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CHORDS HALVING THE AREA OF A PLANAR CONVEX SET

A. GRÜNE, R. KLEIN, C. MIORI AND S. SEGURA GOMIS

(communicated by C. Bandle)

Abstract. Let K ⊂ R
2 be a compact convex set in the plane. A halving chord of K is a

line segment pp̂ , p, p̂ ∈ ∂K , which divides the area of K into two equal parts. For every
direction v there exists exactly one halving chord. Its length hA(v) is the corresponding (area)
halving distance. In this article we give inequalities relating the minimum and maximum (area)
halving distance hA and HA of a convex closed region K ⊂ R

2 to other geometric quantities
of K , namely the minimal width ω , the diameter D , the perimeter p , the inradius r , the
circumradius R , and the area A . We try to find tight inequalities, and characterize their extremal
sets (the sets attaining equality).

1. Introduction

The chords of a convex set that divide the perimeter of the set into two parts of equal
length are called halving chords. Recently several results concerning the geometry of
these chords have been obtained ([8], [9], [10], [11]). The motivation of these articles
comes from graph theory; in particular from the notion of graph dilation and the authors
improve the lower bounds of the dilation. Their proofs rely on a transformation defined
by halving chords and they obtain different geometric inequalities relating the minimum
and the maximum length of the halving chords of a convex set with other geometric
quantities. Additionally they analyze curves of constant halving distance.

The aim of this paper is to analyze the chords halving the area of a bounded convex
set instead of the ones halving the perimeter, and to describe their properties by means
of geometric inequalities. We summarize the results known in the past, and contribute
with new inequalities.

Chords halving either the area or the perimeter of a planar bounded convex set
have been known for a long time:

1) In particular there is a remarkable result by Zindler [21] who in 1921 showed
that there exist non circular planar curves with the property that all chords bisecting the
area have equal length and also bisect the perimeter; they are called Zindler curves. He
also observed that a convex set has constant area halving distance if and only if it has
constant perimeter halving distance.
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2) Later Auerbach [1] extended Zindler’s results and related Zindler curves to a
classical problem of S. Ulam about floating bodies and also to curves of constant width.

3) Santaló [7, section A26] asked if there is for every planar convex set with area
A always a chord of length at most (4/π)1/2A1/2 that bisects the area. The answer to
this question turns out to be negative as every simple convex Zindler curve besides the
circle is a counter-example (cf. [9, Lemma 8]).

4) Radziszewski [18] found a lower bound for the maximum length of area bisect-
ing chords in terms of the diameter: 3

4D .
5) Eggleston [12] obtained also a lower bound in terms of the circumradius: 3

2R .
6) Hammer and Smith [15] characterized the disks as the only sets of constant

width such that each of its diametral chords bisect the perimeter (area).
7) Chakerian and Goodey [5] using techniques from Integral Geometry obtained

several inequalities relating the area of a convex set to the integral of the squared halving
distances.

The chords halving the area of a planar convex set are also involved in the so called
fencing problems which consider the best way to divide by a “fence” a convex bounded
set into two subsets of equal area. See for instance [7], [17].

For the purpose of this article we define the maximum halving distance HA =
HA(K) , the length of the longest chord bisecting the area of a planar convex set K , and
the minimum halving distance hA = hA(K) , the length of the shortest halving chord.

We first prove some basic properties of HA and hA , and then we obtain upper and
lower bounds of the ratio between either the maximum or the minimum halving area
distance with the six classical geometric magnitudes: area A , perimeter p , diameter D ,
minimal width ω , inradius r and circumradius R . In many cases we determine the
extremal sets which attain the bounds or at least give examples of these sets. In the end
we state open problems.

The following table gives an overview of the results. Below the inequality you find
symbols representing the corresponding extremal sets.

ω D p r R A

HA � none HA � D HA � 1
2p none HA � 2R none

see – �CS – see – �CS see –

HA � HA � ω HA � 3
4D HA � 3

4π p HA � 2r HA � 3
2R H2

A � 4
πA

�W , �E not tight © �E ©
hA � hA � ω hA � D hA � 1

π p hA � 3r hA � 2R h2
A �

√
3A

�CS © © not tight © not tight

hA � hA � 1√
2
ω none none hA �

√
2r none none

see – see – see – see

The extremal sets
– line segment
© circle
�E equilateral triangle

W sets of constant width
CS centrally symmetric convex sets
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The symbols “�CS ” mean, for instance, that all the centrally symmetric sets are
extremal sets, but there are more. For example all the sets symmetric with respect to
their diameter satisfy HA = D but are not necessarily centrally symmetric. And all the
sets being symmetric with respect to their shortest chord satisfy hA = ω .

We would like to thank Paul Goodey for pointing out some of the known results.

2. Definitions and basic properties

Let K be a planar convex bounded set. Let C = ∂K be the boundary of K . Let
p ∈ C be a point on C . Then the unique halving partner p̂ ∈ C of p is characterized
by the fact that the straight line segment pp̂ divides K into two subsets of equal area.
We say that (p, p̂) is a halving pair of C .

Following [11] we give the corresponding definitions of breadth measures:
Let K be a bounded, planar, convex set, and let v ∈ S1 be an arbitrary direction,

an element of the unit circle S1 .
(1) The v -length of K is the length of the longest chord defined by a pair of points in

∂K with direction v , i.e.:

l(K, v) := max{|pq| : p, q ∈ C, q − p = |q − p|v}.
The line segment connecting the corresponding pair of points is also called a
diametral chord.

(2) The v -breadth ( v -width) of K is the distance of the two supporting lines of K
perpendicular to v , i.e.:

b(K, v) := max
p∈∂K

< p, v > −min < p, v >

where < p, v > denotes the scalar product.
(3) The v -halving distance, hA(K, v) , of K is the distance of the halving pair with

direction v , i.e. the length of the unique chord pp̂ halving the area of K in
direction v .

(4) The diameter
D(K) := max

v∈S1
l(K, v)

of K is the maximum v -length or equivalently the maximum v -breadth. The
minimal width

ω(K) := min
v∈S1

l(K, v)

of K is the minimum v -length or equivalently the minimum v -breadth.
(5) The maximum halving distance is denoted by

HA(K) := max
v∈S1

hA(K, v).

Analogously the minimum halving distance is

hA(K) := min
v∈S1

hA(K, v).
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Let u = (cos θ, sin θ) be a unit vector in the plane. There is a diametral chord
lu of K parallel to u . Sometimes this chord is not unique (consider for instance a
rectangle and u parallel to one of its edges), but it is possible always to select such a
chord so that the function AK+(u) representing the area of the subset of K at the right
of lu depends continuously on u .

LEMMA 1. With the above notation, the function AK+ : S1 �→ R is continuous.

Proof. i) The statement is true if K is a convex polygon: the diametral chord AB
in a particular direction u has one of its endpoints A in a vertex of the polygon K ,
and if we rotate u slightly, then A is fixed and the other endpoint B moves along an
edge of the polygon till it reaches a second vertex of the polygon (so the area AK+(u)
changes continuously); if we continue rotating u , one of the vertices (it can be again
A but it can be also B ) is still fixed and the other endpoint slides along an edge of the
polygon till it reaches another vertex, and still the area AK+(u) changes continuously.

ii) Any convex set K can be approximated by a sequence of convex polygons
inscribed in K , P1, P2, ..., Pi, ... , in such a way that the Hausdorff distance δ(K, Pi) is
as small as required [19]; hence the statement is also true for any convex set. �

PROPOSITION 1. D � HA � ω � hA .

In general these inequalities are strict as we can check in an isosceles right-angled
triangle:

D
HAω

hA

Figure 1. HA , hA , D and ω of an isosceles right-angled triangle.

For some sets (for instance for all centrally symmetric convex sets) D = HA and
ω = hA .

Proof. 1) D � HA : This inequality is trivial.
2) HA � ω : Let v ∈ S1 . The maximal chord defined by a pair of points in

∂K with direction v does not in general divide K into two subsets of equal area. But
because of continuity (Lemma 1) if we rotate v in S1 there is at least a particular
direction v0 in S1 such that the diametral chord in this direction divides K into two
subsets of equal area. Then

ω � l(K, v0) = hA(K, v0) � HA.

3) ω � hA : For every v , l(K, v) � hA(K, v) . It follows immediately that

ω = min
v∈S1

l(K, v) � min
v∈S1

hA(K, v) = hA. �
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COROLLARY 1.

+∞ � HA

hA
� 1

The upper bound equality is attained only by segments and in the lower bound equality
is attained by discs, and by other convex sets whose boundary is a Zindler curve.

Another consequence from Proposition 2 is the behavior of HA and hA under
central symmetrization.

The central symmetrization is a transformation that assigns to any convex body K
another convex body C(K) := 1

2 (K +(−K)) . It is well known that central symmetriza-
tion preserves the diameter, the minimal width and the perimeter and does not decrease
the area ([3]). It is also easy to prove that it does not decrease the inradius and it does
not increase the circumradius.

PROPOSITION 2. HA(C(K)) � HA(K) and hA(C(K)) � hA(K)

Proof. HA(C(K)) = D(C(K)) = D(K) � HA(K) , and similarly hA(C(K)) =
ω(C(K)) = ω(K) � hA(K) (cf. [11, Lemma 15]). �

3. Bounds derived from the classical inequalities

Combining Proposition 2 with some classical inequalities we can deduce many
inequalities comparing HA and hA with the six classical geometric measures.

PROPOSITION 3.

a) D
HA

� 1 , b) R
HA

� 1
2 , c) 4π

3 > p
HA

� 2 ,

d) 1 � ω
HA

� 0 , e) ∞ � H2
A

A � 4π , f ) 1
2 � r

HA
� 0 .

Equality in a) and b) is attained by many sets (for instance by centrally symmetric
convex sets).

Equality in the lower bound of c) is attained only by segments. The upper bound
is not tight.

Equality in d) is attained only by segments for the lower bound. In the upper bound
case, equality is attained by many sets: sets of constant width, equilateral triangle, sets
bounded by Zindler curves,...

Equality in e) is attained only by discs.
Equality in f ) is attained only by segments for the lower bound and only by discs

for the upper bound.

Proof. a) The bound is proved in Proposition 2.
b) , c) The lower bounds are obtained by plugging (a) into the known tight

inequalities D � 2R and D � p
2 . The upper bound in b) stems from combining the

known inequality p � πD with Radziszewski’s result HA � 3
4D . It is not tight because

the equality p = πD holds only for curves of constant width (see e.g. Cauchy’s surface
area formula [11, Lemma 7]), and by Proposition 1 these curves satisfy HA = D .

d) The bound is proved in Proposition 2.



210 A. GRÜNE, R. KLEIN, C. MIORI AND S. SEGURA GOMIS

e) Goodey [13] proved that
∫ 2π

0 h2
A(K, v(θ))dθ � 8A (equality holding for cen-

trally symmetric sets). As obviously HA � hA(K, v(θ)) (equality holding everywhere
only for sets of constant halving distance), we conclude e). Equality holds only for
centrally symmetric sets of constant halving distance. Clearly, only circles satisfy both
conditions.

f ) The lower bound is trivial. The upper bound is consequence from e) and from
the classical inequality

√
A �

√
πr . As in both inequalities, equality is attained only

by discs, also in the upper bound of f) equality is attained only by discs. �
In the proof of Proposition 4 we will use the following lemma provided by Hammer

and Smith:
LEMMA 2. ([15]) If K is a planar convex set of constant width such that each of

its area halving chords is diametral, then K is a circular disc.

Actually, Hammer and Smith prove a more general statement: If every area halving
chord of a planar convex set K is diametral, then K is centrally symmetric. The lemma
above is an easy consequence, because circles are the only centrally symmetric sets of
constant width.

PROPOSITION 4.

a) r
hA

� 1
3 , b) +∞ � D

hA
� 1 , c) +∞ � R

hA
� 1

2 ,

d) +∞ � p
hA

� π , e) ω
hA

� 1 .

The bound in a) is not optimal.
Equality in b) , c) and d) is attained only by segments for the upper bound. The

equality in the lower bound is attained only by discs.
Equality in e) is attained by many sets for instance by all centrally symmetric

convex sets.

Proof. a) This bound is a consequence from the inequality hA � ω of Proposi-
tion 2 and from the classical inequality ω � 3r (see for instance [20]). The inequality
a) cannot be tight, because ω = 3r is only attained by the equilateral triangle and its
minimum halving distance hA is strictly smaller than its width.

b) The lower bound is proved in Proposition 2. In the equality case (D = hA )
two other equalities must hold: D = ω and HA = hA ; this means first that K is a set
of constant width and second that each of the diametral chords bisects the area; so as a
consequence of Lemma 6 equality D = hA is attained only by discs.

c) The lower bound follows from Proposition 2 (hA � ω ) and from the classical
inequality R � ω

2 (see for instance [20]). As R = ω/2 is attained only by discs, the
extremal sets attaining R = hA/2 are only discs.

d) The result is a consequence fromProposition 2 (hA � ω ) and from the classical
inequality πω � p (see for instance [20]). The equality πω = p is attained only by
sets of constant width, see for instance Cauchy’s surface area formula [11, Lemma 7]. In
this case hA = ω holds only if every halving chord is diametral. Hence, from Lemma
6 we conclude that p = πhA is attained only by discs.

e) The bound is proved in Proposition 2. �
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4. Minimum halving distance hA and width ω

In [8, Lemma 6] Dumitrescu et al. prove the inequality hp � ω/2 for the perimeter
halving distance hp . The proof can be transferred to the area halving distance. We take
advantage of the following known inequality which was proved by Kubota [16] in 1923
and is listed in [20].

LEMMA 3. (Kubota [16]) If K is a convex body in R2 , then A � Dw/2 .

Proof. Without loss of generality assume that C admits a horizontal diameter D ,
which divides C into two parts C1 and C2 , above and below D respectively. Then
y1 + y2 = w(π/2) � ω , where yi is the extent of Ci in the vertical direction. By the
convexity of C ,

A � Dy1 + Dy2

2
� Dw

2
. �

We will combine this known inequality with the following new result.

LEMMA 4. If K is a convex body in R2 , then A � hAD . This bound cannot be
improved.

Proof. Without loss of generalitywe assume that a bisecting chord pq of minimum
length hA lies on the y -axis, p on top and q at the bottom (see Figure 2). Let A− be
the area of the part of K left of the y -axis, and let A+ := A − A− be the remaining
area of K . We have A+ = A− = A/2 because pq is a halving chord.

h

y(x)

−x1 0 x1 x x2

�1

�2

p

q

a

b

C

Figure 2. Proving by contradiction that y(x) � hA for every x in [x1, x2] .

Let −x1 and x2 denote the minimum and maximum x -coordinate of C . Note that
x1 has a positive value. We assume that x2 > x1 . Otherwise we could reflect K at the
y -axis. Let y(x) be the length of the vertical line segment of x-coordinate x inside K ,
for every x ∈ [−x1, x2] . These definitions result in x1 + x2 � D and A =

∫ x2

−x1
y(x)dx .

Furthermore, the convexity of K implies

∀x ∈ [0, x1] : y(−x) + y(x) � 2hA, (1)

because the intersection of the convex hull of the vertical line segments at x and -x with
the y -axis has length (y(−x) + y(x))/2 and must be contained in K .
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As a next step, we want to show that

∀x ∈ [x1, x2] : y(x) � hA. (2)

We assume that y(x) > hA . Let ab be the vertical segment of x -coordinate x inside
C , a on top and b at the bottom. Then, the left part of K is enclosed in between the
line �1 through p and a and the line �2 through q and b , while K contains the parts
of �1 and �2 with x -coordinates in [0, x1] . This implies A− � x1 · hA < A+ . This
contradicts to pq being a halving chord, and the proof of (2) is completed.

Now we can plug everything together and get

A =

x2∫
−x1

y(x)dx =

x1∫
0

y(−x) + y(x)dx +

x2∫
x1

y(x)dx

(1),(2)
� x1 · 2hA + (x2 − x1)hA = (x1 + x2)hA � DhA.

Now consider a rectangle of side lengths a and 1 , a � 1 . Then, D =
√

a2 + 1 ,
hA = a and A = a . Obviously A/(DhA) = 1/

√
a2 + 1 ↗ 1 for a → 0 . Hence, the

bound cannot be improved. �

Lemma 3 and Lemma 4 immediately imply

hA � w
2

.

However, we can show a better lower bound. We prove the following lemma which
implies hA � ω/

√
2 .

LEMMA 5. If K ⊂ R2 is a convex body and v ∈ S1 is an arbitrary direction, then
hA(v) � l(v)/

√
2 . This bound cannot be improved.

�1

�2

l (v)

q

q̃

p

p̂

h(v)

K

c
Aright

Aleft

Figure 3. By convexity of K we can prove hA(v) � l(v)/
√

2 .
(Of course this figure is unrealistic because pp̂ is no halving chord.)

Proof. Let pp̂ the halving chord in direction v . And let qq̃ be the longest chord
in direction v . By definition hA(v) = |pp̂| and l(v) = |qq̃| . If hA(v) = l(v) , we are
done. Otherwise the lines �1 through p and q , and �2 through p̂ and q̃ intersect in a
point c .
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We may assume that v is vertical and that qq̃ lies to the left of pp̂ . Let Aright

denote the area of the triangle �(c, p, p̂) , and let Aleft be the area of the quadrilat-
eral �(p, p̂, q̃, q) . By convexity, the part of K left of pp̂ contains Aleft , and the part
of K right of pp̂ is contained in Aright . Because pp̂ is a bisecting chord, this implies

Aleft � Aright. (3)

The triangles �(c, p, p̂) and �(c, q, q̃) are similar by construction. We get

Aleft + Aright

l2(v)
=

Aright

h2
A(v)

. (4)

Plugging everything together yields

h2
A(v)

l2(v)
(4)
=

Aright

Aleft + Aright

(3)
� Aright

Aright + Aright
=

1
2
.

Now assume K = �(c, q, q̃) . Then, inequality (3) becomes an equality and we get
hA(v) = l(v)/

√
2 . Hence, the inequality is tight. �

COROLLARY 2. If K ⊂ R2 is a convex body, then hA � ω/
√

2 . This bound
cannot be improved.

1

h

ω

α

x
Figure 4. In a thin isosceles triangle hA/ω ↘ 1/

√
2 if α → 0 .

Proof. Let v ∈ S1 be a direction such that hA = hA(v) . Then, we get

hA = hA(v)
Lem. 5
� l(v)√

2
� w√

2
.

To prove the tightness of the inequality, for example consider the isosceles triangle in
Figure 4. We get

hA =
1√
2
x =

1√
2
· 2 sin

α
2

=
√

2 sin
α
2

because the area of the triangles is halved if we scale it by 1/
√

2 . On the other hand
basic trigonometry yields

ω = sinα = 2 sin
α
2

cos
α
2

.
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This results in
hA

w
=

1√
2 cos α

2

↘ 1√
2
. �

5. Minimum halving distance hA and inradius r

Corollary 2 further implies the following corollary.

COROLLARY 3. If K ⊂ R2 is a convex body, then hA �
√

2r . This bound is tight.

Proof. We only have to combine Corollary 2 with the known inequality r � ω/2 .
This inequality is trivial because if K contains a circular disk of radius r then the width
of K is bigger than the width of the disk which obviously equals 2r .

(b)(a)

0 α

π
2 − α 1

1

1
tan α

cos α

α

c = (cx, 0)

p

p̂

cα
α

h(π
2 )
2

h(π
2 )
2

h(π
2 )
2

1
tan α

K

Figure 5. The grey convex body K attains hA/r ↘ √
2 for α ↘ 0 , i.e. cx ↗ ∞ .

Now consider the convex body K of Figure 5 (a) . It is the convex hull of a unit
circle centered at the origin and a point c = (cx, 0) , cx � 1 . Let α denote half the
interior angle of K in c . Basic trigonometry yields

A(K) = π −
(π

2
− α

)
+

1
tanα

=
π
2

+ α +
1

tanα
.

For small α , cx gets big and the vertical halving chord pp̂ of K is located in the
triangular part of K . Remember that h(π/2) denotes |pp̂| in this situation. Consider
Figure 5 (b) . The area of K right of pp̂ equals

Aright =
h

( π
2

)
2

· h
(π

2

)
2

1
tanα

.

Because pp̂ is a halving chord, we get

h2
( π

2

)
4

1
tanα

= Aright =
1
2
A =

1
2

(
π
2

+ α +
1

tanα

)

⇒ h2
(π

2

)
= (π + 2α) tanα + 2

⇒ h
(π

2

)
=

√
(π + 2α) tanα + 2.
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If we let α tend to 0 , we get the tightness of the lower bound.

hA � h
(π

2

)
=

√
(π + 2α) tanα + 2

α→0
↘

√
2 =

√
2r �

6. Open problems

Obviously, hA/
√

A can become arbitrarily close to 0, as one can see by considering
a rectangle of side lengths 1 and x where x tends to infinity. Pal’s Theorem ω � 4√3

√
A

and hA � ω from Proposition 2 imply the upper bound

hA√
A

� 4√3 ∼= 1.31607...

This inequality is not tight.

Santaló asked (see [7, A26]) whether hA√
A

�
√

4
π
∼= 1.12837... where the discs

would be extremal sets. As we have mentioned in the introduction this conjecture is
false, and the problem of finding the greatest possible value of hA√

A
is still open.

The following questions are also open problems:
Which is the smallest possible value of r/hA ?
Which is the smallest possible value of HA/p ?
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Curie-Sklodowska Sect., A 8, (1954), 89–92.

[19] R. SCHNEIDER, Convex bodies: The Brunn-Minkowski theory, Cambridge University Press, 1993.
[20] P. R. SCOTT, P. W. AWYONG, Inequalities for convex sets, Journal of Inequalities in Pure and Applied

Mathematics, 1, (1) 6 (2000).
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Dept. of Computer Science I

University of Bonn
D-53117 Bonn

Germany
e-mail: gruene@cs.uni-bonn.de

e-mail: rolf.klein@cs.uni-bonn.de

C. Miori and S. Segura Gomis
Departamento de Análisis Matemático
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