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HIGHER DIMENSIONAL COMPACTNESS OF HARDY
OPERATORS INVOLVING OINAROV-TYPE KERNELS

PANKAJ JAIN, PAWAN K. JAIN AND BABITA GUPTA

(communicated by J. Pecaric)

Abstract. The compactness of the higher dimensional generalized Hardy operator (KCf )(x) =
/i 5. k(x,y)f (y)dy and its conjugate operator JC* has been characterized for the case 1 < p,
g < oo. This is done by reducing the problem to the corresponding one dimensional situation.

1. Introduction

The L”-L? boundedness and compactness of the generalized Hardy operator
(Lf ) (s) = [ I(s,0)f ()dt involving the so called “Oinarov kernel” I(s,z) has been
a subject of investigation during the last decades. A good account of such work can
be found in [6], [8], [9], [10] and the references therein. Also, the boundedness and
compactness of L has been studied in the framework of general Banach function spaces
defined over R*, see, e.g., [7].

Our aim, in this paper, is to study the [ -L? compactness of an N -dimensional
analogue of the operator L defined by

(KN = [ ksl D)y, xek
where E and S, are certain conesin R" (defined below) and show that the compactness
of K can be characterized in terms of the compactness of the one dimensional operator
L. We also study the corresponding conjugate operator X£*. Such reduction for some
other operators can be found in [3], [5]. In [12], the author works with smoothly star-
shaped regions and studies the boundedness of K in terms of the boundedness of L
under the special case when [(s,#) = 1 = k(x,y). The class of smoothly star-shaped
regions is larger than the one considered here. However, in our case, we dispense with
the smoothness condition. Further, if there is no confusion, we use the same notations
E and S, for cones as done by Sinnamon [12] for star-shaped regions. In the general
case the boundedness of K has been studied in [13].

The paper is organized in the following manner: In Section 2, we collect certain
preliminaries which is required for the main results in this paper. The reduction of the
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compactness of K in terms of the compactness of L for 1 < p,q < oo has been done
in Section 3 and subsequently in this section, the precise weight characterization for the
compactness of K in the case 1 < p < g < oo is given. Finally, in Section 4, the case
1 < g < p < oo has been discussed as well as the conjugate operator K* has been
studied. There is no ambiguity in the symbol L being used for the space as well as for
the operator. It is clear with the context. Moreover, in the case of a space, the symbol
L is followed by a superscript, e.g., L, L? etc.

2. Preliminaries

Let Q C RY. For a weight function u on Q , we shall denote by 17(Q,u), 1 <
p < oo, the weighted Lebesgue space which is the set of all measurable functions f
defined on Q such that

IF Tl = ( L u(x)dx)’l’ < oo,

It is known that for 1 < p < oo, LP(Q,u) is a Banach space and for 1 < p < oo, it
is reflexive too. If the duality on the weighted Lebesgue space L (Q,u), 1 < p < oo,
is defined by

(f.g) = / Fg@dx, g€ 1(Q,u)

/

then we can identify the conjugate space of L”(Q, u) by jid (Q, ul’l”) , D
the conjugate index of p, i.e.

__p ;
= 5T being

P(Q,u)]* =1/ (Q,u").

For a bounded linear operator T between two normed linear spaces X and Y, we
denote by T*, the conjugate of T acting between Y* and X*.
Consider the generalized Hardy operator L : I7((0,00),v) — L%((0,00),u) de-

fined by 5
(Lf) (s) := /0 I(s,0)f (t)dt, s>0,

where the kernel I(s,) is defined for 0 < r < s < oo and I(s,#) > 0. The kernel
I(s, 1) is called Oinarov if
(i) I(s,t) is increasing in the first variable, i.e.,

I(s1,t) <I(s2,1), for 0<s <sy; (2.1)
(if) I(s,1) is decreasing in the second variable, i.e.,
I(s,11) <I(s,12), for 0<t,<mt; (2.2)
(iii) there exist positive constants ¢y, ¢, such that
all(s,r) +1(r,0)] <I(s,1) < all(s,r) +1(r,0)], 0<t<r<s. (2.3)

Such kernels were introduced by Bloom and Kermen [2]. However, because of the
considerable work done with these kernels by Oinarov [9], [10], these are named after
him.
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The conjugate operator L* to L is given by
(L7g) (s) == / I(t,5)g(t)dt, s> 0.

Let >, be the unit sphere in RY, ie., >y = {x e RV :|x |= 1}, where | x |
denotes the Euclidean norm of the vector x € RV . Let A be a measurable subset of
>y -We denote by E, a measurable cone in R and is defined by

E={xeR':x=50;0<s<00,0€A}.
Let S,,x € RY denote part of E with 'radius’ <| x|, i.e.,
Sx:{yERN:y:sG,O<s<|x|,G€A}.

Let E be a cone in RY. We consider the N— dimensional generalized Hardy

operator
()0 = [ k) (s, e B
Sx

where the kernel k(x,y) is definedon E x E for |y| < |x| and is such that k(x,y) > 0.
Following the one dimensional case, the kernel k(x, y) is called Oinarov if the following
are satisfied:

(i) k isincreasing in the first argument, i.e.,

k(xi,y) <k(x2,y), |xi|<[x2|,y€E; (2.4)

(i) k is decreasing in the second argument, i.e.,

k(x,y1) 2 k(x,y2), x€E, [y [<[y2]; (2.5)
(iii) there exist positive constants ¢y, ¢, such that
cilk(x,y) +k(v,2)] < k(x,2) < eolk(x,y) + k(y,2)], [z[<lyI<[x]. (26)

REMARK 1. If k is a positive kernel satisfying (2.4) and (2.5) then it only depends
on the radial part. Indeed, let x; = so;,y; = t7;, s,t >0, 0;,7; €A, i = 1,2. Note
that | x; |=| x2 | and | y; |=| y2 | . Then using (2.4) and (2.5) we obtain

k(xlayl) = k(x27YI) = k(XZayZ)'

Thus, if we set
1(s,t) = k(so,17), (2.7)
then [ is a positive kernel defined on (0,00) x (0,00) corresponding to the kernel
k (so,t7) definedon E x E. Clearly, k is Oinarov if and only if [ is so.
The operator K* : L (E,v) — L1 (E,u), conjugate to K is defind by

W@@—AJWWMWXEE (2.8)

Let X be a normed linear space and X* denote its conjugate space. We say that a
sequence {x,} in X is strongly convergent (or simply convergent) to x € X, written
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Xn — x,if || x,—x ||— 0 as n — oo. A sequence {x,} in X is said to converge weakly
to x € X, written x, — x,if f (x,) — f (x),foreach f € X*. A sequence {f,} in X*

is said to be weak * convergentto f € X*, written f, = f , if f,, (x) — f (x) for each
x € X. Note that the strong convergence implies the weak convergence which in turn
implies the weak * convergence. The implications in the reverse direction do not hold
in general. However, if X is a reflexive space then the weak * convergence implies the
weak convergence.

The proofs of the theorems presented in this paper require some well known
assertions which are collected in the following :

THEOREM 2.A. Let X and Y be Banach spaces.

(i) A bounded linear operator T : X — Y is compact if and only if its conjugate
T . Y* — X* is compact.

(it) If T : X — Y is compact and {x,} is a sequence in X such that {x,} > x,
for some x € X, then Tx, — Tx

(iii) An operator T : X — Y is compact if T* : Y* — X* is weak™ -norm

sequentially continuous i.e. for each sequence {f,} in Y* with {f,} = f, for some
f €Y, wehave T* (f,) — T*f .

3. The results

For the sake of convenience we shall use the following notations. We denote for
n=0

(L) () 1= / P (s, 0F (1),
(Lig) (s) = / ” (e, 5)g(0)dr

(Kuh) (x) = s (x5, ¥)h(y)dy,

and
(Kyh) (x) = K (y, x)h(y)dy.
E\Sy
For example, Ly is the standard Hardy operator f(; f(2)de.
In [7], Lomakina and Stepanov studied the compactness of the operator L in
the framework of general Banach function spaces defined on R*. In terms of L7 - L4
compactness, their result reads as

THEOREM 3.A. Let 1 < p < g < oo and U,V be weight functions on (0,00).
Then the operator L : LF((0,000), V) — L1((0,00), U) involving the Oinarov kernel 1
is compact if and only if

max(Ao,Al) < 0

and
l1m A,‘(S) = l1m A,‘(S) = 07 1= 0’ 1

s—aj s—bj
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where
% 1/ 1—p' 1/17’
Ao = sup Ao(s) = sup(L0)"/*(s) (L V') (s),
>0 s>0
« 1/ 1—p' 1/[’/
Ay = supA(s) = sup(L; U)/4(s) (LOV p) (s),
s>0 s>0
a;=inf{s >0:4;(s) >0} i=0,1
and

bi=sup{s >0:4,(s) >0} i=0,1.

The aim is to extend the above result in the higher dimensional setting. More
precisely, we characterize the compactness of the operators K and K* defined in
Section 2. The following is the key result which characterizes the compactness of K in
terms of the compactness of the one dimensional operator L.

THEOREM 3.1. Let E be a cone in RY and k be a kernel on E x E depending
on the radial variables, i.e., k(x,y) = k(|x|, |[y|). Supposethat 1 < p,q < oo and u,v
be weight functions on E. Then the operator K : LF (E,v) — L (E,u) is compact if
and only if the operator L : [P ((0,00),V) — L1 ((0,00), U) is compact with

Ul(t) = /u(m) N ldr, 1€ (0,00) (3.1)
A
and -
V() = (/VI-P’ (i7) tN‘ldT> . 1€(0,00). (3.2)
A

Proof. Let x,y € E. Using the polar coordinates, x = so, y =17, 0,7 € A, and
the fact that k(x,y) depends on radial variables, we can set

k(x,y) = k(lxl , Iyl) = (s, ),

where (s, ) is the kernel involved in the one dimensional operator L.
First assume that L : L” ((0,00),V) — L7((0,00),U) is compact. In order
to show that K is compact, it suffices to show that the conjugate operator K* :

q 1-4' p’ 1-p’
LY (E u — 17 (E,v

mwm-@gmm@waa

is weak * -norm sequentially continuous since then the result follows from Theorem
2.A (iii). Let {f,} be a sequence in LY (E,ul_‘/) such that {f,,} > 0. Without any
loss of generality, we may assume that each f,, is non-negative. Define

F, (1) = /Af,, (tr) N "'dr, neN, e (0,00). (3.3)
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Then
()= /Afn (t2) b (17) (AT b (1) () dn

(/Af" 7 (11) l‘Nld’L')qu (/Au(tr) l‘Nld’L') ’ ,
(

1

and therefore using (3.1) and making change of variable 7 =y, we have

1

(/OOOFZ, OO dt>q_’ s (/ /fq 1) u' = (1) N ldrdt>%

Qe

= ( /E £ ut= ) dy)
< o0

which gives that {F,} is a sequence in L¢ ((0, 00),U 1*‘1/) . Next we note that if G

is any functionin L? ((0,00),U) and g : E — R is defined by

then g € L7 (E,u), since by using (3.1) and making change of variable x = 7, we

have

/qu (x)u(X)dx:/Ooo/qu (1) u (1)
—/()OOGq(t)U(t)dt

< 00.

Thus by using (3.3), we have

[ rwcwa= [ ([nera)coa
= /000 /Af" (17) g (1) ' ddr
= /Efn (x) g (x) dx

—0 as n— oo,

ie. F, = 0. Further since L is compact, by Theorem 2.A ((i) and (ii))
L[],y

Lvir = 0 as n— oo.
Now making change of variables y = 7, x = so so that for 0 € A,

using (3.2) , (3.3) , we have

| x |= s and
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1
/ o

P p
S / ( / k(y, x)fn () dy) VI (x) dx
’ E \JE\S,

</OOO/A (/AOO/A k(rz, s0)fy (17) tN_ldwlt)ill—P’ (50) SN—ldeS> ’

L
7

_ (/OOO (/sz(t $)F, ()dt) lvl—P’ (s)ds)p

_|| L*Fn H Vl p )

and we are done.
Conversely, assume that K : LF (E,v) — LY (E,u) is compact. Let {F,} be a

sequence in L ((0, o0),U l’q’) such that F), LN 0. Without any loss of generality
we may assume that each F,, is non-negative. Define
fatt) =F,(Du(tt) U™ (1), neN, te(0,00),7€A. (3.4)
Then
/f,, 1) ldr=F, (1), neN,te(0,00). (3.5)

Now using (3.1) and (3.4), we have

(/f,, )dx)"%_ (/OOO /Af,?' (12) = (17) - 1d’L’dt>
_ ( /Osz’ (1) ( / ut (1) = (17) rNIdT) ()d;f
- </0°° i (U ()dt)

< 00,

which means that {f,} is a sequence in L (E,ul_‘/) . Thus (3.2) and (3.5) yield
| L*F, ”,,/7(0700)7‘/17/)’:“ K*fn Hp/’Evvlfp’ :

We now show that f,, - 0. For any function g € LY (E,u), using (3.4), we have

/Efn (x) g (x) dx = /OOO/AFn (Ou(tr) U (1) g (1) N drde
= /OOO F, (1) (/Au(m')g(t’[) zN_ldr) U~ (1) dt

:/OOFn(t)G(t)dt
0

—0 as n— oo,
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where
G(t) = (/u(m')g(m') tN_ldT> U-'(t), te€(0,00)
A

and it can be easily verified that G € L7 ((0,00), U) . Indeed, using (3.1) , we have

/OOOG‘I(t)U(t)dt_/OOO(/Au(n )
= ["([etr o
< /000</qu (t7) u (17) tN_ld’L') (/Au(tr) tN_IdT>q1U1_‘1 (¢) dt

N

W (11) (tN*I)L’d ) U™ (1) dr

= /gq(x)u(x)dx< 0.
E
Now as K is compact, by Theorem 2.A ((i) and (ii)), || K*f» ||p,’E’v1,,,/ and hence
| L*F, || ) yi—p convergesto 0 as n — oo. Now the compactness of L follows
from Theorem 2 A (m) .

REMARK 2. Theorem 3.1 can be compared with a result of the authors ( [5],
Theorem 4.1) where it is proved for k(x,y) = 1 and I(s,7) = 1. However, there the
integrals are considered over star-shaped regions.

Now we can give the precise weight characteriztion of the compactness of K :

THEOREM 3.2. Let 1 < p < g < oo and u,v be weight functions on E. Then the
operator K : [F (E,v) — L1 (E,u) involving the Oinarov kernel k is compact if and

only if

A = max(Ap, A;) < 00 (3.6)
and
lim Ai(x) = lim A4;(x) =0, i=0,1 (3.7)
where

1/p’
do= swp Aol = sup (i) ) (160 ) (o),
xeE\{0} x€E\{0}

/ l/P/
A= sup A(x)= sup (K;u)l/q(x) (Kovlf” ) (x),
xeE\{0} xeE\{0}
x; = inf {x € E\{0} : 4;(x) >0} i=0,1
xi = sup{x € E\{0} : Ai(x) >0} i=0,1.

Proof. We use the polar coordinates x = so, y = tT with 0,7 € A and s,7 > 0.
The result is obtained in view of (2.7) and Theorems 3.1 and 3.A if we show that
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Ai(s) = Ai(x), i =0,1. We find that

(/ / i ldrdt> (/o;p,(s”) (/A Vi (17) #Vldr>(l_p>(l_p2t>’%
(/ / tt) N ld’L’dt> </ /kp 56,117 (17) - 1d’L’dt)
= Ao(

Similarly, A;(s) = A;(x) and we are done.

XY=

4. Final results and remarks

REMARK 3. Following a result of Ando [1], it is known that for 1 < g < p < oo,
the operator L : I ((0, 00) ,u) — L7 ((0,00),v) is bounded if and only if it is compact.
The same is true in higher dimension also. But the L7 - L? boundedness of K is already
known, see [13]. Consequently, the same are the compactness conditions of K.

In view of Theorems 2.A (i) and 3.2, the conjugate operator K* : L9 (E,u'~4") —
1/ (E,v'=") is compact if and only if (3.6) and (3.7) are satisfied. Replacing
P ¢, u=¢ and v'?" by, respectively, ¢,p,v and u, we immediately obtain the
following :

THEOREM 4.1. Let 1 < p < g < oo and u,v be weight functions on E. Then the
operator K* : I’ (E,v) — L1 (E,u) involving the Oinarov kernel k is compact if and
only if

A" = max(Aj, A}) < 00
and
hmA() lim A7 (x) =0, i=0,1

X—X;

where

Ay = sup A3(x) = sup (K5 )P (x) (k) (),

x€E\{0} x€E\{0}
AT = sup Aj(x)= sup (K;/vl_p’)l/p’ (x) (’CO”)I/q (x),
xeE\{0} x€E\{0}

=inf{x € E\{0}: A’ (x) >0} i=0,1
=sup{x € E\{0}: A/ (x) >0} i=0,l.

REMARK 4. In the light of Remark 3 and using the technique of Theorem 4.1, the
compactness of the operator K* for the case 1 < g < p < oo can be obtained. For
conciseness, the construction of the result and its proof is left to the reader.
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