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A REMARK ON BETTER A -INEQUALITY

JAN VYBIRAL

(communicated by L. Pick)

Abstract. We generalize the inequality of R. J. Bagby and D. S. Kurtz [1] to a wider class of
potentials defined in terms of Young’s functions. We make use of a certain submultiplicativity
condition. We show that this condition cannot be omited.

1. Introduction

The classical Riesz potentials are defined for every real number 0 < y < n
as a convolution operators (I,f)(x) = (I, = f)(x), where I,(x) = |x|Y™". This
definition coincides with the usual one up to some multiplicative constant ¢, which is
not interesting for our purpose. Burkholder and Gundy invented in [2] the technique
involving distribution function later known as good A -inequality. This inequality dealt
with level sets of singular integral operators and of maximal operator. Later, Bagby
and Kurtz discovered in [1] that the reformulation of good A -inequality in terms of
non-increasing rearrangement contains more information.

We generalize their approach in the following way. For every Young’s function @
satisfying the A, -condition we define the Riesz potential

o)) = [ &7 () s,

where @ is Young’s function conjugated to ® and ®~! is its inverse. Instead of
the classical Hardy-Littlewood maximal operator we work with a generalized maximal
operator
1
af )09 =00 s | )l

where @ is a given nonnegative function on (0, c0) and the supremum is taken over all
cubes Q containing x with sides parallel to the coordinate axes such that ¢(|Q]) > 0.
For every measurable set Q C R” we denote by |Q| its Lebesgue measure.

We prove that under some restrictive condition on function ® one can obtain an
inequality combining the nonincreasing rearrangement of Igf and Mg-—.f . We also
show that this restrictive condition cannot be left out.
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2. Better A —inequality

Before we state our main result, we give some definitions and recall some very
well known facts about Young’s functions and non-increasing rearrangements.

Lebesgue measure will be denoted by u or simply be an absolute value. Let Q be
a subset of R", n > 1. We denote by .# the collection of all extended scalar-valued
Lebesgue measurable functions on Q and by .# the class of functions in .# that are
finite u-a.e. Further let .# " be the cone of nonnegative functions from .# and .#;
the class of nonnegative functions from .. We shall also write .Z (Q), .#*(Q) and
so on when we want to emphasize the underlying space Q.

The letter ¢ denotes a general constant which does not depend on the parameters
involved. It may change from one occurrence to another.

DEFINITION 2.1. 1. Let ¢ : [0,00) — [0,00) be a non-decreasing and right-
continuous function with ¢(0) = 0 and ¢(c0) = lim,—,oc ¢(f) = oo. Then the
function @ defined by

d(r) = /Ot(l)(s)ds, t>0

is said to be a Young’s function.
2. A Young’s function is said to satisfy the A, —condition if there is ¢ > 0 such
that

®(2t) <cD(r), t=0.

3. A Young’s function is said to satisfy the V,—condition if there is [ > 1 such

that

1
D(r) < ﬂq)(h)’ t > 0.

4. Let ®@ be a Young’s function, represented as the indefinite integral of ¢ . Let

w(s) =sup{u: ¢(u) <s}, s=0.

Then the function

is called the complementary Young’s function of ®.
The following theorem puts these three notions together. For the proof see [3].
THEOREM 2.2. Let ® be a Young’s function and ® be its complementary Young's
Sfunction. Then ® satisfiesthe Ay —condition if and only if ® satisfies the NV, —condition.

We shall need following Lemma.

LEMMA 2.3. Let ® be a Young’s function satisfying the Ay —condition. Then
there is a constant ¢ > 0 such that

t~ 1 - 1
/(Dl(—)duéct(l)l <—>, O0<t<oo
0 u t
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Proof. If ® satisfies the A, —condition, then q) satisﬁes the V,—condition. It
means that there is a real number k > 1 such that ®(¢) < L ®(kr) for every t > 0.

: L S %
When we pass to inverses we get @' (1) < ICID_ (;), where [ = 2k > 2 and
u > 0. Now setting h(s) = ®~' (1) and H(u) = [; h(s)ds we get 2h(s) < lh(ls)

and integrating this inequality from O to ¢ we obtaln 2H (1) < H(Ir) . To show that H(z)
is finite for all # > O, write

Because # is a decreasing function, we can calculate

It
Ith(r) > / h(s)ds = H(lt) — H(t) > 2H(r) — H(¢) = H(1),
t
which can be rewritten as

t
o1 G) > / o! <1> du.
0 u

DEFINITION 2.4. The distribution function iy of a function f in .#,(Q) is given
by
W) =u(xeQ: )] >A}), A>0

For every f € .#,(Q) we define its nonincreasing rearrangement f* by
fr@) =mf{A:u(A) <1}, 0<r<oo

and its maximal function f** by

F( _l/f du, 0<1t<oo0.

Assume now that Young’s function @ satisfies the A;—condition. Using the
classical O’Neil inequality (see [4]) and Lemma 2.3 we obtain

(af () <  { - ()/f ot [“rewe (Had

We shall derive a better A -inequality connecting the operators Ip and Mg .

THEOREM 2.5. Let us suppose that a Young’s function @ satisfies the Ay —condition.
Let us further suppose that there is a constant ¢ > 0 such that

O (s)d(1/s) <1, s>0. (2)
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Then there is a constant c; > 0, such that for every function f and every positive
number t

(Tof )" (1) < (olf )" (1) < c2 (Mg-1f )" (1/2) + (o|f )" (20) 3)

Proof. We may assume that given function f is nonnegative.

First we shall estimate the size of the level set G = {x € R" : (Ipg)(x) > A} for
function g € L'(R"). According to (1), |G| < co. Hence we can find a real number
R > 0 such that |G| = |B(0, R)|. We can write

M6l = [ 4 < [ tag)as
o (o
Ll G
<l [ a7 (o)

(O

\G\/an .
— llgllicn / (1/s)ds.

Dividing this inequality by |G| and using the Lemma 2.3 we obtain

G|/oy
aﬂ “/"

. 1
[ e < el (G|)

1
o () Y

ellgll

< lglhi—

This can be rewritten as
IG| <

where ¢ is independent of g and A .

We can now pass to the proof of our theorem which is mainly based on [1]. For
a given function f > 0 and a real number # > 0 we shall denote by E the set
{x € R" : (Iof )(x) > (lof )*(2t)}. Then |E| < 2¢ and we can find an open set Q,
|Q| < 31, E C Q. Now using Whitney covering theorem (see [5]) we can find cubes
Oy with disjoint interiors, such that Q = Ug®, Q¢ and diam Qi < dist (Qr, R"\ Q) <
4 diam Oy .

We want to show that there is a constant C > 0 such that for every f,¢ and for
every corresponding cube QO

[{x € Ok : lof (x) > C(Mg-f)(x) + (Iaf )" (20)}| < éIQk|~ (5)
Then we would have

{x € R : Iof (x) > C(Mg—f ) (x) + (Iof )* <1/6) |0 <1/2
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and thus

[{x € R": Iof (x) > C(Mg-f)"(/2) + (laf )" (20) }]
< H{x e Rt lof (x) > C(Mg-.f )(x) + (Iof )" (20) }|
+{x e R": (Mg-f)(x) > (Mg—f)"(1/2)}|
<t/24t/2 =1,
which finishes the proof.
To prove (5) fix k € N and choose x; € (R"\ Q) so that dist (xx, Q) <
4 diam (Qy). Let Q be a cube with center at x; having diameter 20 diam (Qy). Split
S =g+h=fxo+fxrm . Wemayassume that g € L! (R™), otherwise the right-hand

side of (3) would be infinite.
We shall prove that for C; and C, large enough

[{x € Ok : (TIog)(x) > C1(Mg—1f )(x)}| < 1/6|0k], (6)
and, for every x € O,
Ioh(x) < Co(Mg-if )(x) + Iof (x) < C2(Mg-1f )(x) + (Iof )" (21), (7)

which together gives (5).
For the first inequality, notice that for x € Oy

~ ; 1 _ el
(Mg—f)(x) > d-1(|0)) /Qg d-1(lQ))

Using (4) now gives

{x € Ok 2 (log)(x) > Ci(Mg-1f ) () }] <

Cillglh
€0 (log)(x) > —8L
{ o-(lQl)
1
~ C )
® (Eéf'l(\Q\))
where ¢ is the constant from (4). The last expression is less then |Qk|/6 for C; big

enough (here we use (2) again).
In the proof of the second inequality we shall use two observations. The first is

that
. 1 . 1 —xl. 1
o () 0 () <o (i) ©
lx =y e — | lx =yl lx =y

with ¢ independentof k, y € (R"\ Q) and x € Q.
The second is that for any § > 0 and any x € R”

f(y) ”1( 1 >
8 @ dy < cMg-.f (x). 9
/y:xy>5 =yl o) s Me f(x) ©)

<
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The proof of (7) now follows easily. For every x € Qp we get

Ioh(x) — Iof (xx) < Iph(x) — Ioh(x)
<Ll ()~ (o

1 - 1
< el — x| ! < ,,)f(y)dy
R"\Q lx — v — |

< Mg f (x).

It remains to prove (8) and (9). Proof of (9) is a combination of definition of
M- and (2).

To prove (8) let us write ®(z) = fot @(u)du and A(r) = @ '(r~") for t > 0.
Then

1 S
- [ otwan<pi). s> o0
0

s
or, equivalently, ®(s) < s®’(s) for s > 0. Now we set s = A(r) and obtain

fa nt— "
= S

N

cA(r).

Finally the left hand side of (8) can be estimated by

=yl A
/ Lt)dt
[x—y| t

In the following example we will show that the assumption (2) cannot be omitted.

o — x|
x =yl

Al —y)) — A =y < c <c A(le =yl

THEOREM 2.6. There is a Young’s function ® satisfying the A, —condition for

which 5
Iof )*(t) — (Iof )* (2t
Sup(cbf)() (*<1>f)( ) _ o
f,>0 (Mcb*lf) (I/Z)
Proof. Set
3 .
S u if0<u<l » 3 if0<u<l
u) = , o(u) = .
§uz—l ifl <u< oo 3u ifl<u<oo
2 2
Then
iu3/2 ifo<u<3 u .
33 3 f0<u<3
Plu) =4 o o) =
“ ! if 3 “ if3<u< oo
F+§ f3<u<oo 3

Finally ®~'(u) = /u for 0 < u < 1 and ®'(u) = \/2/3(u+ 1/2) for u> 1.
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Let n = 1. For any integer m > 0 set t,, = 1/m, fiu(X) = X(0,,)(x). Then

(Mcirlfm)*(tm/z) (Mg fm)(0) = sup &)_;/Y 1 —m72/37

0<s<l/m

(af)" ) = (1) 0) = [ a1 = 2 / L
(Iofm)" (2tm) = (Iq>fm)(3tm)= /1::2; D' (1/s) ds—\f / 3/: \/? du.

We can now estimate

(I(Dfm)*(tm) - (Iq>fm)*(2tm)
(Mcb lfm tm/z

1/(2m) 3/(2m)
/\/7 2/3 / \/7du—/ \/m-i- du

L
_\ﬁmz/z V2 ovmtal o 2 e s L L L
3 m 2m 3 2 2m

The last expression tends to infinity as m tends to infinity.

REFERENCES

[1] R.J. BAGBY, D. S. KURTZ, A Rearranged Good A -Inequality, Trans. Amer. Math. Soc., 293, (1986),
71-81.

[2] D.L. BURKHOLDER, R. F. GUNDY, Extrapolation and interpolation of quasilinear operators on martin-
gales, Acta Math., 124, (1970), 249-304.

[3] M. A. KRASNOSEL’SKII, YA. B. RUTICKII, Convex functions and Orlicz spaces, GITTL, Moscow, 1958;
English transl., Noordhoff, Groningen, 1961.

[4] R. O’NEIL, Convolution Operators and L(p,q) spaces, Duke Math. J., 30, (1963), 129-142.

[5] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press,
Princeton, N. J., 1970.

(Received April 7, 2005) Friedrich-Schiller Universitit Jena
Mathematisches Institut

Ernst Abbe Platz 1-4

D-07737 Jena

Germany

e-mail: vybiral@minet.uni-jena.de

Mathematical Inequalities & Applications



