

AN EXTENSION OF THE FUGLEDE-PUTNAM'S THEOREM TO CLASS A OPERATORS

SALAH MECHERI AND ATSUSHI UCHIYAMA

Abstract. The familiar Fuglede-Putnam's Theorem is as follows (see [5], [9] and [11]): If A and B are normal operators and if X is an operator such that AX = XB, then $A^*X = XB^*$. In this paper, the hypothesis on A and B can be relaxed by using a Hilbert-Schmidt operator X: Let A be a class A operator and let B^* be an invertible class A operator such that AX = XB for a Hilbert-Schmidt operator X. Then $A^*X = XB^*$. As a consequence of this result, we obtain that the range of the generalized derivation induced by this class of operators is orthogonal to its kernel. Some properties of log-hyponormal operators are also given.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. For any operator A in B(H) set, as usual, $|A| = (A^*A)^{\frac{1}{2}}$ and $[A^*,A] = A^*A - AA^* = |A|^2 - |A^*|^2$ (the self commutator of A), and consider the following standard definitions: A is normal if $A^*A = AA^*$, hyponormal if $A^*A - AA^* \geqslant 0$, p-hyponormal if $(|A|^{2p} - |A^*|^{2p}) \geqslant 0$ (0). <math>A is said to be log-hyponormal if A is invertible and satisfies the following equality

$$\log(A^*A) \geqslant \log(AA^*).$$

It is known that invertible *p*-hyponormal operators are log-hyponormal operators but the converse is not true [18]. However it is very interesting that we may regards log-hyponormal operators as 0-hyponormal operators [18, 19]. The idea of log-hyponormal operator is due to Ando [3] and the first paper in which log-hyponormality appeared is [10]. See ([2, 18, 19, 21] for properties of log-hyponormal operators.

We say that an operator $A \in B(H)$ belongs to the class A if $|A^2| \ge |A|^2$. Class A was first introduced by Furuta-Ito-Yamazaki [9] as a subclass of paranormal operators which includes the classes of p-hyponormal and log-hyponormal operators. The following theorem is one of the results associated with class A.

THEOREM 1.1. [9]

- (1) Every log-hyponormal operator is a class A operator.
- (2) Every class A operator is a paranormal operator.

The familiar Fuglede-Putnam's theorem is as follows (see [5], [9] and [11]):

Mathematics subject classification (2010): Primary 47B47, 47A30, 47B20; Secondary 47B10. Keywords and phrases: Fuglede-Putnam theorem, p-hyponormal operator, log-hyponormal operator, class A operator.

THEOREM 1.2. If A and B are normal operators and if X is an operator such that AX = XB, then $A^*X = XB^*$.

S. K. Berberian [4] relaxes the hypothesis on A and B in Theorem 1.1 as the cost of requiring X to be Hilbert-Schmidt class. H. K. Cha [6] showed that the hyponormality in the result of Berberian [4] can be replaced by the quasihyponormality of A and B^* under some additional conditions. Lee ([14], Theorem 4) showed that the quasihyponormalty in the above result can replaced by the (p,k)-quasihyponormality of A and B^* with the additional condition $\||A|^{1-p}\|.\||B^{-1}|^{1-p}\| \le 1$. In [15] the author showed that Lee's result remains true without the additional condition $\||A|^{1-p}\|.\||B^{-1}|^{1-p}\| \le 1$. In this paper we will show that the (p,k)-quasihyponormality can be replaced by A and A^* class A operators. Let $A_{A,B}$ be the generalized derivation defined on $A_{A,B}$ 0 by $A_{A,B}(X) = AX - XB$. As a consequence of this result, we obtain that the range of the generalized derivation induced by this class of operators is orthogonal to its kernel.

Let $T \in B(H)$ be compact, and let $s_1(T) \geqslant s_2(T) \geqslant ... \geqslant 0$ denote the singular values of T, i.e., the eigenvalues of $|T| = (T^*T)^{\frac{1}{2}}$ arranged in their decreasing order. We say that the operator T belongs to the Schatten p-class C_p if $||T||_p = [\sum_{i=1}^\infty s_j(T)^p]^{\frac{1}{p}} = [\operatorname{tr}|T|^p]^{\frac{1}{p}} < \infty, 1 \leqslant p < \infty$, where tr denotes the trace functional. Hence $C_1(H)$ is the trace class, $C_2(H)$ is the Hilbert-Schmidt class, and C_∞ is the class of compact operators with $||T||_\infty = s_1(T) = \sup_{\|f\|=1} ||Tf||$ denoting the usual operator norm. For the general theory of the Schatten p- classes the reader is referred to ([16], [17]).

2. Main results

LEMMA 2.1. Let $A, B \in B(H)$. If $\tau X = AXB$ on $C_2(H)$ with A > 0 and B > 0, then $\log \tau X = \log AX + X \log B$.

Proof. It is well-known that For X > 0,

$$\log X = \lim_{p \downarrow 0} \frac{X^p - 1}{p}.$$

It is easy to see that $\tau X > 0$ and $\tau^p X = A^p X B^p$.

$$\begin{split} \log \tau X &= \lim_{p\downarrow 0} \frac{\tau^p - 1}{p} X = \lim_{p\downarrow 0} \frac{1}{p} (A^p X B^p - X) \\ &= \lim_{p\downarrow 0} \frac{A^p - 1}{p} X B^p + \lim_{p\downarrow 0} X \frac{B^p - 1}{p} \\ &= \log AX + X \log B \end{split}$$

THEOREM 2.1. Let A and B be operators in B(H). If A and B^* are log-hyponormal operators then, the operator τ is also log-hyponormal.

Proof. Since
$$|\tau|X = |A|X|B^*|$$
, we have
$$\log |\tau|X = \log |A|X + X \log |B^*|, \log |\tau^*|X = \log |A^*|X + X \log |B|$$

$$(\log |\tau| - \log |\tau^*|)X = (\log |A| - \log |A^*|)X + X(\log |B^*| - \log |B|).$$

Hence.

$$\begin{split} & \langle (\log |\tau| - \log |\tau^*|) X, X \rangle \\ &= \operatorname{tr}(X^*(\log |A| - \log |A^*|) X + X^* X (\log |B^*| - \log |B|)) \\ &= \operatorname{tr}(X^*(\log |A| - \log |A^*|) X) + \operatorname{tr}(|X|(\log |B^*| - \log |B|) |X|) \geqslant 0. \end{split}$$

This completes the proof.

COROLLARY 2.1. Let τ be as above. Then

$$\begin{split} ||\log|\tau| - \log|\tau^*||| &= r(\log|\tau| - \log|\tau^*|) \\ &= ||\log|A| - \log|A^*||| + ||\log|B^*| - \log|B||| \\ &\leqslant \int \int_{re^{i\theta} \in \sigma(A)} r^{-1} dr d\theta + \leqslant \int \int_{re^{i\theta} \in \sigma(B^*)} r^{-1} dr d\theta. \end{split}$$

Proof. Since $\log |\tau| - \log |\tau^*| \geqslant 0$,

$$||\log |\tau| - \log |\tau^*||| = r(\log |\tau| - \log |\tau^*|).$$

It is well-known that the spectrum of the generalized derivation

$$\delta_{CD} = CX + XD$$

is $\{z+w: z \in \sigma(C), w \in \sigma(D)\}$. Therefore

$$\sigma(\log |\tau| - \log |\tau^*|) = \{z + w : z \in \sigma(\log |A| - \log |A^*|), w \in \sigma(\log |B^*| - \log |B|)\},\$$

and

$$r(\log |\tau| - \log |\tau^*|) = ||\log |A| - \log |A^*||| + ||\log |B^*| - \log |B|||.$$

The last inequality follows from Tanahashi's result [18].

We say that the operator $A \in B(H)$ belongs to the class A if $|A^2| \ge |A|^2$. Class A was first introduced by Furuta-Ito-Yamazaki [9] as a subclass of paranormal operators which includes the class of p-hyponormal and log-hyponormal operators.

LEMMA 2.2. [12, Theorem 3.2] Let A and B be operators in B(H). Then A and B^* are class A operators if and only if the operator τ is a class A operator.

LEMMA 2.3. [23, Proposition 3] If $A \in B(H)$ is an invertible paranormal operator, then A^{-1} is also paranormal. In particular this holds for a class A operator.

Now we are ready to extend Putnam-Fuglede's theorem to class A operators.

THEOREM 2.2. Let A be a class A operator and B^* be an invertible class A operator. If AX = XB for $X \in C_2(H)$. Then $A^*X = XB^*$.

Proof. Recall that if A is a class A operator, then the nonzero eigenvalues of A are normal eigenvalues (i.e., if

$$\lambda \in \sigma_p(A) \setminus \{0\}, \text{ then } \lambda \in \sigma_p(A^*).$$
 (*)

Let τ be defined on $C_2(H)$ by $\tau Y = AYB^{-1}$ for all $Y \in C_2(H)$. Since B^* is an invertible class A operator, Lemma 2.3 implies that $(B^*)^{-1}$ is also a class A operator. Then it follows from Lemma 2.2 that τ is a class A operator, furthermore, $\tau X = AXB^{-1} = XBB^{-1} = X$ and so, X is an eigenvector of τ . Now by applying (*) we get $\tau^*X = A^*X(B^*)^{-1} = X$, that is, $A^*X = XB^*$ and the proof is achieved.

THEOREM 2.3. Let A,B be operators in B(H) and $S \in C_2(H)$. Then

$$\|\delta_{A,B}(X) + S\|_{2}^{2} = \|\delta_{A,B}(X)\|_{2}^{2} + \|S\|_{2}^{2}$$
(2.1)

and

$$\left\| \delta_{A,B}^*(X) + S \right\|_2^2 = \left\| \delta_{A,B}^*(X) \right\|_2^2 + \left\| S \right\|_2^2 \tag{2.2}$$

if and only if $\delta_{A,B}(S) = 0 = \delta_{A^*,B^*}(S)$, for all $X \in C_2(H)$.

Proof. It is well known that the Hilbert-Schmidt class $\mathcal{C}_2(H)$ is a Hilbert space under the inner product

$$\langle Y, Z \rangle = \operatorname{tr}(Z^*Y) = \operatorname{tr}(YZ^*).$$

Note that

$$\|\delta_{A,B}(X) + S\|^2 = \|\delta_{A,B}(X)\|^2 + \|S\|^2 + 2\operatorname{Re}(\delta_{A,B}(X), S)$$
$$= \|\delta_{A,B}(X)\|^2 + \|S\|^2 + 2\operatorname{Re}(X, \delta_{A,B}^*(S))$$

and

$$\|\delta_{A,B}^*(X) + S\|^2 = \|\delta_{A,B}^*(X)\|^2 + \|S\|^2 + 2\operatorname{Re}(X, \delta_{A,B}(S)).$$

Hence by the equality $\delta_{A,B}(S) = 0 = \delta_{A^*,B^*}(S)$ we obtain (2.1) and (2.2).

COROLLARY 2.2. Let A, B be operators in B(H) and $S \in C_2(H)$. Then

$$\|\delta_{A,B}(X) + S\|_{2}^{2} = \|\delta_{A,B}(X)\|_{2}^{2} + \|S\|_{2}^{2}$$

and

$$\left\| \delta_{A,B}^*(X) + S \right\|_2^2 = \left\| \delta_{A,B}^*(X) \right\|_2^2 + \left\| S \right\|_2^2$$

if and only if A is class A operator and B^* is an invertible class A operator.

Acknowledgements. The author would like to thank the referee for his kind suggestions.

REFERENCES

- [1] A. ALUTHGE, On *p*-hyponormal operators for 0 , J. Integral equation and operator theory.,**13**(1990), 307–315.
- [2] A. ALUTHGE AND D. WANG, An operator inequality which implies paranormality, Math. Inequal. Appl., 2 (1999), 113–119.
- [3] T. Ando, Operators with a norm condition, Acta. Sci. Math (Szeged) 33 (1972), 169–178.
- [4] S. K. BERBERIAN, Extension of a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc., 71 (1978), 113–114.
- [5] J. B. CONWAY, Subnormal operators, Research notes in Math., Pitnam Advanced Pub. Program, 51 (1981).
- [6] H. K. CHA, An extension of Fuglede-Putnam theorem to quasihyponormal operators using a Hilbert-Schmidt operator, Youngnam Math. J., 1 (1994), 73–76.
- [7] S. L. CAMPELL AND B. C. GUPTA, On k-quasihyponormal operators, Math. Japonica., 232 (1978), 185–189.
- [8] M. CHO AND T. HURUYA, p-hyponormal operators, 0 , Comment. Math., 33 (1993), 23–29.
- [9] T. FURUTA, *Invitation to linear operators*, Taylor Francis Inc., 2001.
- [10] M. FUJII, C. HIMEJI AND A. MATSUMOTO, Theorems of Ando and Saito for p-hyponormal operators, Math. Japonica 39 (1994), 595–598.
- [11] P. R. HALMOS, A Hilbert space problem book, Spring-Verlag, New York, 1974.
- [12] IN HO JEON, B. P. DUGGAL, On operators with an absolute condition, J. Korean Math. Soc, 41 (2004), 617–627.
- [13] M. Y. LEE AND S. H. LEE, An extension of the Fuglede-Putnam theorem to p-quasihyponormal operator, Bull. Korean Math. Soc., 35 (1998), 319–324.
- [14] M. Y. LEE, An extension of the Fuglede-Putnam theorem to (p,k)-quasihyponormal operator, Kyung-pook Math. J., 44 (2004), 593–596.
- [15] S. MECHERI, An extension of the Fuglede-Putnam theorem to p-quasihyponormal operator, Scientiae Math. Japonicae, 62 (2005), 259–264.
- [16] R. SCHATTEN, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.
- [17] B. SIMON, Trace ideals and their applications, Cambridge. Univ. Press, Cambridge, UK, 1979.
- [18] K. TANAHASHI, On log-hyponormal operators, Integral equations Operator Theory., 34 (1999), 364–372.
- [19] K. TANAHASHI, Putnam's inequality for log-hyponormal operators, Integral equations Operator Theory, 48 (2004), 103–114.
- [20] H. TADASI, A note on p-hyponormal operators, Proc. Amer. Math. Soc., 125 (1997), 221–230
- [21] A. UCHIYAMA AND K. TANAHASHI, Fuglede-Putnam's theorem for p-hyponormal or loghyponormal operators, Glasgow Math. J., 44 (2002), 397–410.
- [22] A. UCHIYAMA, Berger-Shaws theorem for p-hyponormal operators, Inequalities in operator theory and related topics (Japanese) (Kyoto, 1997). Surikaisekikenkyusho Kokyuroku No. 1027, (1998), 110– 121.
- [23] A. UCHIYAMA, Weyl's theorem for class A operators, Math. Inequal. Appl., 4, 1 (2001), 143–150.

Salah Mecheri Tebessa University, College of Science Department of Mathematics 12002 Tebessa, Algeria e-mail: mecherisalah@hotmail.com

Atsushi Uchiyama Sendai National College of Technology Sendai 989-3128, Japan

e-mail: uchiyama@cc.sendai-ct.ac.jp