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NON–HOMOGENEOUS BOUNDARY VALUE PROBLEM FOR

ONE–DIMENSIONAL COMPRESSIBLE VISCOUS MICROPOLAR

FLUID MODEL: A GLOBAL EXISTENCE THEOREM

NERMINA MUJAKOVIĆ

(Communicated by J. Pečaric)

Abstract. An initial-boundary value problem for 1-D flow of a compressible viscous heat-con-
ducting micropolar fluid is considered; the fluid is assumed thermodynamically perfect and poly-
tropic. By transforming the original problem into homogeneous one we prove a global-in-time
existence theorem. The proof is based on a local existence theorem, obtained in the previous
research paper [5].

1. Introduction

In this paper we consider nonstationary 1-D flow of a compressible viscous and
heat-conducting micropolar fluid, being in a thermodynamical sense perfect and poly-
tropic. In [3] and [4] we considered the problem with homogeneous boundary condi-
tions.

Here we study, as in [5], the case of non-homogeneous boundary conditions for
velocity and microrotation (”piston problem”, see [6] for classical fluid) and prove a
global-in-time existence of generalized solution. The proof is based on a local existence
theorem obtained in the previous paper [5]. Also we use some ideas of S. N. Antontsev,
A. V. Kazhykhov and A. V. Monakhov ([1]) applied to the case of classical fluid and
results from [4] and [5] as well.

2. Statement of the problem and the main result

Let ρ ,v,ω and θ denote, respectively, the mass density, velocity, microrotation
velocity and temperature of the fluid in the Lagrangean description. Then the problem
which we consider has the formulation as follows ([3]):

∂ρ
∂ t

+ρ2 ∂v
∂x

= 0 , (2.1)

∂v
∂ t

=
∂
∂x

(
ρ
∂v
∂x

)
−K

∂
∂x

(ρθ ) , (2.2)
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ρ
∂ω
∂ t

= A

[
ρ
∂
∂x

(
ρ
∂ω
∂x

)
−ω

]
, (2.3)

ρ
∂θ
∂ t

= −Kρ2θ
∂v
∂x

+ρ2
(
∂v
∂x

)2

+ρ2
(
∂ω
∂x

)2

+ω2 +Dρ
∂
∂x

(
ρ
∂θ
∂x

)
(2.4)

in ]0,1[×]0,T [ , T > 0, where K,A and D are positive constants. Equations (2.1)–
(2.4) are, respectively, local forms of the conservations laws for the mass, momentum,
momentum moment and energy. We take the following non-homogeneous initial and
boundary conditions:

ρ(x,0) = ρ0(x) , (2.5)

v(x,0) = v0(x) , (2.6)

ω(x,0) = ω0(x) , (2.7)

θ (x,0) = θ0(x) , (2.8)

v(0,t) = μ0(t) , v(1,t) = μ1(t), (2.9)

ω(0,t) = ν0(t) , ω(1,t) = ν1(t), (2.10)

∂θ
∂x

(0,t) =
∂θ
∂x

(1,t) = 0 (2.11)

for x ∈]0,1[, t ∈]0,T [ . Here ρ0, v0, ω0, θ0, μ0, μ1, ν0 and ν1 are given functions.
We assume the compatibility conditions

v0(0) = μ0(0) , v0(1) = μ1(0), (2.12)

ω0(0) = ν0(0) , ω0(1) = ν1(0) (2.13)

and the inequalities

0 < m � ρ0(x) � M, m � θ0(x) � M for x ∈]0,1[, (2.14)

where m,M ∈ R+. We assume also that there exists a constant δ > 0 such that

l(t) =
∫ 1

0

1
ρ0(x)

dx+
∫ t

0
[μ1(τ)− μ0(τ)]dτ � δ , t ∈]0,T [. (2.15)

Conditions (2.14) and (2.15) are assumed to be physically reasonable. The requirement
(2.15) means that the distance between moving domain boundaries of flow in Euler
variables is highly more than zero.

DEFINITION 2.1. A generalized solution of the problem (2.1)–(2.11) in the do-
main QT =]0,1[×]0,T [ is a function

(x,t) → (ρ ,v,ω ,θ )(x,t), (x,t) ∈ QT , (2.16)

where
ρ ∈ L∞(0,T ;H1(]0,1[))∩H1(QT ), ρ > 0 a.e. in QT , (2.17)
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v,ω ,θ ∈ L∞(0,T ;H1(]0,1[))∩H1(QT )∩L2(0,T ;H2(]0,1[)), (2.18)

that satisfies equations (2.1)–(2.4) a.e. in QT and conditions (2.5)–(2.11) in the sense
of traces.

REMARK 2.1. From embedding and interpolation theorems (e.g. [2]) one can
conclude that what follows from (2.17) and (2.18) is:

ρ ∈ L∞(0,T ;C([0,1]))∩C([0,T ],L2(]0,1[)) , (2.19)

v,ω ,θ ∈ L2(0,T ;C(1)([0,1]))∩C([0,T ],H1(]0,1[)), (2.20)

v,ω ,θ ∈C(QT ). (2.21)

We can see later that from formula (4.4) follows continuity of ρ on QT also.
In the same way as in [3] we can prove that the problem (2.1)–(2.11) has at most

one generalized solution in QT .
In this paper we shall prove the following result.

THEOREM 2.1. Let T ∈ R+ and let the functions

μ0,μ1,ν0,ν1 ∈ H2(]0,T [), (2.22)

ρ0,v0,ω0,θ0 ∈ H1(]0,1[) (2.23)

satisfy conditions (2.12)–(2.15). Then the problem (2.1)–(2.11) has a generalized solu-
tion in QT , having the property

θ > 0 in QT . (2.24)

3. An equivalent setting of the problem (2.1)–(2.11)

Instead of the velocity v and microrotation ω we introduce new functions V and
W in order to obtain a problem with the homogeneous boundary conditions.

Notice that using (2.9) from (2.1) we get

∫ 1

0

dx
ρ(x,t)

= l(t), t ∈]0,T [, (3.1)

where the function l is defined by (2.15). Let be

v1(x,t) =
μ(t)
l(t)

∫ x

0

dξ
ρ(ξ ,t)

+ μ0(t), (3.2)

ω1(x,t) =
ν(t)
l(t)

∫ x

0

dξ
ρ(ξ ,t)

+ν0(t) on QT , (3.3)

where μ(t) = μ1(t)− μ0(t) and ν(t) = ν1(t)−ν0(t) . It is evident that

v1(0,t) = μ0(t) , v1(1,t) = μ1(t), (3.4)
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ω1(0,t) = ν0(t) , ω1(1,t) = ν1(t), t ∈]0,T [. (3.5)

Inserting
V (x, t) = v(x,t)− v1(x,t) , W (x,t) = ω(x, t)−ω1(x,t) (3.6)

into (2.1)–(2.4) we get the following equivalent system:

∂ρ
∂ t

+ρ2∂V
∂x

+
μ
l
ρ = 0 , (3.7)

∂V
∂ t

=
∂
∂x

(
ρ
∂V
∂x

)
−K

∂
∂x

(ρθ )− ∂v1

∂ t
, (3.8)

ρ
∂W
∂ t

= A

[
ρ
∂
∂x

(
ρ
∂W
∂x

)
−ω1−W

]
−ρ

∂ω1

∂ t
, (3.9)

ρ
∂θ
∂ t

= −Kρ2θ
∂V
∂x

−Kρθ
μ
l

+ρ2
(
∂V
∂x

)2

+2ρ
∂V
∂x

μ
l

+
(μ

l

)2

+ρ2
(
∂W
∂x

)2

+2ρ
∂W
∂x

ν
l

+
(ν

l

)2
+(W +ω1)2 +Dρ

∂
∂x

(
ρ
∂θ
∂x

)
, (3.10)

with the homogeneous boundary conditions

V (0,t) = V (1,t) = 0 , W (0,t) = W (1,t) = 0, (3.11)

∂θ
∂x

(0,t) =
∂θ
∂x

(1,t) = 0 (3.12)

for t ∈]0,T [ and initial conditions

ρ(x,0) = ρ0(x), V (x,0) = V0(x), (3.13)

W (x,0) = W0(x), θ (x,0) = θ0(x) (3.14)

for x ∈]0,1[ , where

V0(x) = v0(x)− μ(0)
l(0)

∫ x

0

1
ρ0(ξ )

dξ − μ0(0) , (3.15)

W0(x) = ω0(x)− ν(0)
l(0)

∫ x

0

1
ρ0(ξ )

dξ −ν0(0) (3.16)

are known functions. Notice that because of (2.12), (2.13), (2.22) and (2.23) we have

V0,W0 ∈ H1
0 (]0,1[). (3.17)

In the article [5] we proved the following local existence theorem: there exists T0 ,
0 < T0 � T , such that the problem (3.7)–(3.14) and the problem (2.1)–(2.11) as well,
have a generalized solution in the domain QT0 =]0,1[×]0,T0[ with the property

θ > 0 in QT0
. (3.18)

With the use of that theorem, in this paper we shall prove the following result first.
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THEOREM 3.1. Let T ∈ R+ be same as in Theorem 2.1. Under the assumptions
of Theorem 2.1, the problem (3.7)–(3.14) has a generalized solution (ρ ,V,W,θ ) in QT .
Moreover,

θ > 0 in QT . (3.19)

Theorem 2.1. is an immediate consequence of this result. In the proof of Theorem
3.1. we apply, as in [4], the method of the book [1], where Theorem 2.1. was proved
for the classical fluid (ω = 0) with the homogeneous boundary conditions.

4. The proofs of Theorems 2.1 and 3.1

The proof of Theorem 3.1 is very similar to that of Theorem 1.1 in [4]. Because
of the local existence result, Theorem 3.1 just like Theorem 2.1 is an immediate conse-
quence of the following statement.

PROPOSITION 4.1. Let T ∈ R+ and let a function

(x,t) → (ρ ,V,W,θ )(x,t) (x,t) ∈ QT (4.1)

satisfy the condition:
for each T ′ ∈]0,T [ , (4.1) is a generalized solution of the problem (3.7)–(3.14) in

the domain QT ′ =]0,1[×]0,T ′[ and the inequality θ > 0 in QT ′ holds true.
Then (4.1) is a generalized solution of the same problem in the domain QT and

inequality θ > 0 in QT holds true.

The above statement is a consequence of the results below. In that what follows
we assume that the function (4.1) satisfies the condition of Proposition 4.1. By C > 0
or Ci > 0(i = 1,2, ..) we denote a generic constant, having possibly different values at
different places; we also use the notation ‖ f‖ = ‖ f‖L2(]0,1[). Some of our considera-
tions are very similar or identical to that of [1] or [4]. In these cases we omit proofs or
details of proofs, making reference to corresponding pages of the book [1] or article [4].

First, we shall need some properties of the function ρ on QT ′ which we here
introduce.

From (3.7) we get

ρ(x, t) =
ρ0(x)

exp{∫ t
0
μ
l dτ}(1+ρ0(x)

∫ t
0
∂V
∂x exp{−∫ τ0 μ

l ds}dτ) (4.2)

and because of (2.20), (2.22) and (2.23) we conclude that ρ is a continuous function
on QT ′ . Therefore from identity (3.1) it follows that there exists a function r : [0,T ′]→
[0,1] such that

ρ(r(t),t) = (l(t))−1, t ∈ [0,T ′]. (4.3)

Also, in the same way as in [1, pp. 44-45] we get that the function ρ satisfies the
equality



656 NERMINA MUJAKOVIĆ

ρ(x, t) = ρ0(x)Y (t)B(x,t)(1+Kρ0

∫ t

0
θ (x,t)Y (τ)B(x,τ)dτ)−1, (x, t) ∈ QT ′ , (4.4)

where

Y (t) =
exp
{
K
∫ t
0 ρ(r(t),τ)θ (r(t),τ)dτ

}
l(t)ρ0(r(t))

, (4.5)

B(x,t) = exp

{∫ x

r(t)
[v0(ξ )− v1(ξ ,t)−V(ξ ,t)]dξ

}
. (4.6)

LEMMA 4.1. For each (x,t) ∈ QT the inequalities∣∣∣∣∂v1

∂ t
(x,t)

∣∣∣∣� C(1+ |V(x, t)|), (4.7)

∣∣∣∣∂ω1

∂ t
(x,t)

∣∣∣∣� C(1+ |V(x,t)|), (4.8)

are satisfied. Moreover,
v1,ω1 ∈ L∞(QT ). (4.9)

Proof. Taking into account (3.7) from (3.2) and (3.3) we find that

∂v1

∂ t
=
[(μ

l

)′
+
(μ

l

)2
]∫ x

0

1
ρ

dξ +
μ
l
V + μ ′

0,

∂ω1

∂ t
=
[(ν

l

)′
+
μν
l2

]∫ x

0

1
ρ

dξ +
ν
l
V +ν ′

0.

Because of (2.22) and (3.1) we easily get (4.7) and (4.8). The conclusion (4.9) follows
directly from (3.2) and (3.3).

LEMMA 4.2. It holds

V,W ∈ L∞(0,T ;L2(]0,1[)), (4.10)

θ ∈ L∞(0,T ;L1(]0,1[)), (4.11)

∂v1

∂ t
,
∂ω1

∂ t
∈ L∞(0,T ;L2(]0,1[)). (4.12)

Proof. Multiplying equations (3.8), (3.9) and (3.10) respectively by V,2A−1ρ−1W
and ρ−1 , integrating over ]0,1[ and making use of (3.11), (3.12) and (3.1), after addi-
tion of the obtained equalities we find that

d
dt

∫ 1

0

(
1
2
V 2 +

1
A

W 2 +θ
)

dx+
∫ 1

0

[
ρ
(
∂W
∂x

)2

+
W 2

ρ

]
dx (4.13)

= −
∫ 1

0

∂v1

∂ t
Vdx− 2

A

∫ 1

0

∂ω1

∂ t
Wdx− Kμ

l

∫ 1

0
θdx+

∫ 1

0

ω2
1

ρ
dx+

μ2 +ν2

l
on ]0,T [.
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Integrating over ]0, t[,t ∈]0,T [, and applying the Young inequality and the results from
Lemma 4.1 on the right-hand side of (4.13), we obtain

∫ 1

0

(
1
2
V 2 +

1
A

W 2 +θ
)

dx+
∫ t

0

∫ 1

0

[
ρ
(
∂W
∂x

)2

+
W 2

ρ

]
dxdτ (4.14)

� C

{
1+

∫ t

0

[∫ 1

0

(
1
2
V 2 +

1
A

W 2 +θ
)

dx+
∫ τ

0

∫ 1

0

(
ρ
(
∂W
∂x

)2

+
W 2

ρ

)
dxds

]
dτ

}
.

Application of Gronwell’s inequality to (4.14) gives

1
2
‖V(t)‖2 +

1
A
‖W (t)‖2 +

∫ 1

0
θdx+

∫ t

0

∫ 1

0

[
ρ
(
∂W
∂x

)2

+
W 2

ρ

]
dxdτ � C

and we immediately get (4.10) and (4.11). Notice that because of (4.10) from (4.7) and
(4.8) follows (4.12).

Let
Mθ (t) = max

x∈[0,1]
θ (x,t), mρ(t) = min

x∈[0,1]
ρ(x,t) (4.15)

and

I1(t) =
∫ 1

0
ρ(x,t)

(
∂θ
∂x

(x,t)
)2

dx, I2(t) =
∫ t

0
I1(τ)dτ. (4.16)

LEMMA 4.3. There exists C ∈ R+ and (for each ε > 0 ) Cε ∈ R+ such that for
each t ∈]0,T [ the inequalities

mρ(t) � C(1+
∫ t

0
Mθ (τ)dτ)−1, (4.17)

M2
θ (t) � εI1(t)+Cε(1+ I2(t)) (4.18)

hold true.

Proof. Using (4.9)–(4.11) in the same way as in [1, pp. 45-46] from (4.4) we get
(4.17). The proof of (4.18) is identical to that of Lemma 2.4 in [1].

LEMMA 4.4. ([4, Lemma 2.3] and [1, pp. 48-52]) It holds

inf
QT

θ > 0, (4.19)

ρ ∈ L∞(QT ). (4.20)

LEMMA 4.5. It holds
Mθ ∈ L2(]0,T [), (4.21)

inf
QT

ρ > 0, (4.22)

θ ∈ L∞(0,T ;L2(]0,1[))∩L2(0,T : H1(]0,1[)). (4.23)
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Proof. Let

φ =
1
2
V 2 +

1
A

W 2 +θ . (4.24)

It is evident that for t ∈]0,T [ we have
∫ t
0 φ(x,τ)dτ � C . Multiplying (3.8), (3.9) and

(3.10) respectively by φV,2A−1ρ−1φW and ρ−1φ , integrating over ]0,1[ and making
use of (3.11)–(3.12), after addition of the obtained equations, we find that

1
2

d
dt

∫ 1

0
φ2dx+

∫ 1

0
ρ
(
∂W
∂x

)2

φdx+
∫ 1

0

W 2

ρ
φdx+

∫ 1

0
ρ
(
∂φ
∂x

)2

dx

=
(

2
A
−2

)∫ 1

0
ρW

∂W
∂x

∂φ
∂x

dx+(1−D)
∫ 1

0
ρ
∂θ
∂x

∂φ
∂x

dx+K
∫ 1

0
ρθV

∂φ
∂x

dx

−
∫ 1

0

∂v1

∂ t
Vφdx− 2

A

∫ 1

0

∂ω1

∂ t
Wφdx−K

μ
l

∫ 1

0
θφdx− 2μ

l

∫ 1

0
V
∂φ
∂x

dx

+
μ2 +ν2

l2

∫ 1

0

φ
ρ

dx− 2ν
l

∫ 1

0
W
∂φ
∂x

dx+
∫ 1

0

ω2
1

ρ
φdx on ]0,T [. (4.25)

Applying on the right-hand side the Young inequality with a parameter δ > 0, we
obtain

1
2

d
dt

∫ 1

0
φ2dx+

∫ 1

0
ρ
(
∂W
∂x

)2

φdx+
∫ 1

0

W 2

ρ
φdx

+(1−4δ )
∫ 1

0
ρ
(
∂φ
∂x

)2

dx+(D−1)
∫ 1

0
ρ
∂θ
∂x

∂φ
∂x

dx

� C1

∫ 1

0
ρ

[
W 2
(
∂W
∂x

)2

+θ 2V 2

]
dx

+C2

(∣∣∣∣
∫ 1

0

∂v1

∂ t
Vφdx

∣∣∣∣+
∣∣∣∣
∫ 1

0

∂ω1

∂ t
Wφdx

∣∣∣∣+
∫ 1

0
θφdx

+
∫ 1

0

V 2

ρ
dx+

∫ 1

0

φ
ρ

dx+
∫ 1

0

W 2

ρ
dx+

∫ 1

0

ω2
1

ρ
φdx

)
. (4.26)

One can easily see that the following inequality holds true

(1−4δ )
(
∂φ
∂x

)2

+(D−1)
∂θ
∂x

∂φ
∂x

� (D−16δ )
(
∂θ
∂x

)2

−V 2
(
∂V
∂x

)2 8δ +(1−4δ )2(δ + δ−1)+ δ (D−1)2

2

−W2
(
∂W
∂x

)2 16(δ 2A+1)+ (1−4δ )2+(D−1)2

2δA2 . (4.27)

Let δ = 1
32 min{1,D} . From (4.26) and (4.27) follows the inequality

d
dt

∫ 1

0
φ2dx+D

∫ 1

0
ρ
(
∂θ
∂x

)2

dx
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� C1

∫ 1

0
ρ

[
W 2
(
∂W
∂x

)2

+V 2
(
∂V
∂x

)2
]

dx

+C2

(∫ 1

0
ρθ 2V 2dx+

∣∣∣∣
∫ 1

0

∂v1

∂ t
Vφdx

∣∣∣∣+
∣∣∣∣
∫ 1

0

∂ω1

∂ t
Wφdx

∣∣∣∣+
∫ 1

0
θφdx

+
∫ 1

0

V 2

ρ
dx+

∫ 1

0

φ
ρ

dx+
∫ 1

0

W 2

ρ
dx+

∫ 1

0

ω2
1

ρ
φdx

)
on ]0,T [, (4.28)

Multiplying (3.8) and (3.9) respectively by V 3 and ρ−1W 3 , integrating over ]0,1[ and
making use of (3.11), (3.1) and (4.9), after applying the Young inequality we obtain the
inequalities

d
dt

∫ 1

0
V 4dx+

∫ 1

0
ρ
(
∂V
∂x

)2

V 2dx � C

(∫ 1

0
ρθ 2V 2dx+

∣∣∣∣
∫ 1

0

∂v1

∂ t
V 3dx

∣∣∣∣
)

on ]0,T [,

(4.29)
d
dt

∫ 1

0
W 4dx+A

∫ 1

0
ρ
(
∂W
∂x

)2

W 2dx � C

(
1+
∣∣∣∣
∫ 1

0

∂ω1

∂ t
W 3dx

∣∣∣∣
)

on ]0,T [. (4.30)

Multiplying (4.29) by C1 and (4.30) by C1A−1 , after addition of the obtained inequali-
ties with (4.28), we find that

d
dt

∫ 1

0
(φ2 +C1V

4 +C1A
−1W 4)dx+D

∫ 1

0
ρ
(
∂θ
∂x

)2

dx

� C

(∫ 1

0
ρθ 2V 2dx+

∣∣∣∣
∫ 1

0

∂v1

∂ t
V 3dx

∣∣∣∣+1+
∣∣∣∣
∫ 1

0

∂ω1

∂ t
W 3dx

∣∣∣∣
+
∣∣∣∣
∫ 1

0

∂v1

∂ t
Vφdx

∣∣∣∣+
∣∣∣∣
∫ 1

0

∂ω1

∂ t
Wφdx

∣∣∣∣+
∫ 1

0
θφdx+

∫ 1

0

V 2

ρ
dx

+
∫ 1

0

φ
ρ

dx+
∫ 1

0

W 2

ρ
dx+

∫ 1

0

ω2
1

ρ
φdx

)
on ]0,T [. (4.31)

With the help of (4.20), (4.10), (4.17), (4.18) and using the Young inequality for the
terms on the right-hand side of (4.31) we find estimates on ]0,T [ as follows:

∫ 1

0
ρθ 2V 2dx � CM2

θ‖V‖2 � CM2
θ � εI1 +Cε(1+ I2), (4.32)

∣∣∣∣
∫ 1

0

∂v1

∂ t
V 3dx

∣∣∣∣� C
∫ 1

0
(1+ |V |)|V |3 � C

(∫ 1

0
V 4dx+1

)
, (4.33)

∣∣∣∣
∫ 1

0

∂ω1

∂ t
W 3dx

∣∣∣∣� C
∫ 1

0
(1+ |V |)|W |3 � C

(
1+

∫ 1

0
W 4dx+

∫ 1

0
V 4dx

)
, (4.34)

∣∣∣∣
∫ 1

0

∂v1

∂ t
Vφdx

∣∣∣∣ � C

(∫ 1

0
φ2dx+

∫ 1

0

(
∂v1

∂ t

)2

V 2dx

)



660 NERMINA MUJAKOVIĆ

� C

(∫ 1

0
φ2dx+

∫ 1

0
(1+ |V |2)V 2dx

)

� C

(
1+

∫ 1

0
φ2dx+

∫ 1

0
V 4dx

)
, (4.35)

∣∣∣∣
∫ 1

0

∂ω1

∂ t
Wφdx

∣∣∣∣ � C

(∫ 1

0
φ2dx+

∫ 1

0

(
∂ω1

∂ t

)2

W 2dx

)

� C

(∫ 1

0
φ2dx+

∫ 1

0
(1+ |V |2)W 2dx

)

� C

(
1+

∫ 1

0
φ2dx+

∫ 1

0
V 4dx+

∫ 1

0
W 4dx

)
, (4.36)

∫ 1

0
θφdx � Mθ

∫ 1

0
φdx � Mθ � (1+M2

θ ) � εI1 +C(1+ I2), (4.37)

∫ 1

0

V 2

ρ
dx � C

mρ
‖V‖2 � C

(
1+

∫ t

0
M2
θ (τ)dτ

)
� C(1+ I2), (4.38)

∫ 1

0

φ
ρ

dx � 1
mρ

∫ 1

0
φdx � C

(
1+

∫ t

0
M2
θ (τ)dτ

)
� C(1+ I2), (4.39)

∫ 1

0

W 2

ρ
dx � C

mρ
‖W‖2 � C

(
1+

∫ t

0
M2
θ (τ)dτ

)
� C(1+ I2), (4.40)

∫ 1

0

ω2
1

ρ
φdx � C

∫ 1

0

φ
ρ

dx � C(1+ I2). (4.41)

Inserting (4.32)–(4.41) in (4.31) we find that

d
dt

[∫ 1

0
(φ2 +C1V

4 +C1A
−1W 4)dx+DI2

]

� C

[
1+

∫ 1

0
(φ2 +C1V

4 +C1A
−1W 4)dx+DI2

]
on ]0,T [. (4.42)

From (4.42) we conclude that

∫ 1

0
(φ2 +C1V

4 +C1A
−1W 4)dx+DI2 � C (4.43)

and therefore it holds
I2 ∈ L∞(]0,T [), (4.44)

φ ∈ L∞(0,T ;L2(]0,1[)). (4.45)

From (4.44) and (4.18) we conclude that (4.21) holds true. The inequality (4.22)
now follows from (4.21) and (4.17). The inclusion (4.23) follows from (4.45), (4.22)
and (4.44).
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LEMMA 4.6. It holds

ρ ∈ L∞(0,T ;H1(]0,1[)). (4.46)

Proof. Using (4.20), (4.23), (4.10) and (4.9), in the same way as in [1, p. 53], from
(4.4) we get (4.46).

LEMMA 4.7. The following inclusions hold true:

V ∈ L∞(0,T ;H1(]0,1[))∩L2(0,T ;H2(]0,1[)), (4.47)

v1 ∈ L∞(0,T ;H2(]0,1[)). (4.48)

Proof. Taking into account (2.22) and (4.46) from the equalities

∂v1

∂x
=

μ
l

1
ρ

,
∂ 2v1

∂x2 = −μ
l

1
ρ2

∂ρ
∂x

we easily get (4.48). The proof of (4.47) is identical to that of [1, pp. 52-54].

LEMMA 4.8. It holds

ω1 ∈ L∞(0,T ;H2(]0,1[)), (4.49)

W ∈ L∞(0,T ;H1(]0,1[))∩L2(0,T ;H2(]0,1[)). (4.50)

Proof. The conclusion (4.49) follows directly from the equalities

∂ω1

∂x
=

ν
l

1
ρ

,
∂ 2ω1

∂x2 = −ν
l

1
ρ2

∂ρ
∂x

.

Multiplying equation (3.8) by A−1ρ−1W , integrating over ]0,1[ and applying the Young
inequality we obtain

1
2A

d
dt

∫ 1

0
W 2dx+

∫ 1

0

[
ρ
(
∂W
∂x

)2

+
W 2

ρ

]
dx

� C

(∥∥∥∥∂ω1

∂ t

∥∥∥∥
2

+
∥∥W‖2 +‖ω1

∥∥2
+
∥∥∥∥W
ρ

∥∥∥∥
2
)

. (4.51)

Taking into account (4.12), (4.10), (4.9) and (4.22) from (4.51) we conclude that

W ∈ L2(0,T ;H1(]0,1[)).

Also, multiplying (3.8) by A−1ρ−1 ∂ 2W
∂x2 and integrating over ]0,1[ , after integration by

parts on the left-hand side and making use of (3.11), we find that

1
2A

d
dt

∥∥∥∥∂W
∂x

∥∥∥∥
2

+
∫ 1

0
ρ
(
∂W
∂x

)2

dx = −
∫ 1

0

∂ρ
∂x

∂W
∂x

∂ 2W
∂x2 dx+

∫ 1

0

ω1

ρ
∂ 2W
∂x2 dx
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+
∫ 1

0

W 2

ρ
∂ 2W
∂x2 dx+

1
A

∫ 1

0

∂ω1

∂ t
∂ 2W
∂x2 dx. (4.52)

Applying the Young inequality for the terms on the right-hand side of (4.52), in the
similar way as in [4, Lemma 2.7] we get the following estimate

∥∥∥∥∂W
∂x

(t)
∥∥∥∥

2

+
∫ t

0

∥∥∥∥∂ 2W
∂x2 (τ)

∥∥∥∥
2

dτ � C, t ∈]0,T [. (4.53)

LEMMA 4.9.
ρ ,V,W ∈ H1(QT ). (4.54)

Proof. Squaring equations (3.7), (3.8) and (3.9), integrating over ]0,1[ and ]0,t[
and using the Young inequality and the results of the above lemmas, in the same way
as in [1, pp. 53-54] and in [4, Lemma 2.7] we get (4.54).

LEMMA 4.10. It holds

θ ∈ L∞(0,T ;H1(]0,1[))∩L2(0,T ;H2(]0,1[))∩H1(QT ). (4.55)

Proof. Using the obtained estimates for the functions v1 and ω1 in a similar way
as in [4, Lemma 2.8] we get (4.55).

Proposition 4.1 follows immediately from (4.19), (4.22), (4.46), (4.47), (4.50),
(4.54) and (4.55). Also, Theorem 2.1 is proved.
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