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EXTENSIONS OF A BONNESEN–STYLE INEQUALITY

TO MINKOWSKI SPACES

HORST MARTINI AND ZOKHRAB MUSTAFAEV

(communicated by V. Volenec)

Abstract. Various definitions of surface area and volume are possible in finite dimensional
normed linear spaces (= Minkowski spaces). Using a Bonnesen-style inequality, we investigate
the ratio of the Holmes-Thompson surface area of the unit ball to its volume. In particular, in
the planar case a stronger lower bound for this ratio is established when the area is defined in
the sense of Holmes-Thompson, or is given by the definition of mass. From this we obtain some
(characteristic) properties of Radon curves.

1. Introduction

In their paper [1], J.C. Alvarez and C. Duran asked whether, besides the Euclidean
plane, there are other Minkowski (i.e., normed) planes for which the ratio of the
Minkowski length of the unit circle to its Holmes-Thompson area (see [12] and Chapter
5 of [28]) equals 2.

R.D. Holmes and A.C. Thompson investigated the ratio

ω(B) =
εd−1

dεd

μHT
B (∂B)
μHT

B (B)
,

where εd is the volumeof the d -dimensional standardEuclidean unit ball, and μHT
B (∂B)

and μHT
B (B) stand for the Holmes-Thompson definitions of surface area and volume,

respectively (cf. again [12] and [28], Chapter 5). They established certain bounds on
ω . Namely, if B is the unit ball of a d -dimensional Minkowski (= normed linear)
space, then

1
2

� ω(B) � d
2

with equality on the right if B is a cube or a cross-polytope. When d =2, we have

1
2

� ω(B) =
1
π
μ(∂B)
μ(B)

� 1.

Holmes and Thompson subsequently raised the following question: “What is the lower
bound for ω(B) in d -dimensional space?”
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When d = 2 , it has been proved that
μB(∂B)
μHT

B (B)
� 2 with equality if and only if B

is an ellipse, see [20]. In other words, the ratio 2 is achieved only for Minkowski planes
that are affinely equivalent to the Euclidean plane.

One of the aims of this paper is to investigate and improve such inequalities by
using a Bonnesen-style inequality. We will also show the importance of this ratio for
higher dimensional Minkowski spaces. More precisely, we discuss the relationship
between this ratio problem and Petty’s conjectured projection inequality. Furthermore,
we will investigate this ratio also for other definitions of area in Minkowski planes. In
particular, we will prove a stronger lower bound for the ratio when the area is defined
in the sense of mass.

We will also give new characterizations of Radon curves in terms of maximally
inscribed and minimally circumscribed parallelograms of the unit disc.

2. Definitions and preliminaries

Recall that a convex body K is a compact, convex set with nonempty interior, and
that K is said to be centered if it is symmetric with respect to the origin o of R

d .
Let (Rd, || · ||) =: M

d be a d-dimensional real normed linear space, i.e., a
Minkowski space with unit ball B which is a centered convex body. The unit sphere of
M

d is the boundary of the unit ball and denoted by ∂B . By K◦ we denote the polar
reciprocal of a convex body K , and so B◦ is written for the polar reciprocal (or dual)
of the unit ball B .

Let λ be the Lebesgue measure induced by the standard Euclidean structure in
R

d . We will refer to this measure as volume (area in R
2 ) and denote it by λ (·) . The

measure λ gives rise to consider a dual measure λ ∗ on the family of convex subsets
of the dual space R

d∗ .
However, using the standard basis we will identify R

d and R
d∗ , and in that case

λ and λ ∗ coincide in R
d .

A Minkowski space M
d possesses a Haar measure μ , and this measure is unique

up to multiplication of the Lebesgue measure with a positive constant, i.e.,

μ = σBλ . (1)

Choosing the ‘correct’ multiple, which can depend on orientation, is not as easy as it
seems at first glance. Also these two measures μ and λ must coincide in the standard
Euclidean space. The following notions of measure are well known.

DEFINITION 1. Let M
2 be a Minkowski plane with unit disc B . For a convex body

K in M
2

i) the Holmes-Thompson area of K is defined by

μHT
B (K) =

λ (K)λ (B◦)
π

(for the Holmes Thompson volume σB =
λ (B◦)

εd
in M

d , where, again, εd is the

volume of the standard Euclidean ball),
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ii) the Busemann area of K is defined by

μBus
B (K) =

π
λ (B)

λ (K) ,

iii) the Benson area of K is defined by

μBen
B (K) =

4
λ (P)

λ (K) ,

where P is a parallelogram of minimal area circumscribed about B , and
iv) the mass definition of area of K is given by

μmass
B (K) =

2
λ (C)

λ (K) ,

where C is a parallelogram of maximal area inscribed to B .

These definitions coincide with the standard notion of area if the plane under
consideration is Euclidean.

By IB we denote the polar reciprocal of B with respect to the Euclidean unit circle
rotated through 90◦ . It turns out that IB plays the central role regarding the solution
of the isoperimetric problem in Minkowski planes. More precisely, among all convex
bodies with area λ (IB) those with minimum Minkowski perimeter are the translates of
IB . Dually, the same applies to bodies of maximal area with given perimeter. For more
details see [28], p. 119-121, and in general the geometry of unit balls and their duals is
discussed and applied in [24], [28], [18], [17], and [19].

The curve ∂B is called a Radon curve if B = αIB for some positive α . Centrally
symmetric closed convex curves that are touched at each of their points by some
circumscribed parallelogram of smallest area are called equiframed curves. The set
of equiframed curves properly contains the set of Radon curves. See [7], [11], [13],
[16], [17], [18], and [27] for various results and more background material on these two
classes of curves.

Recall that if K is a convex body in M
d , then the Minkowski surface area

(Minkowski length in M
2 ) of the boundary of K can also be defined in terms of

mixed volumes V(·, ·) , i.e.,

μB(∂K) = dV(K[d − 1], IB) , (2)

where IB is (up to a constant) the solution of the isoperimetric problem for the given
Haar measure. For definitions and many results related to mixed volumes we refer
to Chapter 5 of [26]. In particular, one of the fundamental results on mixed volumes,
Minkowski’s inequality, states that

Vd(K[d − 1], L) � λ d−1(K)λ (L)

with equality if and only if K and L are homothetic.

3. The isoperimetrices

Let M
d be a Minkowski space with unit ball B . Assigning a Haar measure to

M
d , one can also define IB for this measure. Among the homothetic images of IB we



742 HORST MARTINI AND ZOKHRAB MUSTAFAEV

want to specify a unique one, denoted by ÎB . It is called the isoperimetrix of M
d and

determined by μB(∂ ÎB) = dμB(ÎB) .

PROPOSITION 2. The equality μB(∂ ÎB) = dμB(ÎB) holds if and only if ÎB = σ−1
B IB .

Proof. Let μB(∂ ÎB) = dμB(ÎB) and ÎB = αIB for some positive α . Then we
have μB(∂(αIB)) = dμB(αIB) . Using (1), (2), and properties of mixed volumes, we
get α = σ−1

B .
Let ÎB = σ−1

B IB . Thenwehave the sequence of equalities μB(∂ ÎB) = σ1−d
B μB(∂IB)

= dσ1−d
B λ (IB) = dσBλ (ÎB) = dμB(ÎB) . �
We denote the isoperimetrices of M

2 (as well as of M
d ) with respect to the

definitions of Benson, Busemann, Holmes-Thompson and that referring to the notion
of mass by ÎBen

B , ÎBus
B , ÎHT

B , and Îmass
B , respectively.

Thus we have ÎHT
B =

π
λ (B◦)

IB , ÎBus
B =

λ (B)
π

IB , ÎBen
B =

λ (P)
4

IB , and Îmass
B =

λ (C)
2

IB in M
2 .

From the Blaschke-Santaló inequality (cf. Section 7.4 of [26]) we have

λ (ÎBus) � λ (B) � λ (ÎHT
B ) (3)

with equality on either side if and only if B is an ellipse.
We can also show the following inclusion properties between different types of

isoperimetrices in M
2 .

i. Since
λ (B)
π

� π
λ (B◦)

with equality if and only if B is an ellipse, we have

ÎBus
B ⊆ ÎHT

B .
ii. Since μHT

B (B) � μBen
B (B) with equality if and only if B is an ellipse (see [2]),

we have
λ (P)

4
� π

λ (B◦)
. This yields ÎBen

B ⊆ ÎHT
B .

iii. Since
2
π

� λ (C)
λ (B)

with equality if and only if B is an ellipse (cf. [16]), we

have ÎBus
B ⊆ Imass

B .
iv. Since λ (P) � 2λ (C) with equality if and only if B is a Radon curve (see the

next section), ÎBen
B ⊆ Îmass

B is obtained.
There are no such inclusion properties between Îmass

B and ÎHT
B as well as between

ÎBus
B and ÎBen

B .

4. The ratio problem in M
2 and Radon curves

Let K and L be convex bodies in R
d . Then the relative inradius r(K, L) and the

relative circumradius R(K, L) of K with respect to L are defined by

r(K, L) := sup{α : ∃x ∈ R
d, αL + x ⊆ K}
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and
R(K, L) := inf{α : ∃x ∈ R

d, αL + x ⊇ K} ,

respectively; see [26], p. 135, and [23]. It is interesting to choose L so that it is equal
to ÎB . In that case sharp bounds on r(B, ÎB) and R(B, ÎB) for some isoperimetrices are

known. Namely, it is known that
2εd−1

dεd
� r(B, ÎHT

B ) � 1 with equality on the left if and

only if B is a cube or cross-polytope, and on the right if and only if B is an ellipsoid,

see [15] and [28]. In M
2 , for R(B, ÎHT

B ) we have R(B, ÎHT
B ) � 3

π
with equality if and

only if B is a regular hexagon (see [20] and [28]). In M
d we have R(B, ÎBus

B ) � dεd

2εd−1
with equality if and only if B is a parallelotope (see [15]).

The Bonnesen-style inequality in the Euclidean plane that we use here states that

λ (K) − 2tV(K, L) + t2λ (L) � 0, r(K, L) � t � R(K, L).

Equality holds at t = r(K, L) if and only if K = {x : x + r(K, L)L ⊆ K} + r(K, L)L ,
and at t = R(K, L) if and only if K = L (see also [26], pp. 324-325, and [23]). This
inequality was proved by T. Bonnesen for the case that L is the standard Euclidean
disc, and a generalization was established by W. Blaschke (see again [26], p. 324). It
can also be found in [9], and it yields a strengthened form of the relative isoperimetric
inequality in M

2 . See also [10] and [21] for more about this Bonnesen-style inequality
and its applications.

Setting K = B and L = ÎB in the Bonnesen-style inequality, we get

λ (B) − 2tV(B, ÎB) + t2λ (ÎB) � 0.

This gives us
λ (B) − 2tσ−1

B V(B, IB) + t2λ (ÎB) � 0 ,

and therefore
tμB(∂B) � μB(B) + t2σBλ (ÎB)

as well as
μB(∂B)
μB(B)

� 1
t

+ t
λ (ÎB)
λ (B)

. (4)

THEOREM 3. If B is the unit disc of a Minkowski plane M
2 , then

μB(∂B)
μHT

B (B)
� t +

1
t
, r(B, ÎHT

B ) � t � R(B, ÎHT
B ) ,

with equality if and only if B is an ellipse.

Proof. The result follows from (3) and (4). The equality case holds when
t = r(B, ÎHT

B ) and λ (B) = λ (ÎHT
B ) , and this holds if and only if B is an ellipse.

�
Thus, μB(∂B) = 2μHT

B (B) with equality if and only if B is an ellipse.
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In [2] (see also [16] and [3]) it was proved that if B is the unit disc of M
2 , then

2μmass
B (B) � μB(∂B) � 2μBen

B (B) , (5)

with equality on the left if and only if ∂B is a Radon curve and on the right if and only
if ∂B is an equiframed curve.

From (5) one can easily deduce that if P is a parallelogram of minimal area
circumscribed about B , and C is a parallelogram of maximal area inscribed to B , then

2λ (C) � λ (P) (6)

with equality if and only if ∂B is a Radon curve.

LEMMA 4. If B is the unit disc of the normed plane M
2 , then

μ2
B(∂B) = 4λ (B)λ (B◦)

if and only if ∂B is a Radon curve.

Proof. If ∂B is a Radon curve (i.e., if B = αIB ), then

μ2
B(∂B) = 4V2(αIB, IB) = 4α2λ 2(IB) = 4λ (B)λ (B◦).

If μ2
B(∂B) = 4λ (B)λ (B◦) , then V2(B, IB) = λ (B)λ (IB). Thus, Minkowski’s

inequality implies that B and IB are homothetic. �

THEOREM 5. If B is the unit disc of a Minkowski plane M
2 and P is a parallel-

ogram of minimal area circumscribed about B , then

λ 2(P) � 16λ (B)
λ (B◦)

,

with equality if and only if B is a Radon curve.

Proof. Since μB(∂B) � 2μBen
B (B) , it follows from (4) that λ (ÎBen

B ) � λ (B) .
Hence the result follows from the definition of ÎBen

B . The equality case follows from
Lemma 4 and μB(∂B) = 2μBen

B (B) ; it holds if and only if B is an equiframed curve.
�

COROLLARY 6. If B is a Radon curve ( i.e., B = αIB ) and P is a parallelogram
of minimal area circumscribed about B , then λ (P) = 4α .

THEOREM 7. If B is the unit disc of a normed plane M
2 and C is a parallelogram

of maximal area inscribed to B , then

λ 2(C) � 4λ (B)
λ (B◦)

,

with equality if and only if B is a Radon curve.

Proof. Let P1 be a parallelogram of minimal area circumscribed about B◦ . Then
Theorem 5 implies

λ 2(P1) � 16λ (B◦)
λ (B)

. (7)
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Since C ⊆ B and B◦ ⊆ P1 , we have B◦ ⊆ C◦ and P◦
1 ⊆ B . Therefore

also λ (C◦) � λ (P1) and λ (C) � λ (P◦
1) . The Mahler-Reisner inequality (see,

e.g., [22]) implies λ (C)λ (C◦) = λ (P1)λ (P◦
1) = 8 . Therefore λ (C◦) = λ (P1) and

λ (C) = λ (P◦
1) . Hence the result follows from λ (C)λ (P1) = 8 and (7).

The equality case follows from Lemma 4 and the fact that μB(∂B) = 2μmass
B (B) if

and only if B is a Radon curve. �

COROLLARY 8. If B is the unit disc of a Minkowski plane M
2 , then

μB(∂B)
μmass

B (B)
� t +

1
t
, r(B, Îmass

B ) � t � R(B, Îmass
B ) ,

with equality if and only if B is a Radon curve.

Proof. Since λ (Îmass
B ) � λ (B) with equality if and only if B is a Radon curve, the

result follows from (4). �

COROLLARY 9. If B is a Radon curve ( i.e., B = αIB ) and C is a parallelogram
of maximal area inscribed to B , then λ (C) = 2α .

Combining Theorems 5 and 7, we get

λ (ÎBen
B ) � λ (B) � λ (Îmass

B )

with equality on either side if and only if B is a Radon curve.

5. The ratio problem in M
d

Petty’s conjectured projection inequality states that if K is a convex body in R
d ,

then
ε−2
d λ (ΠK)λ 1−d(K) � (

εd−1

εd
)d

with equality if and only if K is an ellipsoid. (For the definition of the projection
body ΠK of K and this famous inequality see [26], p. 296 and Section 7.4.) In [14],
E. Lutwak describes this inequality as one of the major open problems in the area of
affine isoperimetric inequalities. E.g., R. Schneider [25] shows applications of Petty’s
conjectured projection inequality in Stochastic Geometry, and N. S. Brannen [5] proved
that this inequality holds for 3 -dimensional convex cylindrical bodies.

It turns out (see [28]) that if B is the unit ball of M
d and IHT

B the solution of the
isoperimetric problem for the Holmes-Thompson definition of measure, then

IHT
B =

ΠB◦

εd−1
,

where ΠB◦ is the projection body of B◦ . Thus ÎHT
B =

εd

λ (B◦)
IHT
B . Setting K = B◦ in

Petty’s conjectured projection inequality, we obtain

εd−2
d λ (IHT

B ) � λ d−1(B◦) .
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Using this inequality and the Blaschke-Santaló inequality, we get

(μHT
B (B))d � λ d−1(B)λ d−1(B◦)

εd−2
d

� λ d−1(B)λ (IHT
B ).

It follows from Minkowski’s inequality that

μHT
B (∂B) � dμHT

B (B)

with equality if and only if B is an ellipsoid.
Thus, if there exists the unit ball B of M

d such that μHT
B (∂B) < dμHT

B (B) , then
this body will contradict Petty’s conjectured projection inequality.

There exist some extensions of the Bonnesen-style inequality to d -dimensional
space (see [23] and [6]), such as

dr(K, L)V(K[d − 1], L) � λ (K), (8)

again using mixed volumes. Unfortunately, there are no stronger inequalities over the
class of centrally symmetric bodies to prove this ratio problem.

Setting K = B and L = ÎHT
B in (8), we get

r(B, ÎHT
B )μHT

B (∂B) � μHT
B (B).

From a property of mixed volumes we also have

λ (B) = V(B[d − 1], B) � r(B, ÎB)V(B[d − 1], ÎB).

For ÎB = ÎHT
B this yields

dμHT
B (B) � r(B, ÎB)μHT

B (∂B).

PROPOSITION 10. Let B be the unit ball of a normed linear space M
d . Then

μHT
B (∂B) = dμHT

B (B)

holds if and only if B is an ellipsoid.

Proof. Obviously, if B is an ellipsoid, then equality holds.
Assume μHT

B (∂B) = dμHT
B (B) , that is, λ (B) = V(B[d − 1], ÎHT

B ) . The Favard
Theorem (see [8] or [23]) states that λ (K) = V(K[d− 1], L) holds if and only if K is a
(d−1) -tangent body of L . Recall that a convex body K is a (d−1) -tangent body of L
if and only if through each boundary point of K there exists a supporting hyperplane of
K that also supports L (see [4], p. 19, or [26], p. 75-76 and p. 136, for the definition of
tangent bodies). Thus, B is a (d− 1) -tangent body of ÎHT

B . This means that ÎHT
B ⊆ B ,

and it holds if and only if B is an ellipsoid. �
We ask the following question, the affirmative answer of which would solve this

ratio problem easily.

PROBLEM. Let B be a centered convex body in R
d . Is it then true that

V(B[d − 1],ΠB◦) � (
εd−1

εd
)λ (B)λ (B◦)?

Obviously, if B ⊆ ÎHT
B , then this is true. By Proposition 10 we see that equality holds

if and only if B is an ellipsoid.
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We also give the following partial answer to this ratio problem.

PROPOSITION 11. If B is the unit ball of a Minkowski space M
d such that

μHT
B (∂B) � dεd , then

μHT
B (∂B)
μHT

B (B)
� d.

Proof. Since for any positive real number α the equalities (αB)◦ = α−1B◦ and
IHT
αB = α1−dIHT

B hold, the quantities μHT
B (∂B) and μHT

B (B) are unchanged by dilation.
Therefore we may assume that λ (B◦) = εd . From the Blaschke-Santaló inequality we
get λ (B) � εd . Hence the result follows. �

As we have seen, Petty’s conjectured projection inequality would completely solve
this problem. We show that this conjecture is equivalent to another open problem
(Minkowski’s isoperimetric problem) over the class of centered convex bodies.

THEOREM 12. Let B be the unit ball of M
d . Then Petty’s conjectured projection

inequality is true for all centered convex bodies if and only if

μd
B(∂IHT

B )
μd−1

B (IHT
B )

� ddεd.

Proof. Assume that the conjecture is valid for all centered convex bodies in R
d .

Then, setting K = B◦ in the conjecture, we get

λ (ÎHT
B )λ (B◦) � ε2

d. (9)

Therefore
μd

B(∂IHT
B )

μd−1
B (IHT

B )
=

μd
B(∂ ÎHT

B )
μd−1

B (ÎHT
B )

= ddμB(ÎHT
B ) � ddεd.

Conversely, assume that
μd

B(∂IHT
B )

μd−1
B (IHT

B )
� ddεd. Since IHT

αB = α1−dIHT
B for all positive

reals α , the quantity
μd

B(∂IHT
B )

μd−1
B (IHT

B )
is unchanged by dilation. Therefore we may assume

that λ (B◦) = εd . Then we get

μd
B(∂IHT

B )
μd−1

B (IHT
B )

= ddλ (IHT
B ) � ddεd.

This is (9), since IHT
B = ÎHT

B . �

RE F ER EN C ES

[1] ALVAREZ, J.C., AND DURAN, C., An Introduction to Finsler Geometry, Notas de la Escuela Venezolana
de Mathematicas, 1998.

[2] ALVAREZ, J.C. AND THOMPSON, A.C., On the perimeter and area of the unit disc, Amer. Math. Monthly
112 (2005), 141-154.



748 HORST MARTINI AND ZOKHRAB MUSTAFAEV

[3] ALVAREZ, J.C. AND THOMPSON, A.C., Volumes in normed and Finsler spaces, A sampler of Riemann-
Finsler geometry, 1-48, Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press, Cambridge, 2004.

[4] BONNESEN, T. AND FENCHEL, W., Theory of Convex Bodies, BCS Associates, Moscow, Idaho USA,
1987.

[5] BRANNEN, N.S., Volumes of projection bodies, Mathematika 43 (1996), 255-264.
[6] DISKANT, V.I., A generalization of Bonnesen’s inequalities, Soviet Math. Dokl. 14 (1973), 1728-1731

(transl. of Dokl. Akad. Nauk SSSR 213 (1973), no 3).
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