

A REMARK ON BETTER λ -INEQUALITY

JAN VYBÍRAL

(communicated by L. Pick)

Abstract. We generalize the inequality of R. J. Bagby and D. S. Kurtz [1] to a wider class of potentials defined in terms of Young's functions. We make use of a certain submultiplicativity condition. We show that this condition cannot be omited.

1. Introduction

The classical Riesz potentials are defined for every real number $0 < \gamma < n$ as a convolution operators $(I_{\gamma}f)(x) = (\tilde{I}_{\gamma}*f)(x)$, where $\tilde{I}_{\gamma}(x) = |x|^{\gamma-n}$. This definition coincides with the usual one up to some multiplicative constant c_{γ} which is not interesting for our purpose. Burkholder and Gundy invented in [2] the technique involving distribution function later known as $good\ \lambda$ -inequality. This inequality dealt with level sets of singular integral operators and of maximal operator. Later, Bagby and Kurtz discovered in [1] that the reformulation of good λ -inequality in terms of non-increasing rearrangement contains more information.

We generalize their approach in the following way. For every Young's function Φ satisfying the Δ_2 -condition we define the Riesz potential

$$(I_{\Phi}f)(x) = \int_{\mathbb{R}^n} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n}\right) f(y) dy,$$

where $\tilde{\Phi}$ is Young's function conjugated to Φ and $\tilde{\Phi}^{-1}$ is its inverse. Instead of the classical Hardy-Littlewood maximal operator we work with a generalized maximal operator

$$(M_{\varphi}f)(x) = \sup_{O\ni x} \frac{1}{\varphi(|Q|)} \int_{O} |f(y)| dy,$$

where φ is a given nonnegative function on $(0,\infty)$ and the supremum is taken over all cubes Q containing x with sides parallel to the coordinate axes such that $\varphi(|Q|) > 0$. For every measurable set $\Omega \subset \mathbb{R}^n$ we denote by $|\Omega|$ its Lebesgue measure.

We prove that under some restrictive condition on function Φ one can obtain an inequality combining the nonincreasing rearrangement of $I_{\Phi}f$ and $M_{\tilde{\Phi}^{-1}}f$. We also show that this restrictive condition cannot be left out.

Key words and phrases: Riesz potentials, Better λ -inequality, Nonincreasing rearrangement, Young's functions.

Mathematics subject classification (2000): 31C15, 42B20.

336 Jan Vybíral

2. Better λ –inequality

Before we state our main result, we give some definitions and recall some very well known facts about Young's functions and non-increasing rearrangements.

Lebesgue measure will be denoted by μ or simply be an absolute value. Let Ω be a subset of \mathbb{R}^n , $n\geqslant 1$. We denote by \mathscr{M} the collection of all extended scalar-valued Lebesgue measurable functions on Ω and by \mathscr{M}_0 the class of functions in \mathscr{M} that are finite μ -a.e. Further let \mathscr{M}^+ be the cone of nonnegative functions from \mathscr{M} and \mathscr{M}_0^+ the class of nonnegative functions from \mathscr{M}_0 . We shall also write $\mathscr{M}(\Omega)$, $\mathscr{M}^+(\Omega)$ and so on when we want to emphasize the underlying space Ω .

The letter $\,c\,$ denotes a general constant which does not depend on the parameters involved. It may change from one occurrence to another.

DEFINITION 2.1. 1. Let $\phi:[0,\infty)\to[0,\infty)$ be a non-decreasing and right-continuous function with $\phi(0)=0$ and $\phi(\infty)=\lim_{t\to\infty}\phi(t)=\infty$. Then the function Φ defined by

$$\Phi(t) = \int_0^t \phi(s) ds, \quad t \geqslant 0$$

is said to be a Young's function.

2. A Young's function is said to satisfy the Δ_2 -condition if there is c>0 such that

$$\Phi(2t) \leqslant c \Phi(t), \quad t \geqslant 0.$$

3. A Young's function is said to satisfy the ∇_2 -condition if there is l>1 such that

$$\Phi(t) \leqslant \frac{1}{2I}\Phi(lt), \quad t \geqslant 0.$$

4. Let Φ be a Young's function, represented as the indefinite integral of ϕ . Let

$$\psi(s) = \sup\{u : \phi(u) \leqslant s\}, \quad s \geqslant 0.$$

Then the function

$$\tilde{\Phi}(t) = \int_0^t \psi(s) \mathrm{d}s, \quad t \geqslant 0,$$

is called the *complementary Young's function* of Φ .

The following theorem puts these three notions together. For the proof see [3].

THEOREM 2.2. Let Φ be a Young's function and $\tilde{\Phi}$ be its complementary Young's function. Then Φ satisfies the Δ_2 -condition if and only if $\tilde{\Phi}$ satisfies the ∇_2 -condition.

We shall need following Lemma.

LEMMA 2.3. Let Φ be a Young's function satisfying the Δ_2 —condition. Then there is a constant c>0 such that

$$\int_0^t \tilde{\Phi}^{-1} \left(\frac{1}{u} \right) du \leqslant c \, t \tilde{\Phi}^{-1} \left(\frac{1}{t} \right), \quad 0 < t < \infty$$

Proof. If Φ satisfies the Δ_2 —condition, then $\tilde{\Phi}$ satisfies the ∇_2 —condition. It means that there is a real number k>1 such that $\tilde{\Phi}(t)\leqslant \frac{1}{2k}\tilde{\Phi}(kt)$ for every t>0. When we pass to inverses we get $\tilde{\Phi}^{-1}\left(\frac{1}{u}\right)\leqslant \frac{1}{2}\tilde{\Phi}^{-1}\left(\frac{1}{lu}\right)$, where l=2k>2 and u>0. Now setting $h(s)=\tilde{\Phi}^{-1}\left(\frac{1}{s}\right)$ and $H(u)=\int_0^u h(s)\mathrm{d}s$ we get $2h(s)\leqslant lh(ls)$ and integrating this inequality from 0 to t we obtain $2H(t)\leqslant H(lt)$. To show that H(t) is finite for all t>0, write

$$H(t) = \int_0^t h(s) ds = \sum_{k=0}^\infty \int_{t/l^{k+1}}^{t/l^k} h(s) ds$$

$$\leq \sum_{k=0}^\infty \int_{t/l^{k+1}}^{t/l^k} \frac{l^k}{2^k} h(l^k s) ds$$

$$= \sum_{k=0}^\infty \frac{1}{2^k} \int_{t/l}^t h(u) du < \infty.$$

Because h is a decreasing function, we can calculate

$$lth(t) \geqslant \int_{t}^{lt} h(s)ds = H(lt) - H(t) \geqslant 2H(t) - H(t) = H(t),$$

which can be rewritten as

$$lt\tilde{\Phi}^{-1}\left(\frac{1}{t}\right) \geqslant \int_0^t \tilde{\Phi}^{-1}\left(\frac{1}{u}\right) du.$$

DEFINITION 2.4. The distribution function μ_f of a function f in $\mathcal{M}_0(\Omega)$ is given by

$$\mu_f(\lambda) = \mu(\{x \in \Omega : |f(x)| > \lambda\}), \quad \lambda \geqslant 0.$$

For every $f \in \mathscr{M}_0(\Omega)$ we define its nonincreasing rearrangement f^* by

$$f^*(t) = \inf\{\lambda : \mu_f(\lambda) \leqslant t\}, \quad 0 \leqslant t < \infty$$

and its maximal function f^{**} by

$$f^{**}(t) = t^{-1} \int_0^t f^*(u) du, \quad 0 < t < \infty.$$

Assume now that Young's function Φ satisfies the Δ_2 -condition. Using the classical O'Neil inequality (see [4]) and Lemma 2.3 we obtain

$$(I_{\Phi}f)^*(t) \leqslant c \left\{ \tilde{\Phi}^{-1} \left(\frac{1}{t} \right) \int_0^t f^*(u) du + \int_t^\infty f^*(u) \tilde{\Phi}^{-1} \left(\frac{1}{u} \right) du \right\}, \tag{1}$$

We shall derive a better λ -inequality connecting the operators I_{Φ} and $M_{\tilde{\Phi}^{-1}}$.

THEOREM 2.5. Let us suppose that a Young's function Φ satisfies the Δ_2 -condition. Let us further suppose that there is a constant $c_1 > 0$ such that

$$\tilde{\Phi}^{-1}(s)\tilde{\Phi}^{-1}(1/s) < c_1, \quad s > 0.$$
 (2)

338 Jan Vybíral

Then there is a constant $c_2 > 0$, such that for every function f and every positive number t

$$(I_{\Phi}f)^*(t) \leqslant (I_{\Phi}|f|)^*(t) \leqslant c_2 (M_{\tilde{\Phi}^{-1}}f)^*(t/2) + (I_{\Phi}|f|)^*(2t)$$
(3)

Proof. We may assume that given function f is nonnegative.

First we shall estimate the size of the level set $G = \{x \in \mathbb{R}^n : (I_{\Phi}g)(x) > \lambda\}$ for function $g \in L^1(\mathbb{R}^n)$. According to (1), $|G| < \infty$. Hence we can find a real number $R \geqslant 0$ such that |G| = |B(0,R)|. We can write

$$\lambda |G| = \int_{G} \lambda \leqslant \int_{G} (I_{\Phi}g)(x) dx$$

$$= \int_{G} \int_{\mathbb{R}^{n}} g(y) \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^{n}}\right) dy dx$$

$$= \int_{\mathbb{R}^{n}} \int_{G} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^{n}}\right) dx g(y) dy$$

$$\leqslant ||g||_{1} \int_{B(0,R)} \tilde{\Phi}^{-1} \left(\frac{1}{|x|^{n}}\right) dx$$

$$= ||g||_{1} \alpha_{n} \int_{0}^{|G|/\alpha_{n}} \tilde{\Phi}^{-1}(1/s) ds.$$

Dividing this inequality by |G| and using the Lemma 2.3 we obtain

$$\lambda \leqslant ||g||_1 \frac{\alpha_n}{|G|} \int_0^{|G|/\alpha_n} \tilde{\Phi}^{-1}(1/s) \mathrm{d}s \leqslant \tilde{c} \, ||g||_1 \tilde{\Phi}^{-1} \left(\frac{1}{|G|}\right).$$

This can be rewritten as

$$|G| \leqslant \frac{1}{\tilde{\Phi}\left(\frac{\lambda}{\tilde{c}||g||_1}\right)},\tag{4}$$

where \tilde{c} is independent of g and λ .

We can now pass to the proof of our theorem which is mainly based on [1]. For a given function $f\geqslant 0$ and a real number t>0 we shall denote by E the set $\{x\in\mathbb{R}^n:(I_{\Phi}f)(x)>(I_{\Phi}f)^*(2t)\}$. Then $|E|\leqslant 2t$ and we can find an open set Ω , $|\Omega|<3t, E\subset\Omega$. Now using Whitney covering theorem (see [5]) we can find cubes Q_k with disjoint interiors, such that $\Omega=\cup_{k=1}^{\infty}Q_k$ and diam $Q_k\leqslant \mathrm{dist}\,(Q_k,\mathbb{R}^n\setminus\Omega)\leqslant 4$ diam Q_k .

We want to show that there is a constant C>0 such that for every f,t and for every corresponding cube Q_k

$$|\{x \in Q_k : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^*(2t)\}| \le \frac{1}{6}|Q_k|.$$
 (5)

Then we would have

$$|\{x \in \mathbb{R}^n : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^*(2t)\}| \le 1/6 \sum |Q_k| \le t/2$$

and thus

$$\begin{aligned} |\{x \in \mathbb{R}^{n} : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)^{*}(t/2) + (I_{\Phi}f)^{*}(2t)\}| \\ & \leq |\{x \in \mathbb{R}^{n} : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^{*}(2t)\}| \\ & + |\{x \in \mathbb{R}^{n} : (M_{\tilde{\Phi}^{-1}}f)(x) > (M_{\tilde{\Phi}^{-1}}f)^{*}(t/2)\}| \\ & \leq t/2 + t/2 = t, \end{aligned}$$

which finishes the proof.

To prove (5) fix $k \in \mathbb{N}$ and choose $x_k \in (\mathbb{R}^n \setminus \Omega)$ so that dist $(x_k, Q_k) \le 4$ diam (Q_k) . Let Q be a cube with center at x_k having diameter 20 diam (Q_k) . Split $f = g + h = f \chi_Q + f \chi_{\mathbb{R}^n \setminus Q}$. We may assume that $g \in L^1(\mathbb{R}^n)$, otherwise the right-hand side of (3) would be infinite.

We shall prove that for C_1 and C_2 large enough

$$|\{x \in Q_k : (I_{\Phi}g)(x) > C_1(M_{\tilde{\Phi}^{-1}}f)(x)\}| \le 1/6|Q_k|, \tag{6}$$

and, for every $x \in Q_k$,

$$I_{\Phi}h(x) \leqslant C_2(M_{\tilde{\Phi}^{-1}}f)(x) + I_{\Phi}f(x_k) \leqslant C_2(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^*(2t), \tag{7}$$

which together gives (5).

For the first inequality, notice that for $x \in Q_k$

$$(M_{\tilde{\Phi}^{-1}}f)(x) \geqslant \frac{1}{\tilde{\Phi}^{-1}(|Q|)} \int_{Q} g = \frac{||g||_{1}}{\tilde{\Phi}^{-1}(|Q|)}.$$

Using (4) now gives

$$|\{x \in Q_k : (I_{\Phi}g)(x) > C_1(M_{\tilde{\Phi}^{-1}}f)(x)\}| \leqslant \left| \left\{ x \in Q_k : (I_{\Phi}g)(x) > \frac{C_1||g||_1}{\tilde{\Phi}^{-1}(|Q|)} \right\} \right|$$

$$\leqslant \frac{1}{\tilde{\Phi}\left(\frac{C_1}{\tilde{c}\tilde{\Phi}^{-1}(|Q|)}\right)},$$

where \tilde{c} is the constant from (4). The last expression is less then $|Q_k|/6$ for C_1 big enough (here we use (2) again).

In the proof of the second inequality we shall use two observations. The first is that

$$\left| \tilde{\Phi}^{-1} \left(\frac{1}{|x - y|^n} \right) - \tilde{\Phi}^{-1} \left(\frac{1}{|x_k - y|^n} \right) \right| \leqslant c \, \frac{|x_k - x|}{|x - y|} \tilde{\Phi}^{-1} \left(\frac{1}{|x - y|^n} \right) \tag{8}$$

with c independent of $k, y \in (\mathbb{R}^n \setminus Q)$ and $x \in Q_k$.

The second is that for any $\delta > 0$ and any $x \in \mathbb{R}^n$

$$\int_{y:|x-y|>\delta} \delta \frac{f(y)}{|x-y|} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n} \right) dy \leqslant c \, M_{\tilde{\Phi}^{-1}} f(x). \tag{9}$$

340 Jan Vybíral

The proof of (7) now follows easily. For every $x \in Q_k$ we get

$$\begin{split} I_{\Phi}h(x) - I_{\Phi}f\left(x_{k}\right) &\leqslant I_{\Phi}h(x) - I_{\Phi}h(x_{k}) \\ &\leqslant \int_{\mathbb{R}^{n}\setminus Q} \left|\tilde{\Phi}^{-1}\left(\frac{1}{|x-y|^{n}}\right) - \tilde{\Phi}^{-1}\left(\frac{1}{|x_{k}-y|^{n}}\right)\right| f\left(y\right) \mathrm{d}y \\ &\leqslant c|x_{k} - x| \int_{\mathbb{R}^{n}\setminus Q} \frac{1}{|x-y|} \tilde{\Phi}^{-1}\left(\frac{1}{|x-y|^{n}}\right) f\left(y\right) \mathrm{d}y \\ &\leqslant c M_{\tilde{\Phi}^{-1}}f\left(x\right). \end{split}$$

It remains to prove (8) and (9). Proof of (9) is a combination of definition of $M_{\tilde{\Phi}^{-1}}$ and (2).

To prove (8) let us write $\tilde{\Phi}(t)=\int_0^t \tilde{\varphi}(u)\mathrm{d}u$ and $A(t)=\tilde{\Phi}^{-1}(t^{-n})$ for t>0. Then

$$\frac{1}{s} \int_0^s \tilde{\varphi}(u) du \leqslant \tilde{\varphi}(s), \quad s > 0$$

or, equivalently, $\tilde{\Phi}(s) \leqslant s\tilde{\Phi}'(s)$ for s > 0. Now we set s = A(t) and obtain

$$-tA'(t) = \frac{nt^{-n}}{\tilde{\Phi}'(A(t))} \leqslant cA(t).$$

Finally the left hand side of (8) can be estimated by

$$|A(|x-y|) - A(|x_k-y|)| \le c \left| \int_{|x-y|}^{|x_k-y|} \frac{A(t)}{t} dt \right| \le c \frac{|x_k-x|}{|x-y|} A(|x-y|).$$

In the following example we will show that the assumption (2) cannot be omitted.

Theorem 2.6. There is a Young's function Φ satisfying the Δ_2 —condition for which

$$\sup_{f,t>0} \frac{(I_{\Phi}f)^*(t) - (I_{\Phi}f)^*(2t)}{(M_{\tilde{\Phi}^{-1}}f)^*(t/2)} = \infty$$

Proof. Set

$$\tilde{\Phi}(u) = \left\{ \begin{array}{ll} u^3 & \text{if } 0 < u < 1 \\ \frac{3}{2}u^2 - \frac{1}{2} & \text{if } 1 < u < \infty \end{array} \right., \qquad \tilde{\varphi}(u) = \left\{ \begin{array}{ll} 3u^2 & \text{if } 0 < u < 1 \\ 3u & \text{if } 1 < u < \infty \end{array} \right..$$

Then

$$\Phi(u) = \begin{cases} \frac{2}{3\sqrt{3}} u^{3/2} & \text{if } 0 < u < 3\\ \frac{u^2}{6} + \frac{1}{2} & \text{if } 3 < u < \infty \end{cases}, \qquad \varphi(u) = \begin{cases} \sqrt{\frac{u}{3}} & \text{if } 0 < u < 3\\ \frac{u}{3} & \text{if } 3 < u < \infty \end{cases}.$$

Finally
$$\tilde{\Phi}^{-1}(u) = \sqrt[3]{u}$$
 for $0 < u < 1$ and $\tilde{\Phi}^{-1}(u) = \sqrt{2/3(u+1/2)}$ for $u > 1$.

Let n=1. For any integer m>0 set $t_m=1/m$, $f_m(x)=\chi_{(0,t_m)}(x)$. Then

$$(M_{\tilde{\Phi}^{-1}}f_m)^*(t_m/2) = (M_{\tilde{\Phi}^{-1}}f_m)(0) = \sup_{0 < s < 1/m} \frac{1}{\tilde{\Phi}^{-1}(s)} \int_0^s 1 = m^{-2/3},$$

$$(I_{\Phi}f_m)^*(t_m) = (I_{\Phi}f_m)(0) = \int_0^{1/m} \tilde{\Phi}^{-1}(1/s) ds = \sqrt{\frac{2}{3}} \int_0^{1/m} \sqrt{\frac{1}{u} + \frac{1}{2}} du,$$

$$(I_{\Phi}f_m)^*(2t_m) = (I_{\Phi}f_m)(\frac{3}{2}t_m) = \int_{1/(2m)}^{3/(2m)} \tilde{\Phi}^{-1}(1/s) ds = \sqrt{\frac{2}{3}} \int_{1/(2m)}^{3/(2m)} \sqrt{\frac{1}{u} + \frac{1}{2}} du.$$

We can now estimate

$$\frac{(I_{\Phi}f_{m})^{*}(t_{m}) - (I_{\Phi}f_{m})^{*}(2t_{m})}{(M_{\tilde{\Phi}^{-1}}f_{m})^{*}(t_{m}/2)}$$

$$\geqslant \sqrt{\frac{2}{3}}m^{2/3} \left\{ \int_{0}^{1/(2m)} \sqrt{\frac{1}{u}} du - \int_{1/m}^{3/(2m)} \sqrt{m + \frac{1}{2}} du \right\}$$

$$= \sqrt{\frac{2}{3}}m^{2/3} \left\{ \frac{\sqrt{2}}{\sqrt{m}} - \frac{\sqrt{m + \frac{1}{2}}}{2m} \right\} = \sqrt{\frac{2}{3}}m^{1/6} \left\{ \sqrt{2} - \frac{1}{2}\sqrt{1 + \frac{1}{2m}} \right\}.$$

The last expression tends to infinity as m tends to infinity.

REFERENCES

- R. J. BAGBY, D. S. KURTZ, A Rearranged Good λ-Inequality, Trans. Amer. Math. Soc., 293, (1986), 71–81.
- [2] D. L. Burkholder, R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math., 124, (1970), 249–304.
- [3] M. A. KRASNOSEL'SKII, YA. B. RUTICKII, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., Noordhoff, Groningen, 1961.
- [4] R. O'NEIL, Convolution Operators and L(p,q) spaces, Duke Math. J., 30, (1963), 129–142.
- [5] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.

(Received April 7, 2005)

Friedrich-Schiller Universität Jena Mathematisches Institut Ernst Abbe Platz 1-4 D-07737 Jena Germany e-mail: vybiral@minet.uni-jena.de