AN EXTENSION OF ORDER PRESERVING OPERATOR INEQUALITY

Takayuki Furuta

Dedicated to Professor Jun Tomiyama on his 77th birthday with respect and affection
(Communicated by F. Hansen)

Abstract

We discuss an order preserving operator inequality and also we transform it into log majorization.

1. Introduction

A capital letter means a bounded linear operator on a Hilbert space H. An operator T is said to be positive (denoted by $T \geqslant 0)$ if $(T x, x) \geqslant 0$ for all $x \in H$, and T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible.

Theorem LH. (Löwner-Heinz inequality, denoted by (LH) briefly).

$$
\begin{equation*}
\text { If } A \geqslant B \geqslant 0 \text { holds, then } A^{\alpha} \geqslant B^{\alpha} \text { for any } \alpha \in[0,1] . \tag{LH}
\end{equation*}
$$

This was originally proved in [17] and then in [13]. Many nice proofs of (LH) are known. We mention [18] and [2, Theorem 4.2.1]). Although (LH) asserts that $A \geqslant B \geqslant 0$ ensures $A^{\alpha} \geqslant B^{\alpha}$ for any $\alpha \in[0,1]$, unfortunately $A^{\alpha} \geqslant B^{\alpha}$ does not always hold for $\alpha>1$. The following result has been obtained from this point of view.

THEOREM A. If $A \geqslant B \geqslant 0$, then for each $r \geqslant 0$,
(i) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqslant\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
and
(ii) $\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$ hold for $p \geqslant 0$ and $q \geqslant 1$ with $(1+r) q \geqslant p+r$.

Figure 1

Mathematics subject classification (2010): 47A63.
Keywords andphrases: Löwner-Heinz inequality, order preserving operator inequality, log majorization.

The original proof of Theorem A is shown in [6], an elementary one-page proof is in [7] and alternative ones are in [3], [14]. It is shown in [19] that the conditions p, q and r in Figure 1 are best possible.

THEOREM B. If $A \geqslant B \geqslant 0$ with $A>0$, then for $t \in[0,1]$ and $p \geqslant 1$,

$$
\begin{equation*}
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(-t) s+r}} \tag{1.1}
\end{equation*}
$$

holds for $r \geqslant t$ and $s \geqslant 1$.
The original proof of Theorem B is in [8], and an alternative one is in [4], and also an elementary one-page proof is in [9]. Further extensions of Theorem B and related rtesults are in [10], [11], [12] and [15]. It is originally shown in [20] that the exponent value $\frac{1-t+r}{(p-t) s+r}$ of the right hand of (1.1) is best possible and alternative ones are in [5], [21]. It is known that the operator inequality (1.1) interpolates Theorem A and an inequality equivalent to the main result of Ando-Hiai \log majorization [1] by the parameter $t \in[0,1]$.

In this paper, we show an extension of (1.1) as follows:
If $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$, then

$$
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t p_{4}+r}}
$$

holds for $r \geqslant t$.
We remark that the result stated above yields Theorem B by putting $p_{2}=p_{3}=1$.
We discuss an application of our result to log majorization as follows;
(i) for every $A>0, B \geqslant 0, t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$ and $r \geqslant t$,

$$
\left(A \not \sharp_{\frac{1}{p_{1}}} B\right)^{h} \underset{(\log)}{\succ} A^{1-t+r} \not \sharp_{\beta}\left\{A^{1-t} \natural_{p_{4}}\left\{A \bigsqcup_{p_{3}}\left(A^{1-t} \natural_{p_{2}} B\right)\right\}\right\}
$$

holds, where β and h are as follows;

$$
h=\frac{p_{1} p_{2} p_{4} p_{4}(1-t+r)}{\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+r} \quad \text { and } \quad \beta=\frac{h}{p_{1} p_{2} p_{3} p_{4}} .
$$

This result (i) yields the following known result (ii);
(ii) for every $A>0, B \geqslant 0,0 \leqslant \alpha \leqslant 1$ and each $t \in[0,1]$

$$
\left(A \not \sharp_{\alpha} B\right)^{h} \underset{(\mathrm{log})}{\succ} A^{1-t+r} \not \sharp_{\beta}\left(A^{1-t} \bigsqcup_{\natural_{s}} B\right)
$$

holds for $s \geqslant 1$ and $r \geqslant t$, where $h=\frac{(1-t+r) s}{(1-\alpha t) s+\alpha r}$ and $\beta=\frac{h}{s} \alpha$
and also (ii) implies (iii);
(iii) for every $A, B \geqslant 0,0 \leqslant \alpha \leqslant 1$

$$
\left(A \nVdash_{\alpha} B\right)^{r} \underset{(\log)}{\succ} A^{r} \sharp_{\alpha} B^{r} \quad \text { for } r \geqslant 1 .
$$

The last result is very useful and fundamental result in log majorization by Ando-Hiai [1].

2. An order preserving operator inequality

THEOREM 2.1. If $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$, then the following inequality holds,

$$
\begin{equation*}
A \geqslant\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t p_{4}+t}} . \tag{2.1}
\end{equation*}
$$

Lemma A. [8, Lemma 1]. Let X be a positive invertible operator and Y be an invertible operator. For any real number λ,

$$
\left(Y X Y^{*}\right)^{\lambda}=Y X^{\frac{1}{2}}\left(X^{\frac{1}{2}} Y^{*} Y X^{\frac{1}{2}}\right)^{\lambda-1} X^{\frac{1}{2}} Y^{*}
$$

Proof of Theorem 2.1. By putting $r=t$ in (1.1) of Theorem B, we have; if $A \geqslant B \geqslant 0$ with $A>0$, then for $t \in[0,1]$

$$
\begin{equation*}
\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left.p_{1}-t\right) p_{2}+t}} \leqslant A \quad \text { for any } p_{1} \geqslant 1 \text { and } p_{2} \geqslant 1 \tag{2.2}
\end{equation*}
$$

First step. In case $2 \geqslant p_{4} \geqslant 1$.
We recall that (2.2) can be described as

$$
C^{\frac{1}{q[2]}} \leqslant A \quad \text { where } C=A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}} \text { and } q[2]=\left(p_{1}-t\right) p_{2}+t
$$

(2.2') yields the following (2.3)

$$
\begin{equation*}
A^{-t} \leqslant C^{\frac{-t}{q[2}} \quad \text { for any } t \in[0,1] \tag{2.3}
\end{equation*}
$$

by LH and taking inverses of both sides. Also let $q[4]$ be defined by as follows:

$$
\begin{equation*}
q[4]=\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+t=\left(q[2] p_{3}-t\right) p_{4}+t . \tag{2.4}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\left\{A ^ { \frac { t } { 2 } } \left[A^{\frac{-t}{2}}\right.\right. & \left.\left.\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{q[4]}} \tag{2.5}\\
& =\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}} C^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{q[4]}} \\
& =\left\{C^{\frac{p_{3}}{2}}\left(C^{\frac{p_{3}}{2}} A^{-t} C^{\frac{p_{3}}{2}}\right)^{p_{4}-1} C^{\frac{p_{3}}{2}}\right\}^{\frac{1}{q[4]}} \quad \text { by Lemma A } \\
& \leqslant\left\{C^{\frac{p_{3}}{2}}\left(C^{\frac{p_{3}}{2}} C^{\frac{-t}{q[2]}} C^{\frac{p_{3}}{2}}\right)^{p_{4}-1} C^{\frac{p_{3}}{2}}\right\}^{\frac{1}{q[4]}} \\
& =\left(C^{p_{3}+\left(p_{3}-\frac{t}{q[2])\left(p_{4}-1\right)}\right)}\right)^{\frac{1}{q[4]}} \\
& =\left(C^{\frac{\left(q \left[2 p_{3}-t p_{4}+t\right.\right.}{q[2]}}\right)^{\frac{1}{q[4]}} \\
& =C^{\frac{1}{q[2]}} \quad \text { by }(2.4) \\
& \leqslant A \quad \text { by }\left(2.2^{\prime}\right)
\end{align*}
$$

and the first inequality holds by (2.3) and LH since $\frac{1}{q[4]}, p_{4}-1 \in[0,1]$ in case p_{1}, $p_{2}, p_{3} \geqslant 1$ and $2 \geqslant p_{4} \geqslant 1$.

Second step. In (2.5), put $A_{1}=A$ and

$$
\begin{aligned}
B_{1} & =\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{q[4]}} \\
& =\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}} C^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{q 4]}}
\end{aligned}
$$

Then $A_{1} \geqslant B_{1}$ holds for any $2 \geqslant p_{4} \geqslant 1$ by (2.5). Repeating (2.5) for $A_{1} \geqslant B_{1}$ with $A_{1}>0$, then we have

$$
\begin{equation*}
\left\{A_{1}^{\frac{t^{\prime}}{2}}\left[A_{1}^{\frac{-t^{\prime}}{2}}\left\{A_{1}^{\frac{t^{\prime}}{2}}\left(A_{1}^{\frac{-t^{\prime}}{2}} B_{1}^{p_{1}^{\prime}} A_{1}^{\frac{-t^{\prime}}{2}}\right)^{p_{2}^{\prime}} A_{1}^{\frac{t^{\prime}}{2}}\right\}^{p_{3}^{\prime}} A_{1}^{\frac{-t^{\prime}}{2}}\right]^{p_{4}^{\prime}} A_{1}^{\frac{t^{\prime}}{2}}\right\}^{\frac{1}{q^{\prime}(4)}} \leqslant A_{1} \quad \text { for any } 2 \geqslant p_{4}^{\prime} \geqslant 1 \tag{2.6}
\end{equation*}
$$

and $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime} \geqslant 1$ and $t^{\prime} \in[0,1]$, where $q^{\prime}[4]=\left[\left\{\left(p_{1}^{\prime}-t^{\prime}\right) p_{2}^{\prime}+t^{\prime}\right\} p_{3}^{\prime}-t^{\prime}\right] p_{4}^{\prime}+t^{\prime}$. In (2.6) take $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ and t^{\prime} as follows;

$$
\begin{equation*}
p_{1}^{\prime}=q[4]=\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+t, \quad p_{2}^{\prime}=p_{3}^{\prime}=1 \quad \text { and } \quad t^{\prime}=t \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
B_{1}^{p_{1}^{\prime}}=A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}=A^{\frac{t}{2}}\left[A^{\frac{-t}{2}} C^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}} \tag{2.8}\\
q^{\prime}[4]=\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4} p_{4}^{\prime}+t \tag{2.9}
\end{gather*}
$$

and (2.6),(2.8) and (2.9) ensure the following (2.10)

$$
\begin{aligned}
&\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}} A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} C^{p_{3}} A^{\frac{-t}{2}}\right)^{p_{4}} A^{\frac{t}{2}} A^{\frac{-t}{2}}\right]^{p_{4}^{\prime}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left\{\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t \mid p 4 p_{4}^{\prime}+t\right.}} \\
&=\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4} p_{4}^{\prime}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t \mid p_{4} p_{4}^{\prime}+t}} \\
& \leqslant A \text { holds for any } 4 \geqslant p_{4} p_{4}^{\prime} \geqslant 1
\end{aligned}
$$

and repeating this process from (2.5) to (2.10), (2.1) holds for any $p_{4} \geqslant 1$.

3. An extension of Theorem B

TheOrem 3.1. If $A \geqslant B \geqslant 0$ with $A>0$, then for each $t \in[0,1]$ and p_{1}, p_{2}, $p_{3}, p_{4} \geqslant 1$,

$$
\begin{equation*}
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{\left\{\left(p_{1}-t p_{2}+t\right\} p_{3}-t \mid p_{4}+r\right.}} \tag{3.1}
\end{equation*}
$$

holds for $r \geqslant t$.
REMARK 3.1. Theorem 3.1 yields Theorem B by putting $p_{2}=p_{3}=1$.

Proof of Theorem 3.1. In (2.1) of theorem 2.1, put $A_{1}=A$ and

$$
B_{1}=\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left\{\left(p_{1}-t p_{2}+t p_{3}-f p_{p_{4}+t}\right.\right.}}
$$

Then $A_{1} \geqslant B_{1}$ by (2.1) holds for $t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$, by applying Theorem A,

$$
\begin{equation*}
A_{1}^{1+r_{1}} \geqslant\left(A_{1}^{\frac{r_{1}}{2}} B_{1}^{s_{1}} A_{1}^{\frac{r_{1}}{2}}\right)^{\frac{1+r_{1}}{s_{1}+r_{1}}} \quad \text { holds for } s_{1} \geqslant 1 \text { and } r_{1} \geqslant 0 \tag{3.2}
\end{equation*}
$$

In (3.2) we have only to put $r_{1}=r-t \geqslant 0$ and $s_{1}=q[4] \geqslant 1$ to obtain (3.1).

4. Transformation of Theorem 3.1 into Log Majorization

Following after [1], let us define the log majorization for positive semidefinte matrices $A, B \geqslant 0$, denoted by $A \underset{(\log)}{\succ} B$ if

$$
\prod_{i=1}^{k} \lambda_{i}(A) \geqslant \prod_{i=1}^{k} \lambda_{i}(B) \quad \text { for } \quad k=1,2, \ldots, n-1
$$

and

$$
\prod_{i=1}^{n} \lambda_{i}(A)=\prod_{i=1}^{n} \lambda_{i}(B) \quad \text { i.e., } \operatorname{det} A=\operatorname{det} B
$$

where $\lambda_{1}(A) \geqslant \lambda_{2}(A) \geqslant \ldots \geqslant \lambda_{n}(A)$ and $\lambda_{1}(B) \geqslant \lambda_{2}(B) \geqslant \ldots \geqslant \lambda_{n}(B)$ are the eigenvalues of A and B, respectively, arranged in decreasing order. When $0 \leqslant \alpha \leqslant$ 1 , α-power mean of positive invertible matrices $A, B>0$ is defined by $A \nVdash_{\alpha} B=$ $A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\alpha} A^{\frac{1}{2}}$ in [16].

Further, $A \sharp_{\alpha} B$ for $A, B \geqslant 0$ is defined by $A \not \sharp_{\alpha} B=\lim _{\epsilon \downarrow 0}(A+\epsilon I) \not \sharp_{\alpha}(B+\epsilon I)$.
For the sake of convenience for symbolic expression, we defined $A \bigsqcup_{s} B$ in [8], for any real number $s \geqslant 0$ and for $A>0$ and $B \geqslant 0$, by the following

$$
A দ_{s} B=A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{s} A^{\frac{1}{2}}
$$

$A \bigsqcup_{s} B$ in case $0 \leqslant \alpha \leqslant 1$ just coincides with the usual α-power mean $A \not \sharp_{\alpha} B$.
THEOREM 4.1. For every $A>0, B \geqslant 0, t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$ and $r \geqslant t$,

$$
\begin{equation*}
\left(A \sharp_{\frac{1}{p_{1}}} B\right)^{h} \underset{(\log)}{\succ} A^{1-t+r_{\sharp}} \sharp\left\{A^{\frac{1-t}{2}}\left[A^{\frac{t}{2}}\left\{A^{\frac{-t}{2}}\left(A^{\frac{t-1}{2}} B A^{\frac{t-1}{2}}\right)^{p_{2}} A^{\frac{-t}{2}}\right\}^{p_{3}} A^{\frac{t}{2}}\right]^{p_{4}} A^{\frac{1-t}{2}}\right\} \tag{4.1}
\end{equation*}
$$

holds, that is,

$$
\begin{equation*}
\left(A \not \sharp_{p_{1}} B\right)^{h} \underset{(\log)}{\succ} A^{1-t+r} \not \sharp_{\beta}\left\{A^{1-t} \natural_{p_{4}}\left\{A \bigsqcup_{p_{3}}\left(A^{1-t} \natural_{p_{2}} B\right)\right\}\right\} \tag{4.2}
\end{equation*}
$$

holds, where β and h are as follows:

$$
h=\frac{p_{1} p_{2} p_{3} p_{4}(1-t+r)}{\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+r} \quad \text { and } \quad \beta=\frac{h}{p_{1} p_{2} p_{3} p_{4}} .
$$

Proof. In the same way in the proof of [1, Theorem 2.1], by arranging the order of homogeneity in (4.1), to prove (4.1) we have only to show that $I \geqslant A \sharp_{\frac{1}{p_{1}}} B$, equivalently, $A^{-1} \geqslant\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\frac{1}{p_{1}}}$ ensures the following inequality

$$
I \geqslant A^{1-t+r} \sharp \beta\left\{A^{\frac{1-t}{2}}\left[A^{\frac{t}{2}}\left\{A^{\frac{-t}{2}}\left(A^{\frac{t-1}{2}} B A^{\frac{t-1}{2}}\right)^{p_{2}} A^{\frac{-t}{2}}\right\}^{p_{3}} A^{\frac{t}{2}}\right]^{p_{4}} A^{\frac{1-t}{2}}\right\},
$$

for $t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$ and $r \geqslant t$, equivalently,

$$
\begin{equation*}
A^{-1+t-r} \geqslant\left\{A^{\frac{-r}{2}}\left[A^{\frac{t}{2}}\left\{A^{\frac{-t}{2}}\left(A^{\frac{t-1}{2}} B A^{\frac{t-1}{2}}\right)^{p_{2}} A^{\frac{-t}{2}}\right\}^{p_{3}} A^{\frac{t}{2}}\right]^{p_{4}} A^{\frac{-r}{2}}\right\}^{\beta} \tag{4.3}
\end{equation*}
$$

Put $A_{1}=A^{-1}$ and $B_{1}=\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\frac{1}{p_{1}}}$. By applying Theorem 3.1, we have

$$
\begin{equation*}
A_{1}^{1-t+r} \geqslant\left\{A_{1}^{\frac{r}{2}}\left[A_{1}^{\frac{-t}{2}}\left\{A_{1}^{\frac{t}{2}}\left(A_{1}^{\frac{-t}{2}} B_{1}^{p_{1}} A_{1}^{\frac{-t}{2}}\right)^{p_{2}} A_{1}^{\frac{t}{2}}\right\}^{p_{3}} A_{1}^{\frac{-t}{2}}\right]^{p_{4}} A_{1}^{\frac{r}{2}}\right\}^{\frac{1-t+r}{\left(\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\left[p_{4}+r\right.\right.}} \tag{4.4}
\end{equation*}
$$

that is,

$$
A^{-1+t-r} \geqslant\left\{A^{\frac{-r}{2}}\left[A^{\frac{t}{2}}\left\{A^{\frac{-t}{2}}\left(A^{\frac{t-1}{2}} B A^{\frac{t-1}{2}}\right)^{p_{2}} A^{\frac{-t}{2}}\right\}^{p_{3}} A^{\frac{t}{2}}\right]^{p_{4}} A^{\frac{-r}{2}}\right\}^{\beta}
$$

holds, that is, we have (4.3) as desired, where h and are as follows:

$$
h=\frac{p_{1} p_{2} p_{3} p_{4}(1-t+r)}{\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+r} \quad \text { and } \quad \beta=\frac{h}{p_{1} p_{2} p_{3} p_{4}} .
$$

Corollary 4.2. For every $A>0, B \geqslant 0$, and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$ and $r \geqslant 1$,

$$
\begin{equation*}
\left(A \not \sharp_{\frac{1}{p_{1}}} B\right)^{h} \underset{(\mathrm{log})}{\succ} A^{r} \not \sharp_{\beta}\left[A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B^{p_{2}} A^{\frac{-1}{2}}\right)^{p_{3}} A^{\frac{1}{2}}\right]^{p_{4}}, \tag{4.5}
\end{equation*}
$$

holds, that is,

$$
\begin{equation*}
\left(A \sharp_{\frac{1}{p_{1}}} B\right)^{h} \underset{(\log)}{\succ} A^{r} \not \sharp_{\beta}\left(A দ_{p_{3}} B^{p_{2}}\right)^{p_{4}} \tag{4.6}
\end{equation*}
$$

holds, where β and h are as follows:

$$
h=\frac{p_{1} p_{2} p_{3} p_{4} r}{\left[\left\{\left(p_{1}-1\right) p_{2}+1\right\} p_{3}-1\right] p_{4}+r} \quad \text { and } \quad \beta=\frac{h}{p_{1} p_{2} p_{3} p_{4}}
$$

Proof. We have only to put $t=1$ in Theorem 4.1.
Theorem 4.1 yields the following Theorem C by replacing $\frac{1}{p_{1}}$ by $\alpha \in[0,1]$, $p_{3}=p_{4}=1$ and $p_{2}=s \geqslant 1$.

Theorem C. [8]. For every $A>0, B \geqslant 0,0 \leqslant \alpha \leqslant 1$ and each $t \in[0,1]$

$$
\left(A \sharp_{\alpha} B\right)^{h} \underset{(\log)}{\succ} A^{1-t+r_{H}}\left(A^{1-t} \bigsqcup_{S} B\right)
$$

holds for $s \geqslant 1$ and $r \geqslant t$, where

$$
h=\frac{(1-t+r) s}{(1-\alpha t) s+\alpha r} \quad \text { and } \quad \beta=\frac{h}{s} \alpha .
$$

We state the following two known results.
Theorem D. [8]. For every $A, B \geqslant 0,0 \leqslant \alpha \leqslant 1$

$$
\left(A \nVdash_{\alpha} B\right)^{h} \underset{(\log)}{\succ} A^{r} \sharp_{\frac{h}{s} \alpha} B^{s} \quad \text { for } r \geqslant 1 \text { and } s \geqslant 1 .
$$

where $h=\left[\alpha s^{-1}+(1-\alpha) r^{-1}\right]^{-1}(h$ is the harmonic mean of s and $r)$.
Theorem E. [1]. For every $A, B \geqslant 0,0 \leqslant \alpha \leqslant 1$

$$
\left(A \nVdash_{\alpha} B\right)^{r} \underset{(\log)}{\succ} A^{r} \sharp_{\alpha} B^{r} \quad \text { for } r \geqslant 1 .
$$

We remark that Theorem E is very useful and fundamental result in log majorization and Theorem D yields Theorem E putting $r=s$. Theorem C yields Theorem D putting $t=1$ and also Corollary 4.2 implies Theorem D putting $p_{3}=1$ and replacing $p_{2} p_{4} \geqslant 1$ by $s \geqslant 1$ and replacing $\frac{1}{p_{1}}$ by $\alpha \in[0,1]$.

REFERENCES

[1] T. ANDO AND F. HiAI, Log majorization and complementary Golden-Thompson type inequalities, Linear Alg. and Its Appl., 197, 198 (1994), 113-131.
[2] R. Bhatia, Positive Definite Matrices, Princeton Univ. Press, 2007.
[3] M. Fujil, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
[4] M. Fujii and E. Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 2751-2756.
[5] M. Fujil, A. Matsumoto and R. NaKamoto, A short proof of the best possibility for the grand Furuta inequality, J. of Inequal. and Appl., 4 (1999), 339-344.
[6] T. Furuta, $A \geqslant B \geqslant 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geqslant B^{(p+2 r) / q}$ for $r \geqslant 0, p \geqslant 0, q \geqslant 1$ with $(1+2 r) q \geqslant$ $p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[7] T. FURUTA, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65 (1989), 126.
[8] T. Furuta, An extension of the Furuta inequality and Ando-Hiai log majorization, Linear Alg. and Its Appl., 219 (1995), 139-155.
[9] T. FURUTA, Simplified proof of an order preserving operator inequality, Proc, Japan Acad., 74 (1998), 114.
[10] T. Furuta, Invitation to Linear Operators, Taylor \& and Francis, 2001, London.
[11] T. Furuta and D. Wang, A decreasing operator function associated with the Furuta inequality, Proc. Amer. Math. Soc., 126 (1998), 2427-2432.
[12] T. Furuta, M. Yanagida and T. Yamazaki, Operator functions implying Furuta inequality, Math. Inequal. Appl., 1 (1998), 123-130.
[13] E. HEINZ, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann., 123 (1951), 415-438.
[14] E. KAMEI, A sattelite to Furuta's inequality, Math. Japon., 33 (1988), 883-886.
[15] E. KAMEI, Parametrized grand Furuta inequality, Math. Japon., 50 (1999), 79-83.
[16] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[17] K. LÖWNER, Über monotone MatrixFunktionen, Math. Z., 38 (1934), 177-216.
[18] G. K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309-310.
[19] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141-146.
[20] K. Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc., 128 (2000), 511-519.
[21] T. Yamazaki, Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality, Math. Inequal. Appl., 2 (1999), 473-477.
(Received April 10, 2008)
Takayuki Furuta
Department of Mathematical Information Science
Tokyo University of Science
1-3 Kagurazaka, Shinjukuku Tokyo 162-8601, Japan
e-mail: furuta@rs.kagu.tus.ac.jp

