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Abstract. Let c > b > a > 0 be real numbers. Then the function f (r) = Lr(a,b)
Lr(a,c) is strictly

decreasing on (−∞,∞) , where Lr(a, b) denotes the generalized (extended) logarithmic mean
of two positive numbers a and b .

1. Introduction

If −∞ < p < ∞ and a, b are two positive numbers, the generalized (extended)
logarithmic mean Lp(a, b) of a and b is defined for a = b by Lp(a, b) = a and for
a �= b by

Lp(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(
bp+1 − ap+1

(p + 1)(b − a)

)1/p

, p �= −1, 0;

b − a
ln b − ln a

, p = −1;

1
e

(
bb

aa

)1/(b−a)

, p = 0.

(1)

The case p = −1 is called the logarithmic mean of a and b , and will be written
L(a, b) ; while the case p = 0 is the identric mean of a and b , written I(a, b) .

This definition of the generalized logarithmic mean can be found in [2, p. 6] and
[36, 37].

It is well known that if r > 0 is a real number, then for all natural numbers n

n
n + 1

<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir
)1/r

<
n√n!

n+1
√

(n + 1)!
. (2)

The first inequality in (2) is called H. Alzer’s inequality [1], and the second one
in (2) J. S. Martins’ inequality [13]. The inequality between two ends of (2) is called
Minc-Sathre’s inequality [14].
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There exists a very rich literature on inequality (2). Alzer’s inequality has been
generalized and extended, for example, in [4, 5, 6, 7, 12, 16, 17, 18, 19, 23, 24, 26, 29,
31, 33, 34, 35, 38, 40]. So does Martins’s inequality in [3, 5, 9, 19, 22, 25, 26, 27, 28, 31,
32, 40, 41] and Minc-Sathre’s inequality in [1, 5, 8, 11, 20, 21, 26, 28, 30], respectively.

Recently, F. Qi and B.-N. Guo proved in [17, 25] the following double inequality:
Let b > a > 0 and δ > 0 , then for any positive real number r ,

b
b + δ

<

(
1

b−a

∫ b
a xr d x

1
b+δ−a

∫ b+δ
a xr d x

)1/r

<
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a) . (3)

The upper and lower bounds in (3) are the best possible, or more accurately say,

lim
r→∞

(
1

b−a

∫ b
a xr d x

1
b+δ−a

∫ b+δ
a xr d x

)1/r

=
b

b + δ
, (4)

lim
r→0

(
1

b−a

∫ b
a xr d x

1
b+δ−a

∫ b+δ
a xr d x

)1/r

=
[bb/aa]1/(b−a)

[(b + δ)b+δ/aa]1/(b+δ−a) . (5)

Inequality (3) can be taken for an integral form of (2).
It is easy to see that inequality (3) can be written for r > 0 as

b
b + δ

<
Lr(a, b)

Lr(a, b + δ)
<

I(a, b)
I(a, b + δ)

. (6)

In this short note, we are about to extend the result presented by (3) to (5) which
are established in [17, 25] by F. Qi and B.-N. Guo, and obtain the following

THEOREM 1. Let c > b > a > 0 be real numbers. Then the function

f (r) =
Lr(a, b)
Lr(a, c)

(7)

is strictly decreasing with r ∈ (−∞,∞) .

The following corollary is straightforward.

COROLLARY 1. Let c > b > a > 0 be real numbers.
1. For any real number r ∈ R ,

b
c

<
Lr(a, b)
Lr(a, c)

< 1. (8)

The both bounds in (8) are the best possible.
2. For any positive real number r > 0 ,

b
c

<
Lr(a, b)
Lr(a, c)

<
I(a, b)
I(a, c)

. (9)

The both bounds in (9) are also the best possible.
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REMARK 1. It isworthwhile pointing out that inequalities (3) and (9) are equivalent
each other.

In [32] it was conjectured that the function(
1
n

∑n
i=1 ir

1
n+1

∑n+1
i=1 ir

)1/r

(10)

is decreasing with r ∈ (−∞,∞) . Now it is still keep open. We can regard Theorem 1
as a solution to an integral form of the conjecture above.

2. Proof of Theorem 1

In order to verify Theorem1, we shall make use of the following elementary lemma
which can be found in [10, p. 395].

LEMMA 1. ([10, p. 395]) Let the second derivative of φ(x) be continuous with
x ∈ (−∞,∞) and φ(0) = 0 . Define

g(x) =

⎧⎨
⎩

φ(x)
x

, x �= 0;

φ ′(0), x = 0.
(11)

Then φ(x) is ( strictly ) convex if and only if g(x) is ( strictly ) increasing with
x ∈ (−∞,∞) .

REMARK 2. In [15, p. 18] a general conclusion was given: A function f is convex
on [a, b] if and only if f (x)−f (x0)

x−x0
is nondecreasing on [a, b] for every point x0 ∈ [a, b] .

Proof of Theorem 1 . Define for r ∈ (−∞,∞)

ϕ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln

(
c − a
b − a

· br+1 − ar+1

cr+1 − ar+1

)
, r �= −1;

ln

(
c − a
b − a

· ln b − ln a
ln c − ln a

)
, r = −1.

(12)

Then we have

ln f (r) =

⎧⎨
⎩

ϕ(r)
r

, r �= 0,

ϕ′(0), r = 0.
(13)

In order to prove that ln f (r) is strictly decreasing it suffices to show that ϕ is
strictly concave in (−∞,∞) . Easy computation reveals that

ϕ(−1 − r) = ϕ(r − 1) + r ln
c
b
, (14)

which implies that ϕ′′(−r − 1) = ϕ′′(r − 1) , and then ϕ(r) has the same concavity
on both (−∞,−1) and (−1,∞) . Hence, it is sufficient to prove that ϕ is strictly
concave on (−1,∞) .
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A simple computation yields

ϕ′′(r) =
(a/c)r+1[ln(a/c)]2

[1 − (a/c)r+1]2
− (a/b)r+1[ln(a/b)]2

[1 − (a/b)r+1]2
. (15)

Define for 0 < t < 1

ω(t) =
t(ln t)2

(1 − t)2
. (16)

Differentiation yields

(1 − t)t ln t
ω ′(t)
ω(t)

= (1 + t) ln t + 2(1 − t) = −
∞∑

n=2

n − 1
n(n + 1)

tn+1 < 0, (17)

which means that ω ′(t) > 0 for 0 < t < 1 . As a result of applying this conclusion in
(15), we obtain ϕ′′(r) < 0 for r > −1 . Thus ϕ(r) is strictly concave in (−1,∞) .
The proof is complete.

Addendum It is worthwhile to point out that the conjecture posed in [32] and
mentioned in Remark 1 above had been verified in [39] elegantly and novelly.
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