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Abstract. We study the set T(a, b, c) of all integer solutions to the Diophantine inequality
ax mod b � x − c , with a, b, c nonnegative integers and b �= 0 . We obtain an exact formula
for the cardinality of N \ T(a, b, c) and give an algorithm to decide whether or not a numerical
semigroup can be represented as T(a, b, c) ∪ {0} .

1. Introduction

Given two nonnegative integers m and n , with n �= 0 , we denote by m mod n
the remainder of the division of m by n .

Following the notation in [6], [4] and [3], a modular Diophantine inequality is an
expression of the form ax mod b � x , with a, b nonnegative integers and b �= 0 . The
set of integer solutions to this inequality is denoted by S(a, b) and it turns out to be a
numerical semigroup, that is, a subset of the set of nonnegative integers N that is closed
under addition, 0 ∈ S and N \ S has finitely many elements. A numerical semigroup
S is said to be modular if there exist nonnegative integers a, b with b �= 0 such that
S = S(a, b) .

A contractedmodularDiophantine inequality is an expression of the form ax mod b
� x − c , with a, b, c nonnegative integers such that b �= 0 . We denote by T(a, b, c)
the set of integer solutions to this inequality. As we show in Section 2., T(a, b, c)∪{0}
is a numerical semigroup which we call contracted modular. Accordingly, a numerical
semigroup S is said to be contracted modular if there exist nonnegative integers a, b, c ,
with b �= 0 , such that S = T(a, b, c) ∪ {0} . We call this expression a contracted
modular representation of S .

Given a set X , we denote by #X the cardinality of X .
The main result is this paper is Theorem 14 which exhibit a formula for #(N \

T(a, b, c)) in terms of a, b, c . We also give a deterministic algorithm to decide whether
a numerical semigroup is contracted modular or not.

By using this algorithm we have explored many examples and this has led us to
conjecture that the class of contracted modular numerical semigroups is included in the
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class of system proportionally modular numerical semigroups. System proportionally
modular numerical semigroups are introduced in [7] and recently it has been proved that
they are exactly those numerical semigroups which admit a Toms’ decomposition (see
[8, 5]).

2. Preliminaries and basic results

Along this paper and unless otherwise stated we will assume a, b, c to be nonneg-
ative integers such that b �= 0 .

It is clear that T(a, b, c) ⊆ S(a, b) . The following result, which proof is immediate
from definitions, establishes when equality holds.

LEMMA 1. The following conditions are equivalent:
(1) T(a, b, c) = S(a, b) .
(2) 0 ∈ T(a, b, c) .
(3) c = 0 .

PROPOSITION 2. T(a, b, c) ∪ {0} is a numerical semigroup.

Proof. Call S = T(a, b, c) and suppose that x, y ∈ S . Then ax mod b � x − c
and ay mod b � y−c . This implies that a(x+y) mod b � (ax mod b)+(ay mod b) �
x − c + y − c � x + y − c , whence x + y ∈ S , and so S is closed under addition.

Since ax mod b � b − 1 for any integer x , we see that if x � b + c − 1 , then
ax mod b � x − c , and so x ∈ S . This implies that N \ S is finite. �

If S is a numerical semigroup, the least positive integer in S is called the mul-
tiplicity of S and is represented by m(S) . The largest integer not in S is called the
Frobenius number of S and it is denoted by g(S) . This integer has been widely studied
in literature (see for instance [2]). The numbers m(S) , g(S) and #(N \ S) are three
important invariants for a numerical semigroup S (see also [1]).

COROLLARY 3. Let S = T(a, b, c) ∪ {0} . Then:
(1) g(S) � b + c − 2 .
(2) c � m(S) .

Proof.
(1) It is a consequence of the fact that any integer x � b + c − 1 belongs to S .
(2) If x ∈ T(a, b, c) , since ax mod b � 0 , we have 0 � x − c . �
If z is an integer, we denote by {z,→} the set of all integers greater than or equal

to z . Clearly {0} ∪ {n,→} is a numerical semigroup for any nonnegative integer n .
We say that a numerical semigroup S is a halfline, if S = {0} ∪ {n,→} for some
nonnegative integer n . Given a real number x , we set �x� = min{z ∈ Z | z � x} and
	x
 = max{z ∈ Z | z � x} as usual.

As we show in the next result, any numerical semigroup which is a halfline is also
contracted modular.

LEMMA 4. Let b, c be nonnegative integers, with b �= 0 . Then:
(1) T(0, b, c) = {c,→} .
(2) T(1, b, c) = {� c

b�b,→} .
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Proof. (1) It is clear from definitions.
(2) If x ∈ T(1, b, c) , then x mod b � x− c . This implies that there exists k ∈ N

such that 0 � x − kb � x − c . From this we deduce that k � � c
b� and x � kb , and

so x � � c
b�b . Conversely, if x � � c

b�b , then x mod b � x − � c
b�b � x − c

bb = x − c .
This means that x ∈ T(1, b, c) . �

Note that T(a, b, c) = T(a mod b, b, c) , so we can suppose without any loss of
generality that a < b . Moreover, by Lemma 4 if T(a, b, c) ∪ {0} is not a halfline, we
can also assume that 2 � a � b − 1 .

If A and B are two subsets of Z , we call A + B = {a + b | a ∈ A, b ∈ B} .

PROPOSITION 5. If c = bq + r , with q, r ∈ N , then T(a, b, c) = {c − r} +
T(a, b, r) .

Proof. Note that if x ∈ T(a, b, c) , then x � c and so x = y + c for some y ∈ N .
Hence the proof reduces to show that y+c ∈ T(a, b, c) if and only if y+r ∈ T(a, b, r) .
But this is immediate because a(y+c) mod b = a(y+qb+r) mod b = a(y+r) mod b ,
and so a(y + c) mod b � y if and only if a(y + r) mod b � y . �

In view of Proposition 5 we can restrict to the case c � b − 1 . This assumption
will be crucial to prove Theorem 14 in the next section.

A semigroup is a nonempty set with an associative and commutative binary oper-
ation on it. A nonempty subset I of a semigroup S is said to be an ideal if S + I ⊆ I .
An ideal I is principal if there exists s ∈ S such that I = {s} + S .

COROLLARY 6. If c = bq + r , with q, r ∈ N and qb � r , then T(a, b, c) is a
principal ideal of T(a, b, r) .

Proof. By Proposition 5, it is enough to show that c − r ∈ T(a, b, c) . But this is
clear because a(qb) mod b = 0 � qb − r and so c − r = qb ∈ T(a, b, r) . �

3. The number of gaps of a contracted modular Diophantine inequality

Any element of the set N \ T(a, b, c) is said to be a gap of the contracted modular
Diophantine inequality ax mod b � x − c .

This section is devoted to prove Theorem 14 which supplies a formula for the
cardinality of the set N \ T(a, b, c) in terms of a, b and c .

If n, m are integers with not both of them equal to 0 , we represent by gcd(m, n)
the greatest common divisor of m and n , as usual. In this section a and b will denote
positive integers such that 2 � a � b − 1 . We call d = gcd(a − 1, b) and d′ =
gcd(a, b) . Since gcd( a−1

d , b
d ) = 1 , there exists a unique integer u ∈ {1, . . . , b

d − 1}
verifying that a−1

d u mod b
d = 1 (u is the inverse of a−1

d modulo b
d ).

LEMMA 7. ([6], Theorem 12) Under the previous conditions, #(N \ S(a, b)) =
b+1−d−d′

2 .

The following result, which proof is immediate from definitions, presents the set
T(a, b, c) as being obtained from themodular numerical semigroup S(a, b) by removing
some of its elements. This can be thought of as if the original numerical semigroup
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S(a, b) were shorten or contracted to the numerical semigroup T(a, b, c) ∪ {0} . This
justifies the terminology we use in this paper.

LEMMA 8. If c � 1 , then T(a, b, c) = S(a, b) \ {x ∈ N | ax mod b = x −
i for some i such that 0 � i � c − 1} .

We note that if ax mod b = x− i for some integer x , then i must be a multiple of
d . From this observation we can refine the statement of Lemma 8 as follows.

LEMMA 9. If c � 1 , then T(a, b, c) = S(a, b) \ {x ∈ N | ax mod b = x −
kd for some k such that 0 � k � 	 c−1

d 
} .

For any nonnegative integer k we call Hk = {x ∈ N | ax mod b = x−kd} . Hence
by Lemma 9 we see that the set T(a, b, c) can be obtained from S(a, b) by iteratively
removing all the elements in the set Hk for every k from 0 to 	 c−1

d 
 . In the next
lemma we explicitly determine the elements of Hk .

LEMMA 10. Let k be an integer. Then ax mod b = x − kd if and only if
kd � x � kd + b − 1 and x = ( b

d − u)k mod b
d + t b

d for some integer t .

Proof. Clearly, ax mod b = x − kd if and only if 0 � x − kd � b − 1 and
ax ≡ x − kd mod b , that is, 0 � x − kd � b − 1 and a−1

d x ≡ −k mod b
d . Hence

ax mod b = x− kd if and only if kd � x � kd + b − 1 and x = ( b
d − u)k mod b

d + t b
d

for some integer t . �

LEMMA 11. For any integer z , #{t ∈ Z | z � t b
d � z + b − 1} = d .

Proof. First we note that z � t b
d if and only if t � � dz

b � . We prove for any l ∈ N ,
that (� dz

b � + l) b
d � z + b − 1 if and only if l + 1 � d . To achieve this, we distinguish

two cases:
1. Suppose that � dz

b � = 	 dz
b 
 + 1 . Then (� dz

b � + l) b
d � z + b − 1 if and only if

(	 dz
b 
+l+1) b

d � z+b−1 , and this is equivalent to dz−dz mod b+b+bl � db−d+dz .
So (� dz

b � + l) b
d � z + b − 1 if and only if l + 1 � d + dz mod b−d

b . We note that the
hypothesis for this case also implies that dz mod b �= 0 , and so dz mod b = d(z mod b

d )
is a multiple of d which is strictly contained between 0 and b . This implies that
0 � dz mod b−d

b < 1 and so the inequality l + 1 � d + dz mod b−d
b is equivalent to

l + 1 � d .
2. If � dz

b � �= 	 dz
b 
+ 1 , then � dz

b � = dz
b . This implies that (� dz

b �+ l) b
d � z+ b− 1

if and only if ( dz
b + l) b

d � z + b − 1 , and this is equivalent to l + 1 � d . �

LEMMA 12. For any integer k , #{x ∈ N | ax mod b = x − kd} = d .

Proof. By Lemma 10, #{x ∈ N | ax mod b = x − kd} = #{t ∈ Z | z � t b
d �

z + b − 1} , with z = kd − ( b
d − u)k mod b

d . To conclude the proof, simply apply
Lemma 11. �

LEMMA 13. Let c, k, k be integers such that 1 � c � b − 1 and 0 � k � k �
	 c−1

d 
 . If ( b
d − u)k mod b

d = ( b
d − u)k mod b

d , then k = k .
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Proof. From the hypothesis ( b
d − u)k mod b

d = ( b
d − u)k mod b

d we obtain that
( b

d − u)(k − k) ≡ 0 mod b
d . As gcd( b

d − u, b
d ) = 1 , we get that k ≡ k mod b

d . Since
we are assuming that c � b − 1 , we also have 	 c−1

d 
 < b
d . From this we deduce that

0 � k − k < b
d and so k − k = 0 . �

Finally, we are in position to prove the main result in this section.

THEOREM 14. Let a, b and c be nonnegative integers such that a < b . Then

#(N \ T(a, b, c)) =
b + 1 − d − d′

2
+

(⌊c − 1
d

⌋
+ 1

)
d.

Proof. If a = 0 or a = 1 , the formula in the lemma is an easy consequence of
Lemma 4. So we will assume that 2 � a � b − 1 . We consider three cases:

1. If c = 0 , then T(a, b, c) = S(a, b) . In this case the result follows straightly from
Lemma 7.

2. Suppose that 1 � c � b − 1 . By Lemma 9 we know that S(a, b) is the disjoint

union of T(a, b, c) and ∪� c−1
d �

k=0 Hk . This implies that

#(N \ T(a, b, c)) = #(N \ S(a, b)) + #
( � c−1

d �⋃
k=0

Hk

)
.

By applying Lemmas 10 and 13, we get Hk ∩ Hk = ∅ for any k, k such that
0 � k < k � 	 c−1

d 
 , and this leads to

#
( � c−1

d �⋃
k=0

Hk
)

=
� c−1

d �∑
k=0

#Hk.

For this case now the result follows from Lemma 12.
3. If c � b , then c = qb + r with r = c mod b < b . By the cases (1) and (2) we

have

#(N \ T(a, b, r)) =
b + 1 − d − d′

2
+ (

⌊ r − 1
d

⌋
+ 1)d.

Now by applying Proposition 5, we obtain that

#(N \ T(a, b, c)) = (c − r) + #(N \ T(a, b, r)) =

(c − r) +
b + 1 − d − d′

2
+ (

⌊ r − 1
d

⌋
+ 1)d.

By using that b is a multiple of d and that c − r = qb , we deduce that c − r is
also a multiple of d and so

#(N \ T(a, b, c)) =
b + 1 − d − d′

2
+

(c − r
d

+
⌊ r − 1

d

⌋
+ 1

)
d =

b + 1 − d − d′

2
+

(⌊c − 1
d

⌋
+ 1

)
d. �
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EXAMPLE 15. Let us apply the formula in Theorem 14 to count the number of gaps
of the Diophantine inequality 7x mod 35 � x − 4 .

We have a = 7, b = 35, c = 4 , d = gcd(a − 1, b) = 1 and d′ = gcd(a, b) = 7 .
We get #(N \ T(7, 35, 4)) = 35+1−1−7

2 + (	 4−1
1 
 + 1) · 1 = 18 . In fact one can check

that N \ T(7, 35, 4) = {0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 17, 18, 19, 23, 24, 29} .

4. An algorithm to decide whether a numerical semigroup is contracted
modular or not

Let S be a numerical semigroup. If S is a halfline, say S = {0} ∪ {m,→} , then
from Lemma 4 we know that S = T(0, b, m) ∪ {0} for any positive integer b , so in
this case S is contracted modular. If S is not a halfline, then S is contracted modular
if and only if there exist nonnegative integers a, b, c such that 2 � a � b − 1 and
S = T(a, b, c) ∪ {0} .

LEMMA 16. Suppose that a, b are integers such that 2 � a � b − 1 . Then
gcd(a − 1, b) + gcd(a, b) � b

2 + 2 .

Proof. Call d = gcd(a − 1, b) and d′ = gcd(a, b) . The hypothesis a � b − 1 ,
implies that d � b

2 and d′ � b
2 . Clearly the lemma is true when d = 1 or d′ = 1 .

Hence we assume d � 2 and d′ � 2 . Since gcd(d, d′) = 1 , we have that b is
a multiple of dd′ and in particular dd′ � b . This implies that d + d′ � d + b

d .
To conclude the proof, it is enough to see that d + b

d � 2 + b
2 , which is true when

d � b
2 . �

LEMMA 17. Let a, b, c be nonnegative integers such that 2 � a � b − 1 . Then
b � 4#(N \ T(a, b, c)) + 2 .

Proof. Call d = gcd(a − 1, b) and d′ = gcd(a, b) . From Theorem 14 we know
that #(N\T(a, b, c)) � b+1−d−d′

2 and so 2#(N\T(a, b, c)) � b+1−d−d′ . By Lemma
16 we have 2#(N\T(a, b, c)) � b+1− b

d −2 and thus b � 4#(N\T(a, b, c))+2 . �
As a consequence of Corollary 3 and Lemma 17 we obtain the following result.

PROPOSITION 18. Let S be a numerical semigroup. If S = T(a, b, c) ∪ {0}
for some nonnegative integers a, b, c such that 2 � a � b − 1 , then c � m(S) and
g(S)− m(S) + 2 � b � 4#(N \ S) + 6 .

COROLLARY 19. Let S be a contracted modular numerical semigroup which is
not a halfline. Then there exists only a finite number of triples (a, b, c) ∈ N

3 such that
2 � a � b − 1 and S = T(a, b, c) ∪ {0} .

As we saw in Lemma 4, any numerical semigroup which is a halfline is also a
contracted modular numerical semigroup and admits an infinite number of contracted
modular representations.

Given n1, . . . , np ∈ N , we set 〈 n1, . . . , np〉 = {λ1n1 + · · · + λpnp | λ1, . . . , λp ∈
N} . Then 〈 n1, . . . , np〉 is a numerical semigroup if and only if the greatest common
divisor of n1, . . . , np is equal to 1 . In this case, 〈 n1, . . . , np〉 is said to be the numerical
semigroup generated by n1, . . . , np .
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Now we are in conditions to give the announced procedure.
ALGORITHM 20.
Input: a numerical semigroup S , generated by n1 < · · · < np .
Output: “yes” if S is contracted modular and “no” if S is not contracted modular.
(1) If {n1, n1 + 1, . . . , 2n1 − 1} ⊆ {n1, . . . , np} , then return “yes”.
(2) Compute g(S), m(S) and #(N \ S) from the given generators n1, . . . , np of

S .
(3) Let A = {(a, b, c) ∈ N

3 | g(S) − m(S) + 2 � b � 4#(N \ S) + 6, c �
m(S) and 2 � a � b − 1} .

(4) If S = T(a, b, c) ∪ {0} for some triple (a, b, c) ∈ A , then return “yes”.
Otherwise, return “no”.

EXAMPLE 21. Let us apply Algorithm 20 to the numerical semigroup S =
〈 4, 6, 7〉 .

First we note that S is not a halfline. One can easily check that m(S) = 4, g(S) = 9
and #(N \ S) = 5 . Next we consider the set A = {(a, b, c) ∈ N

3 | 7 � b � 26, 2 �
a � b − 1 and 0 � c � 4} . It can be tested that no triple (a, b, c) ∈ A fullfils the
condition S = T(a, b, c) ∪ {0} . Thus S is not contracted modular.

EXAMPLE 22. Let S = 〈 7, 10, 12, 15, 16, 18〉 . Now m(S) = 7, g(S) = 13 and
#(N \ S) = 10 .

By applying Algorithm 20 to S we get that S is contracted modular. In fact
all the contracted modular representations of S are S = T(7, 16, 3) ∪ {0} and S =
T(7, 16, 4)∪ {0} .

EXAMPLE 23. For S = 〈 6, 7, 11, 15〉 we have m(S) = 6, g(S) = 16 and
#(N \ S) = 9 .

After applying Algorithm 20 to S we get that S is not contracted modular.

5. Some remarks

Following the notation in [7], a numerical semigroup is proportionally modular, if
it is the set of solutions to a Diophantine inequality of the type ax mod b � cx , with
a, b, c nonnegative integers and b �= 0 . We put S(a, b, c) = {x ∈ N | ax mod b � cx} .
A numerical semigroup is said to be system proportionally modular, if it can be written
as an intersection of proportionally modular numerical semigroups, that is, if it is the
set of solutions to a Diophantine inequation system

⎧⎪⎨
⎪⎩

a1x mod b1 � c1x,
...

arx mod br � crx.

It has been recently proved in [5] that the class of system proportionally modular
numerical semigroups coincides with the class of numerical semigroups having a Toms’
decomposition. These semigroups appear as positive cones of the K0 -group of certain
C∗ -algebras (see [8]).
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REMARK 24.
1. As we got in Example 22, the numerical semigroup S = 〈 7, 10, 12, 15, 16, 18〉

is contracted modular. By using Algorithm 24 in [7] it can be checked that S is not
proportionally modular. This shows that the class of contracted modular numerical
semigroups is not included in the class of proportionallymodular numerical semigroups.
We also note that S is system proportionally modular. This can be seen by applying
Algorithm 27 in [7]. In fact

S = 〈 5, 6, 7〉 ∩ 〈 6, 7, 8, 9, 10〉 ∩ 〈 7, 8, 9, 10, 11, 12〉
= S(3, 14, 1) ∩ S(5, 30, 2) ∩ S(12, 84, 5).

2. We saw in Example 23 that the numerical semigroup S = 〈 6, 7, 11, 15〉 is
not contracted modular. Now by applying Algorithm 24 in [7] to S we get that S is
proportionally modular. In fact, it can be checked that S = S(7, 38, 2) . This implies
that the class of proportionally modular numerical semigroups is not included in the
class of contracted modular numerical semigroups. Now it is obvious that S is system
proportionally modular.

3. According to Example 21 above, the numerical semigroup S = 〈 4, 6, 7〉 is not
contracted modular. It can be tested by using Algorithm 27 in [7] that S is not system
proportionally modular.

We propose the following open problem: prove that any contracted modular nu-
merical semigroup is system proportionally modular.
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[5] J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ, Numerical semigroups having Toms’ decomposition, to appear

in the Canad. Math. Bull.
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