;$$
 (2.4)

(ii) k is decreasing in the second argument, i.e.,

$$k(x, y_1) \geqslant k(x, y_2), \quad x \in E, |y_1| \leqslant |y_2|;$$
 (2.5)

(iii) there exist positive constants c_1, c_2 such that

$$c_1[k(x,y) + k(y,z)] \le k(x,z) \le c_2[k(x,y) + k(y,z)], \quad |z| \le |y| \le |x|.$$
 (2.6)

REMARK 1. If k is a positive kernel satisfying (2.4) and (2.5) then it only depends on the radial part. Indeed, let $x_i = s\sigma_i, y_i = t\tau_i, s, t > 0, \sigma_i, \tau_i \in A, i = 1, 2$. Note that $|x_1| = |x_2|$ and $|y_1| = |y_2|$. Then using (2.4) and (2.5) we obtain

$$k(x_1, y_1) = k(x_2, y_1) = k(x_2, y_2).$$

Thus, if we set

$$l(s,t) = k(s\sigma, t\tau), \qquad (2.7)$$

then l is a positive kernel defined on $(0, \infty) \times (0, \infty)$ corresponding to the kernel $k(s\sigma, t\tau)$ defined on $E \times E$. Clearly, k is Oinarov if and only if l is so.

The operator $\mathcal{K}^*: L^p(E, v) \to L^q(E, u)$, conjugate to \mathcal{K} is defind by

$$\left(\mathcal{K}^{*}g\right)(x) = \int_{E \backslash S_{\mathbf{x}}} k(y, x)g(y)dy, \quad x \in E. \tag{2.8}$$

Let X be a normed linear space and X^* denote its conjugate space. We say that a sequence $\{x_n\}$ in X is strongly convergent (or simply convergent) to $x \in X$, written

 $x_n \to x$, if $||x_n - x|| \to 0$ as $n \to \infty$. A sequence $\{x_n\}$ in X is said to converge weakly to $x \in X$, written $x_n \stackrel{w}{\to} x$, if $f(x_n) \to f(x)$, for each $f \in X^*$. A sequence $\{f_n\}$ in X^* is said to be weak * convergent to $f \in X^*$, written $f_n \stackrel{w^*}{\to} f$, if $f_n(x) \to f(x)$ for each $x \in X$. Note that the strong convergence implies the weak convergence which in turn implies the weak * convergence. The implications in the reverse direction do not hold in general. However, if X is a reflexive space then the weak * convergence implies the weak convergence.

The proofs of the theorems presented in this paper require some well known assertions which are collected in the following:

THEOREM 2.A. Let X and Y be Banach spaces.

- (i) A bounded linear operator $T: X \to Y$ is compact if and only if its conjugate $T^*: Y^* \to X^*$ is compact.
- (ii) If $T: X \to Y$ is compact and $\{x_n\}$ is a sequence in X such that $\{x_n\} \stackrel{w}{\to} x$, for some $x \in X$, then $Tx_n \to Tx$
- (iii) An operator $T: X \to Y$ is compact if $T^*: Y^* \to X^*$ is weak* -norm sequentially continuous i.e. for each sequence $\{f_n\}$ in Y^* with $\{f_n\} \xrightarrow{w^*} f$, for some $f \in Y^*$, we have $T^*(f_n) \to T^*f$.

3. The results

For the sake of convenience we shall use the following notations. We denote for $n \ge 0$

$$(L_n f)(s) := \int_0^s l^n(s,t) f(t) dt,$$

$$(L_n^* g)(s) := \int_s^\infty l^n(t,s) g(t) dt.$$

$$(\mathcal{K}_n h)(x) := \int_{\mathcal{S}_r} k^n(x,y) h(y) dy,$$

and

$$(\mathcal{K}_n^*h)(x) := \int_{E \setminus S_r} k^n(y, x)h(y)dy.$$

For example, L_0 is the standard Hardy operator $\int_0^s f(t) dt$.

In [7], Lomakina and Stepanov studied the compactness of the operator L in the framework of general Banach function spaces defined on \mathbb{R}^+ . In terms of L^p - L^q compactness, their result reads as

THEOREM 3.A. Let 1 and <math>U, V be weight functions on $(0, \infty)$. Then the operator $L: L^p((0, \infty), V) \to L^q((0, \infty), U)$ involving the Oinarov kernel l is compact if and only if

$$\max(A_0, A_1) < \infty$$

and

$$\lim_{s \to a_i} A_i(s) = \lim_{s \to b_i} A_i(s) = 0, \quad i = 0, 1$$

where

$$A_0 = \sup_{s>0} A_0(s) = \sup_{s>0} (L_0^* U)^{1/q}(s) \left(L_{p'} V^{1-p'} \right)^{1/p'}(s),$$

$$A_1 = \sup_{s>0} A_1(s) = \sup_{s>0} (L_q^* U)^{1/q}(s) \left(L_0 V^{1-p'} \right)^{1/p'}(s),$$

$$a_i = \inf \left\{ s > 0 : A_i(s) > 0 \right\} \quad i = 0, 1$$

and

$$b_i = \sup \{s > 0 : A_i(s) > 0\}$$
 $i = 0, 1.$

The aim is to extend the above result in the higher dimensional setting. More precisely, we characterize the compactness of the operators \mathcal{K} and \mathcal{K}^* defined in Section 2. The following is the key result which characterizes the compactness of \mathcal{K} in terms of the compactness of the one dimensional operator L.

THEOREM 3.1. Let E be a cone in \mathbb{R}^N and k be a kernel on $E \times E$ depending on the radial variables, i.e., k(x,y) = k(|x|,|y|). Suppose that $1 < p,q < \infty$ and u,v be weight functions on E. Then the operator $K: L^p(E,v) \to L^q(E,u)$ is compact if and only if the operator $L: L^p((0,\infty),V) \to L^q((0,\infty),U)$ is compact with

$$U(t) = \int_{A} u(t\tau) t^{N-1} d\tau, \quad t \in (0, \infty)$$
(3.1)

and

$$V(t) = \left(\int_{A} v^{1-p'}(t\tau) t^{N-1} d\tau\right)^{1-p}, \quad t \in (0, \infty).$$
 (3.2)

Proof. Let $x, y \in E$. Using the polar coordinates, $x = s\sigma$, $y = t\tau$, σ , $\tau \in A$, and the fact that k(x, y) depends on radial variables, we can set

$$k(x, y) = k(|x|, |y|) = l(s, t),$$

where l(s,t) is the kernel involved in the one dimensional operator L.

First assume that $L:L^{p}\left(\left(0,\infty\right),V\right)\to L^{q}\left(\left(0,\infty\right),U\right)$ is compact. In order to show that \mathcal{K} is compact, it suffices to show that the conjugate operator $\mathcal{K}^{*}:L^{q'}\left(E,u^{1-q'}\right)\to L^{p'}\left(E,v^{1-p'}\right)$

$$(\mathcal{K}^*g)(x) = \int_{E \setminus S_X} k(y, x)g(y)dy, \quad x \in E,$$

is weak *-norm sequentially continuous since then the result follows from Theorem 2.A (iii). Let $\{f_n\}$ be a sequence in $L^{q'}\left(E,u^{1-q'}\right)$ such that $\{f_n\} \stackrel{w^*}{\to} 0$. Without any loss of generality, we may assume that each f_n is non-negative. Define

$$F_n(t) = \int_A f_n(t\tau) t^{N-1} d\tau, \quad n \in \mathbb{N}, \ t \in (0, \infty).$$
(3.3)

Then

$$\begin{split} F_n\left(t\right) &= \int_A f_n\left(t\tau\right) u^{-\frac{1}{q}}\left(t\tau\right) \left(t^{N-1}\right)^{\frac{1}{q'}} u^{\frac{1}{q}}\left(t\tau\right) \left(t^{N-1}\right)^{\frac{1}{q}} d\tau \\ &\leq \left(\int_A f_n^{q'}\left(t\tau\right) u^{1-q'}\left(t\tau\right) t^{N-1} d\tau\right)^{\frac{1}{q'}} \left(\int_A u\left(t\tau\right) t^{N-1} d\tau\right)^{\frac{1}{q}}, \end{split}$$

and therefore using (3.1) and making change of variable $t\tau = y$, we have

$$\begin{split} \left(\int_{0}^{\infty} F_{n}^{q'}\left(t\right) U^{1-q'}\left(t\right) dt\right)^{\frac{1}{q'}} &\leq \left(\int_{0}^{\infty} \int_{A} f_{n}^{q'}\left(t\tau\right) u^{1-q'}\left(t\tau\right) t^{N-1} d\tau dt\right)^{\frac{1}{q'}} \\ &= \left(\int_{E} f_{n}^{q'}\left(y\right) u^{1-q'}\left(y\right) dy\right)^{\frac{1}{q'}} \\ &< \infty, \end{split}$$

which gives that $\{F_n\}$ is a sequence in $L^{q'}\left(\left(0,\infty\right),U^{1-q'}\right)$. Next we note that if G is any function in $L^q\left(\left(0,\infty\right),U\right)$ and $g:E\to\mathbb{R}$ is defined by

$$g(x) = G(t), \quad x = t\tau$$

then $g \in L^{q}(E, u)$, since by using (3.1) and making change of variable $x = t\tau$, we have

$$\int_{E} g^{q}(x) u(x) dx = \int_{0}^{\infty} \int_{A} g^{q}(t\tau) u(t\tau) t^{N-1} d\tau dt$$
$$= \int_{0}^{\infty} G^{q}(t) U(t) dt$$
$$< \infty.$$

Thus by using (3.3), we have

$$\int_{0}^{\infty} F_{n}(t) G(t) dt = \int_{0}^{\infty} \left(\int_{A} f_{n}(t\tau) t^{N-1} d\tau \right) G(t) dt$$

$$= \int_{0}^{\infty} \int_{A} f_{n}(t\tau) g(t\tau) t^{N-1} d\tau dt$$

$$= \int_{E} f_{n}(x) g(x) dx$$

$$\to 0 \quad as \quad n \to \infty,$$

i.e. $F_n \stackrel{w}{\to} 0$. Further since L is compact, by Theorem 2.A ((i) and (ii))

$$||L^*F_n||_{p'(0,\infty)} \underset{V^{1-p'}}{\underset{V^{1-p'}}{\longrightarrow}} 0 \quad as \quad n \to \infty.$$

Now making change of variables $y = t\tau$, $x = s\sigma$ so that for $\sigma \in A$, |x| = s and using (3.2), (3.3), we have

$$\| \mathcal{K}^* f_n \|_{p', E, v^{1-p'}} = \left(\int_E \left(\int_{E \setminus S_x} k(y, x) f_n(y) \, dy \right)^{p'} v^{1-p'}(x) \, dx \right)^{\frac{1}{p'}}$$

$$= \left(\int_0^{\infty} \int_A \left(\int_s^{\infty} \int_A k(t\tau, s\sigma) f_n(t\tau) \, t^{N-1} d\tau dt \right)^{p'} v^{1-p'}(s\sigma) \, s^{N-1} d\sigma ds \right)^{\frac{1}{p'}}$$

$$= \left(\int_0^{\infty} \left(\int_s^{\infty} l(t, s) F_n(t) \, dt \right)^{p'} V^{1-p'}(s) \, ds \right)^{\frac{1}{p'}}$$

$$= \| L^* F_n \|_{p', (0, \infty), V^{1-p'}},$$

and we are done.

Conversely, assume that $\mathcal{K}: L^p(E, v) \to L^q(E, u)$ is compact. Let $\{F_n\}$ be a sequence in $L^{q'}\left((0,\infty), U^{1-q'}\right)$ such that $F_n \stackrel{w^*}{\to} 0$. Without any loss of generality we may assume that each F_n is non-negative. Define

$$f_n(t\tau) = F_n(t) u(t\tau) U^{-1}(t), \quad n \in \mathbb{N}, \ t \in (0, \infty), \tau \in A.$$
 (3.4)

Then

$$\int_{A} f_{n}\left(t\tau\right) t^{N-1} d\tau = F_{n}\left(t\right), \quad n \in \mathbb{N}, t \in \left(0, \infty\right). \tag{3.5}$$

Now using (3.1) and (3.4), we have

$$\begin{split} \left(\int_{E} f_{n}^{q'}(x) \, u^{1-q'}(x) \, dx \right)^{\frac{1}{q'}} &= \left(\int_{0}^{\infty} \int_{A} f_{n}^{q'}(t\tau) \, u^{1-q'}(t\tau) \, t^{N-1} d\tau dt \right)^{\frac{1}{q'}} \\ &= \left(\int_{0}^{\infty} F_{n}^{q'}(t) \left(\int_{A} u^{q'}(t\tau) \, u^{1-q'}(t\tau) \, t^{N-1} d\tau \right) U^{-q'}(t) \, dt \right)^{\frac{1}{q'}} \\ &= \left(\int_{0}^{\infty} F_{n}^{q'}(t) \, U^{1-q'}(t) \, dt \right)^{\frac{1}{q'}} \\ &< \infty, \end{split}$$

which means that $\{f_n\}$ is a sequence in $L^{q'}\left(E,u^{1-q'}\right)$. Thus (3.2) and (3.5) yield $\parallel L^*F_n\parallel_{p',(0,\infty),V^{1-p'}}=\parallel \mathcal{K}^*f_n\parallel_{p',E,v^{1-p'}}$.

We now show that $f_n \stackrel{w}{\to} 0$. For any function $g \in L^q(E, u)$, using (3.4), we have

$$\int_{E} f_{n}(x) g(x) dx = \int_{0}^{\infty} \int_{A} F_{n}(t) u(t\tau) U^{-1}(t) g(t\tau) t^{N-1} d\tau dt$$

$$= \int_{0}^{\infty} F_{n}(t) \left(\int_{A} u(t\tau) g(t\tau) t^{N-1} d\tau \right) U^{-1}(t) dt$$

$$= \int_{0}^{\infty} F_{n}(t) G(t) dt$$

$$\to 0 \quad as \quad n \to \infty,$$

where

$$G(t) = \left(\int_{A} u(t\tau) g(t\tau) t^{N-1} d\tau\right) U^{-1}(t), \quad t \in (0, \infty)$$

and it can be easily verified that $G \in L^{q}\left(\left(0,\infty\right),U\right)$. Indeed, using $\left(3.1\right)$, we have

$$\begin{split} \int_{0}^{\infty} G^{q}\left(t\right) U\left(t\right) dt &= \int_{0}^{\infty} \left(\int_{A} u\left(t\tau\right) g\left(t\tau\right) t^{N-1} d\tau \right)^{q} U^{1-q}\left(t\right) dt \\ &= \int_{0}^{\infty} \left(\int_{A} g\left(t\tau\right) u^{\frac{1}{q}}\left(t\tau\right) \left(t^{N-1}\right)^{\frac{1}{q}} u^{\frac{1}{q'}}\left(t\tau\right) \left(t^{N-1}\right)^{\frac{1}{q'}} d\tau \right)^{q} U^{1-q}\left(t\right) dt \\ &\leq \int_{0}^{\infty} \left(\int_{A} g^{q}\left(t\tau\right) u\left(t\tau\right) t^{N-1} d\tau \right) \left(\int_{A} u\left(t\tau\right) t^{N-1} d\tau \right)^{q-1} U^{1-q}\left(t\right) dt \\ &= \int_{F} g^{q}\left(x\right) u\left(x\right) dx < \infty. \end{split}$$

Now as \mathcal{K} is compact, by Theorem 2.A ((i) and (ii)), $\|\mathcal{K}^*f_n\|_{p',E,v^{1-p'}}$ and hence $\|L^*F_n\|_{p',(0,\infty),V^{1-p'}}$ converges to 0 as $n\to\infty$. Now the compactness of L follows from Theorem 2.A (iii).

REMARK 2. Theorem 3.1 can be compared with a result of the authors ([5], Theorem 4.1) where it is proved for $k(x,y) \equiv 1$ and $l(s,t) \equiv 1$. However, there the integrals are considered over star-shaped regions.

Now we can give the precise weight characteriztion of the compactness of K:

THEOREM 3.2. Let 1 and <math>u, v be weight functions on E. Then the operator $K: L^p(E, v) \to L^q(E, u)$ involving the Oinarov kernel k is compact if and only if

$$A = \max(A_0, A_1) < \infty \tag{3.6}$$

and

$$\lim_{x \to x_i} \mathcal{A}_i(x) = \lim_{x \to \widetilde{x_i}} \mathcal{A}_i(x) = 0, \quad i = 0, 1$$
(3.7)

where

$$\begin{split} \mathcal{A}_0 &= \sup_{x \in E \setminus \{0\}} \mathcal{A}_0(x) = \sup_{x \in E \setminus \{0\}} (\mathcal{K}_0^* u)^{1/q}(x) \left(\mathcal{K}_{p'} v^{1-p'} \right)^{1/p'}(x), \\ \mathcal{A}_1 &= \sup_{x \in E \setminus \{0\}} \mathcal{A}_1(x) = \sup_{x \in E \setminus \{0\}} (\mathcal{K}_q^* u)^{1/q}(x) \left(\mathcal{K}_0 v^{1-p'} \right)^{1/p'}(x), \\ x_i &= \inf \left\{ x \in E \setminus \{0\} : \mathcal{A}_i(x) > 0 \right\} \quad i = 0, 1 \\ \widetilde{x}_i &= \sup \left\{ x \in E \setminus \{0\} : \mathcal{A}_i(x) > 0 \right\} \quad i = 0, 1. \end{split}$$

Proof. We use the polar coordinates $x = s\sigma$, $y = t\tau$ with $\sigma, \tau \in A$ and s, t > 0. The result is obtained in view of (2.7) and Theorems 3.1 and 3.A if we show that

 $A_i(s) = A_i(x), i = 0, 1$. We find that

$$\begin{split} A_{0}(s) &= \left(\int_{s}^{\infty} \int_{A} u(t\tau) \, t^{N-1} d\tau dt \right)^{\frac{1}{q}} \left(\int_{0}^{s} l^{p'}(s,t) \left(\int_{A} v^{1-p'}(t\tau) \, t^{N-1} d\tau \right)^{(1-p)(1-p')} dt \right)^{\frac{1}{p'}} \\ &= \left(\int_{s}^{\infty} \int_{A} u(t\tau) \, t^{N-1} d\tau dt \right)^{\frac{1}{q}} \left(\int_{0}^{s} \int_{A} k^{p'}(s\sigma, t\tau) v^{1-p'}(t\tau) \, t^{N-1} d\tau dt \right)^{\frac{1}{p'}} \\ &= \mathcal{A}_{0}(x). \end{split}$$

Similarly, $A_1(s) = A_1(x)$ and we are done.

4. Final results and remarks

REMARK 3. Following a result of Ando [1], it is known that for $1 < q < p < \infty$, the operator $L: L^p\left(\left(0,\infty\right),u\right) \to L^q\left(\left(0,\infty\right),v\right)$ is bounded if and only if it is compact. The same is true in higher dimension also. But the L^p - L^q boundedness of $\mathcal K$ is already known, see [13]. Consequently, the same are the compactness conditions of $\mathcal K$.

In view of Theorems 2.A (i) and 3.2, the conjugate operator $\mathcal{K}^*: L^{q'}(E, u^{1-q'}) \to L^{p'}(E, v^{1-p'})$ is compact if and only if (3.6) and (3.7) are satisfied. Replacing $p', q', u^{1-q'}$ and $v^{1-p'}$ by, respectively, q, p, v and u, we immediately obtain the following:

THEOREM 4.1. Let 1 and <math>u, v be weight functions on E. Then the operator $K^* : L^p(E, v) \to L^q(E, u)$ involving the Oinarov kernel k is compact if and only if

$$\mathcal{A}^* = \max(\mathcal{A}_0^*, \mathcal{A}_1^*) < \infty$$

and

$$\lim_{x \to x_i^*} \mathcal{A}_i^*(x) = \lim_{x \to \widetilde{x}_i^*} \mathcal{A}_i^*(x) = 0, \quad i = 0, 1$$

where

$$\begin{split} \mathcal{A}_{0}^{*} &= \sup_{x \in E \setminus \{0\}} \mathcal{A}_{0}^{*}(x) = \sup_{x \in E \setminus \{0\}} (\mathcal{K}_{0}^{*}v^{1-p'})^{1/p'}(x) \left(\mathcal{K}_{q}u\right)^{1/q}(x), \\ \mathcal{A}_{1}^{*} &= \sup_{x \in E \setminus \{0\}} \mathcal{A}_{1}^{*}(x) = \sup_{x \in E \setminus \{0\}} (\mathcal{K}_{p'}^{*}v^{1-p'})^{1/p'}(x) \left(\mathcal{K}_{0}u\right)^{1/q}(x), \\ \mathcal{X}_{i}^{*} &= \inf \left\{ x \in E \setminus \{0\} : \mathcal{A}_{i}^{*}(x) > 0 \right\} \quad i = 0, 1 \\ \widetilde{\mathcal{X}}_{i}^{*} &= \sup \left\{ x \in E \setminus \{0\} : \mathcal{A}_{i}^{*}(x) > 0 \right\} \quad i = 0, 1. \end{split}$$

REMARK 4. In the light of Remark 3 and using the technique of Theorem 4.1, the compactness of the operator \mathcal{K}^* for the case $1 < q < p < \infty$ can be obtained. For conciseness, the construction of the result and its proof is left to the reader.

REFERENCES

- [1] T. Ando, On the compactness of integral operators, Proc. Ned. Akad. Van Wet., 24, (1962), 235–239.
- [2] S. BLOOM, R. KERMAN, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc., 113, (1991), 135-141.
- [3] B. GUPTA, Mapping Properties of Certain Integral Averaging Operators, Doctoral Thesis, 2004.
- [4] P. JAIN, B. GUPTA, Compactness of Hardy-Steklov operator, J. Math. Anal. Appl., 288, (2003), 680–691.
- [5] P. JAIN, P. K. JAIN AND B. GUPTA, Compactness of Hardy-type operators over star-shaped regions in \mathbb{R}^N , Canad. Math. Bull., **47**, (4) (2004), 540–552.
- [6] A. KUFNER, L. E. PERSSON, Weighted Inequalities of Hardy Type, World Scientific, 2003.
- [7] E. LOMAKINA, V. D. STEPANOV, On the Hardy-type integral operators in Banach function spaces, Publ. Math., 42, (1998), 165-194.
- [8] V. G. MAZ'JA, Sobolev Spaces, Springer Verlag, Springer Series in Soviet Mathematics, 1985.
- [9] R. OINAROV, Weighted inequalities for a class of integral operators (Russian), Dokl. Akad. Nauk. SSSR, 319, (1991), 1076-1078; translation in Soviet Math. Dokl., 44, (1992), 291–293.
- [10] R. OINAROV, Two-sided estimates for the norm of some classes of integral operators (Russian), Trudy Mat. Inst. Steklov, 204, (1993), 240–250; translation in Proc. Steklov Inst. Math., 204, (1994), 205–214.
- [11] G. SINNAMON, A weighted gradient inequality, Proc. Royal Soc. Edinburgh Sect. A, 111, (1989), 329-335.
- [12] G. SINNAMON, One dimensional Hardy-inequalities in many dimensions, Proc. Royal Soc. Edinburgh Sect. A, 128A, (1998), 833-848.
- [13] A. WEDESTIG, Weighted Inequalities of Hardy-Type and their Limiting Inequalities, Doctoral Thesis, 2003.

(Received May 24, 2005)

Pankaj Jain Department of Mathematics Deshbandhu College (University of Delhi) Kalkaji, New Delhi - 110 019 India

e-mail: pankajkrjain@hotmail.com

Pawan K.Jain Department of Mathematics University of Delhi Delhi - 110 007 India

e-mail: pawanujain@vsnl.net

Babita Gupta Department of Mathematics Shivaji College, (University of Delhi) Raja Garden, Delhi - 110 027

e-mail: babita74@hotmail.com