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Abstract. We obtain estimates for strips and hyperbolas containing all the zeros of a polynomial
given by its Hermite expansion, by combining some ideas of Turán and the classical methods of
Fujiwara, Ballieu, Cowling and Thron.

1. Motivation and summary of results

As Turán [17] pointed out, in the study of the distribution of zeros of certain entire
functions whose zeros lie in a horizontal strip, it might be advantageous to consider
their expansion with respect to the set of Hermite polynomials, Hn(z) , n = 0,1,2, . . . ,
where

Hn(z) = (−1)nez2 dn

dzn (e−z2).

For polynomials having all the roots in a strip, Turán established in [18] and [19] the
following results.

THEOREM A. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHi(z) . Then all the roots of f lie in the strip

| Imz| � 1
2

(
1+ max

0�i�n−1

|bi|
|bn|

)
.

THEOREM B. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHi(z) . Then all the roots of f lie in the strip

| Imz| � 1
2

(
n

√
|b0|
|bn| + n−1

√
|b1|
|bn| + . . .+

√
|bn−2|
|bn| +

|bn−1|
|bn|

)
.
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THEOREM C. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 b2iH2i(z) . Then all the roots of f lie in the strip

| Imz| � 1
2

(
1+

5√
2n−1

· max
0�i�n−1

|b2i|
|b2n|

)
.

Here and henceforth it is supposed that the coefficient bi of maximal index is
nonzero. These results give no information on the location of the real parts of the
roots. It is possible to obtain such an information by applying the previous theorems
to the polynomial g(z) = f (iz) , but there is no simple uniform formula relating the
coefficients of the Hermite expansions of f and g . However, Turán [19] has obtained
an upper bound for the product of the real part and the imaginary part of the roots of an
even polynomial.

THEOREM D. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 b2iH2i(z) . Then all the roots of f lie in the hyperbola

| Imz ·Rez| � 5
4

(
1+ max

0�i�n−1

|b2i|
|b2n|

)
.

For a study of the distribution of zeros of certain classes of entire functions in
terms of their Hermite expansion, and for generalisations of Turán’s results in [17],
the reader is referred to the work of D. Bleecker and G. Csordas [2]. For estimates of
the zeros of polynomials in terms of their expansion with respect to other families of
orthogonal polynomials, we refer the reader to Specht [12]–[15] and Giroux [6].

The aim of this paper is to obtain further estimates for strips and hyperbolas con-
taining all the zeros of a polynomial given by its Hermite expansion, by using the ideas
of Turán and adapting the classical methods of Fujiwara, Ballieu, Cowling and Thron.
Before stating our results, we remind the classical estimates that we will adapt by con-
sidering strips and hyperbolas instead of disks containing all the zeros of a complex
polynomial. The first estimate we will adapt is a well-known theorem of M. Fujiwara
[5] on the location of the roots of complex polynomials.

THEOREM E. Let P(z) = ∑n
i=0 aizdi ∈ C[z] , with 0 = d0 < d1 < · · · < dn and

a0a1 . . .an �= 0 . Let also μ0, . . . ,μn−1 be positive real numbers such that 1
μ0

+ . . . +
1

μn−1
� 1 . Then all the roots of P are contained in the disk

|z| � max
0� j�n−1

(
μ j

|a j|
|an|

)1/(dn−d j)

.

Another classical result that we will use, and which depends too on a set of param-
eters, is the following theorem of Ballieu (see [1], [10]).
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THEOREM F. Let P(z) = a0+a1z+ · · ·+anzn ∈C[z] with a0an �= 0 and let μ0 = 0
and μ1, . . . ,μn be arbitrary positive constants. Then all the roots of P lie in the disc

|z| � max
0� j�n−1

{
μ j

μ j+1
+

μn

μ j+1
· |a j|
|an|

}
.

The third result that we will adapt in order to find regions containing all the zeros
of a complex polynomial, is the following.

THEOREM G. Let P(z) = a0 + a1z + · · ·+ anzn ∈ C[z] with a0an �= 0 and let
μ1, . . . ,μn be arbitrary positive constants. Then all the roots of f lie in the disk

|z| � max

{
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |a j−1|
|an|

}
.

For the proof of this estimate one may apply to the companion matrix of the poly-
nomial P(X) = 1

an
P(X) the following classical result [11].

If μ = (μ1,μ2, . . . ,μn) is an arbitrary set of positive numbers, then all the char-
acteristic roots of the n×n complex matrix M = (ai j) lie in the disk

|z| � max
1�i�n

n

∑
j=1

μ j

μi
|ai j|.

The last result we will use, depending too on a set of parameters, is due to Cowling
and Thron ([3], [4]).

THEOREM H. Let P(z) = a0zd0 + a1zd1 + · · ·+ anzdn ∈ C[z] with all a j �= 0 and
0 = d0 < d1 < · · ·< dn . Let also μ0 = 0 , μn = 1 and μ1, . . . ,μn−1 be arbitrary positive
constants. Then all the roots of P lie in the disc

|z| � max
1� j�n

(
(1+ μ j−1)|a j−1|

μ j|a j|
)1/(d j−d j−1)

.

We note here that the estimate in the case when μ1 = . . . = μn = 1 was established
earlier by Kojima (see [8], [9]).

In this paper we will prove the following analogous results for strips containing all
the zeros of a complex polynomial.

THEOREM 1.1. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHi(z) and let μ1, . . . ,μn be positive real numbers such that μ1 + · · ·+
μn � 1 . Then all the roots of f lie in the strip

| Imz| � 1
2

max
1� j�n

( |bn− j|
μ j|bn|

)1/ j

.
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THEOREM 1.2. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHi(z) and let μ0 = 0 and μ1, . . . ,μn be arbitrary positive real numbers.
Then all the roots of f lie in the strip

| Imz| � 1
2

max
0� j�n−1

(
μ j

μ j+1
+

μn

μ j+1
· |b j|
|bn|

)
.

THEOREM 1.3. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHi(z) and let μ1, . . . ,μn be arbitrary positive real numbers. Then all the
roots of f lie in the strip

| Imz| � 1
2

max

{
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |b j−1|
|bn|

}
.

As one can see, the enclosing strips can be described only in terms of nonzero bi ,
since a zero Hermite coefficient has no contribution to the expressions in the right hand
sides of the inequalities defining the relevant sets. The next result explicitly refers to
sparse Hermite expansions.

THEOREM 1.4. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHdi(z) with all bi �= 0 and 0 � d0 < d1 < .. . < dn . Let μ0 = 0 , μn = 1
and μ1, . . . ,μn−1 be arbitrary positive constants. Then all the roots of f lie in the strip

| Imz| � 1
2

max
1� j�n

(
(1+ μ j−1)|b j−1|

μ j|b j|
)1/(d j−d j−1)

.

The forthcoming results describe regions delimited by hyperbolas containing all
the roots of an even complex polynomial.

THEOREM 1.5. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 b2iH2i(z) and let μ1, . . . ,μn be positive real numbers such that μ1 + · · ·+
μn � 1 . Then all the roots of f lie in the hyperbola

|Re z Imz| � 13
20

max
1� j�n

( |b2n−2 j|
μ j|b2n|

)1/ j

.

THEOREM 1.6. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) =∑n

i=0 b2iH2i(z) and let μ0 = 0 and μ1, . . . ,μn be arbitrary positive real numbers.
Then all the roots of f lie in the hyperbola

|Re z Imz| � 13
20

max
0� j�n−1

(
μ j

μ j+1
+

μn

μ j+1
· |b2 j|
|b2n|

)
.

THEOREM 1.7. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 b2iH2i(z) and let μ1, . . . ,μn be arbitrary positive real numbers. Then all
the roots of f lie in the hyperbola

|Re z Imz| � 13
20

max

{
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |b2 j−2|
|b2n|

}
.
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THEOREM 1.8. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) =∑n

i=0 b2iH2di(z) with all bi �= 0 and 0 � d0 < d1 < .. . < dn . Let μ0 = 0 , μn = 1
and μ1, . . . ,μn−1 be arbitrary positive constants. Then all the roots of f lie in the
hyperbola

|Re z Imz| � 13
20

max
1� j�n

(
(1+ μ j−1)|b2 j−2|

μ j|b2 j|
)1/(d j−d j−1)

.

Our results are quite flexible and may be useful in various applications. The proofs
of the main results are presented in the next section of the paper. They are based on
several of the many properties that Hermite polynomials share with other classes of or-
thogonal polynomials, and invoke only a few results specific to Hermite polynomials.
This makes it possible to prove similar statements referring to the coefficients of expan-
sions with respect to other families of orthogonal polynomials. A series of corollaries
and examples are given in Section 3 below, which also contains a discussion of possible
extensions of our results and some considerations on practical aspects of the matter.

2. Proof of the main results.

Throughout this section, we denote by zim , i = 1, . . . ,m , the zeros of the m th
Hermite polynomial Hm , m � 1.

Proof of Theorem 1.1. By the well-known identity

H ′
m(z) = 2mHm−1(z)

we deduce the simple fraction development

Hm−1(z)
Hm(z)

=
1

2m
· H ′

m(z)
Hm(z)

=
1

2m

m

∑
i=1

1
z− zim

,

which implies ∣∣∣∣Hm−1(z)
Hm(z)

∣∣∣∣� 1
2m

m

∑
i=1

1
|z− zim| . (2.1)

Now, since all the zeros of Hm(z) are real (see, e.g., Szegő [16]), we must have for
nonreal z

1
|z− zim| � 1

|Imz| , (2.2)

so ∣∣∣∣Hm−1(z)
Hm(z)

∣∣∣∣� 1
2 |Imz| . (2.3)

This shows that for any nonreal z and for all j = 0, . . . ,n−1 we have∣∣∣∣Hj(z)
Hn(z)

∣∣∣∣� 1
(2 |Imz|)n− j . (2.4)
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Let us assume by contradiction that f has at least one root z0 satisfying

|Imz0| > 1
2

max
1� j�n

( |bn− j|
μ j|bn|

)1/ j

. (2.5)

Note in particular that such a z0 can not be a root of Hn(z) . Assume now that bn− j �= 0
for some index j ∈ {1, . . . ,n} . In view of (2.4) and (2.5) we then obtain

μ j|bn|
|bn− j| >

1
(2 |Imz0|) j �

∣∣∣∣Hn− j(z0)
Hn(z0)

∣∣∣∣ ,
and further

μ j|bn| · |Hn(z0)| > |bn− j| · |Hn− j(z0)|. (2.6)

Since this obviously holds for bn− j = 0, (2.6) must hold for all j ∈ {1, . . . ,n} . Adding
term by term these inequalities, one obtains

|bn| · |Hn(z0)| �
n

∑
j=1

μ j|bn| · |Hn(z0)| >
n−1

∑
j=0

|b j| · |Hj(z0)|.

On the other hand, since f (z0) = 0, we must have

|bn| · |Hn(z0)| �
n−1

∑
j=0

|b j| · |Hj(z0)|,

a contradiction. This completes the proof of the theorem. �

We notice that one obtains the same contradiction by using (2.6) only for those μ j

for which bn− j �= 0, so the μ j for which bn− j = 0 are irrelevant.

Proof of Theorem 1.2. Assume by contradiction that f has a root z0 satisfying

|Imz0| > 1
2

max
0� j�n−1

μ j|bn|+ μn|b j|
μ j+1|bn| .

In view of (2.4) we then obtain∣∣∣∣Hj+1(z0)
Hj(z0)

∣∣∣∣� 2 |Imz0| > μ j|bn|+ μn|b j|
μ j+1|bn|

for j = 0, . . . ,n−1, so we have

μ j+1|bn| · |Hj+1(z0)| > μ j|bn| · |Hj(z0)|+ μn|b j| · |Hj(z0)|
for j = 0, . . . ,n− 1. Adding term by term these inequalities and canceling the equal
terms on both sides, one obtains

|bn| · |Hn(z0)| >
n−1

∑
j=0

|b j| · |Hj(z0)|.
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On the other hand, since f (z0) = 0, we must have

|bn| · |Hn(z0)| �
n−1

∑
j=0

|b j| · |Hj(z0)|,

a contradiction, and this completes the proof of the theorem. �

Proof of Theorem 1.3. Let z0 be a root of f satisfying

|Imz0| > 1
2

max

{
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |b j−1|
|bn|

}
.

Then we obtain on one hand

μ j(2 |Imz0|)n− j > μn, j = 1, . . . ,n−1, (2.7)

and on the other hand

μn|bn|(2 |Imz0|) >
n

∑
j=1

μ j|b j−1|. (2.8)

Now, since (2 |Imz0|)n− j � |Hn−1(z0)|/|Hj−1(z0)| for j = 1, . . . ,n−1, by using (2.7)
we obtain

μ j > μn
|Hj−1(z0)|
|Hn−1(z0)| , j = 1, . . . ,n−1. (2.9)

Finally, by combining (2.8) and (2.9) we have

μn|bn| · |Hn(z0)| � μn|bn|(2 |Imz0|)|Hn−1(z0)|

> μn

n

∑
j=1

|b j−1| · |Hj−1(z0)|,

and therefore |bn| · |Hn(z0)| > ∑n
j=1 |b j−1| · |Hj−1(z0)| . One concludes as before. �

Proof of Theorem 1.4. Assume that f has a root z0 satisfying

|Imz0| > 1
2

max
1� j�n

(
(1+ μ j−1)|b j−1|

μ j|b j|
)1/(d j−d j−1)

.

In view of (2.4) we obtain for each j = 1, . . . ,n the inequalities∣∣∣∣∣Hdj−1(z0)
Hdj(z0)

∣∣∣∣∣� 1

(2 |Imz0|)d j−d j−1
<

μ j|b j|
(1+ μ j−1)|b j−1| ,

so we deduce that

μ j|b j| · |Hdj(z0)| > (1+ μ j−1)|b j−1| · |Hdj−1(z0)|
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for each j = 1, . . . ,n . After summation and cancellation of equal terms on each side,
we obtain

|bn| · |Hdn(z0)| >
n−1

∑
j=0

|b j| · |Hdj(z0)|,

which leads us to the desired contradiction. �

The starting point of all the previous proofs was the simple fraction development of
the quotient of two consecutive Hermite polynomials, wherefrom the upper bound (2.1)
for the module of this quotient resulted by triangle inequality. When the quantity of in-
terest is the product of the real part and the imaginary part of a complex number z , it
will be useful to bound from above the module of the quotient of two consecutive even
Hermite polynomials evaluated at z . This will allow us to deduce the following in-
equality concerning the Hermite polynomials, valid for any complex z which is neither
real nor purely imaginary.

∣∣∣∣H2k(z)
H2n(z)

∣∣∣∣�
(

13
20

· 1
|Re z Imz|

)n−k

, k = 0,1, . . . ,n−1. (2.10)

This relation improves upon that used by Turán in his proof of Theorem D.
Inequation (2.10) is a consequence of the following result.

LEMMA 2.1. Let z be a complex number with Re z Imz �= 0 . Then for every pos-
itive integer k one has ∣∣∣∣H2k−2(z)

H2k(z)

∣∣∣∣� 13
20

· 1
|Rez Imz| .

Proof. Let us consider for m � 2 the quotient Hm−2(z)/Hm(z) . Since the zeros
x jm of Hm(z) are simple, one obtains

Hm−2(z)
Hm(z)

=
m

∑
j=1

Hm−2(x jm)
H ′

m(x jm)
· 1
z− x jm

.

Using now the fact that H ′
m(z) = 2mHm−1(z) , we deduce that

Hm−2(z)
Hm(z)

=
1

2m

m

∑
j=1

Hm−2(x jm)
Hm−1(x jm)

· 1
z− x jm

.

By the recursion formula Hm(z) = 2zHm−1(z)−2(m−1)Hm−2(z) we get

Hm−2(x jm)
Hm−1(x jm)

=
x jm

m−1
,

and hence
Hm−2(z)
Hm(z)

=
1

2m(m−1)

m

∑
j=1

x jm

z− x jm
. (2.11)
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The zeros of the even function H2k(z) are symmetric with respect to the origin.
Let us denote by x j,2k , j = 1,2, . . . ,k , the positive roots of the polynomial H2k . Using
(2.11) and taking into account the symmetry of the zeros x j,2k , we obtain

H2k−2(z)
H2k(z)

=
1

2k(2k−1)

k

∑
j=1

x2
j,2k

z2 − x2
j,2k

.

Since −√
4k+1 � x j,2k �

√
4k+1 for j = 1,2, . . . ,2k (see [16]), one has

∣∣∣∣H2k−2(z)
H2k(z)

∣∣∣∣� 4k+1
2k(2k−1)

k

∑
j=1

1

|z2 − x2
j,2k|

.

Now, since

|z2 − x2
j,2k| = |(Re z)2 − (Imz)2 − x2

j,2k +(2Rez Imz)i|
� 2|Rez Imz|,

we get for k � 3∣∣∣∣H2k−2(z)
H2k(z)

∣∣∣∣� 4k+1
4(2k−1)

· 1
|Re z Imz| � 13

20
· 1
|Re z Imz| .

Using the explicit form of the first even Hermite polynomials, one obtains after some
computations ∣∣∣∣H0(z)

H2(z)

∣∣∣∣= 1
|4z2−2| � 1

8|Rez Imz| <
13

20|Rez Imz| ,∣∣∣∣H2(z)
H4(z)

∣∣∣∣
2

=
u2 +16v

(2u2−8u−4−32v)2+256v(u−2)2 <
1

64v
,

where z = x+ iy , u = 2x2−2y2−1, v = x2y2 (x,y ∈ R). �

Proof of Theorem 1.5. We argue by reduction to absurd. Let us assume that f has
a root z0 satisfying

|Rez0 Imz0| > 13
20

max
1� j�n

( |b2n−2 j|
μ j|b2n|

)1/ j

. (2.12)

Note in particular that such a z0 can not be a root of H2n(z) . Assume now that b2n−2 j �=
0 for some index j ∈ {1, . . . ,n} . In view of (2.10) and (2.12) we then obtain

μ j|b2n|
|b2n−2 j| >

(
13
20

· 1
|Rez0 Imz0|

) j

�
∣∣∣∣H2n−2 j(z0)

H2n(z0)

∣∣∣∣ ,
and further

μ j|b2n| · |H2n(z0)| > |b2n−2 j| · |H2n−2 j(z0)|. (2.13)
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Since this obviously holds for b2n−2 j = 0, it follows that (2.13) must hold for all j ∈
{1, . . . ,n} . Adding term by term these inequalities, we get

|b2n| · |H2n(z0)| �
n

∑
j=1

μ j|b2n| · |H2n(z0)| >
n−1

∑
j=0

|b2 j| · |H2 j(z0)|.

On the other hand, since f (z0) = 0, we must have

|b2n| · |H2n(z0)| �
n−1

∑
j=0

|b2 j| · |H2 j(z0)|,

which is a contradiction. This completes the proof of the theorem. �

Proof of Theorem 1.6. Assume by contradiction that f has at least one root z0

satisfying

|Re z0 Imz0| > 13
20

max
0� j�n−1

μ j|b2n|+ μn|b2 j|
μ j+1|b2n| .

In view of (2.10) we then obtain∣∣∣∣H2( j+1)(z0)
H2 j(z0)

∣∣∣∣� 20
13

|Rez0 Imz0| > μ j|b2n|+ μn|b2 j|
μ j+1|b2n|

for j = 0, . . . ,n−1, so we have

μ j+1|b2n| · |H2( j+1)(z0)| > μ j|b2n| · |H2 j(z0)|+ μn|b2 j| · |H2 j(z0)|

for j = 0, . . . ,n− 1. Adding term by term these inequalities and canceling the equal
terms on both sides results in

|b2n| · |H2n(z0)| >
n−1

∑
j=0

|b2 j| · |H2 j(z0)|.

On the other hand, since f (z0) = 0, we must have

|b2n| · |H2n(z0)| �
n−1

∑
j=0

|b2 j| · |H2 j(z0)|,

a contradiction, and this completes the proof of the theorem. �

Proof of Theorem 1.7. Let z0 be a root of f satisfying

|Re z0 Imz0| > 13
20

max

{
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |b2 j−2|
|b2n|

}
.
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Then we obtain on one hand

μ j

(
20
13

|Re z0 Imz0|
)n− j

> μn, j = 1, . . . ,n−1, (2.14)

and on the other hand

μn|b2n| ·
(

20
13

|Re z0 Imz0|
)

>
n

∑
j=1

μ j|b2 j−2|. (2.15)

Now, since we have
(

20
13 |Re z0 Imz0|

)n− j � |H2n−2(z0)/H2 j−2(z0)| for j = 1, . . . ,n−1,
by using (2.14) we obtain

μ j > μn
|H2 j−2(z0)|
|H2n−2(z0)| , j = 1, . . . ,n−1. (2.16)

Finally, by combining (2.15) and (2.16) we have

μn|b2n| · |H2n(z0)| � μn|b2n| ·
(

20
13

|Rez0 Imz0|
)
|H2n−2(z0)|

> μn

n

∑
j=1

|b2 j−2| · |H2 j−2(z0)|,

and therefore |b2n| · |H2n(z0)|>∑n
j=1 |b2 j−2| · |H2 j−2(z0)| . One concludes as before. �

Proof of Theorem 1.8. Assume that f has a root z0 satisfying

|Re z0 Imz0| > 13
20

max
1� j�n

(
(1+ μ j−1)|b2 j−2|

μ j|b2 j|
)1/(d j−d j−1)

.

In view of (2.10) we then obtain for each j = 1, . . . ,n the inequalities∣∣∣∣∣H2d j−1(z0)
H2d j(z0)

∣∣∣∣∣�
(

13
20

· 1
|Rez0 Imz0|

)d j−d j−1

<
μ j|b2 j|

(1+ μ j−1)|b2 j−2| ,

so we deduce that

μ j|b2 j| · |H2d j(z0)| > (1+ μ j−1)|b2 j−2| · |H2d j−1(z0)|

for each j = 1, . . . ,n . After summation and cancellation of equal terms on each side,
we obtain

|b2n| · |H2dn(z0)| >
n−1

∑
j=0

|b2 j| · |H2d j(z0)|,

which leads us to the desired contradiction.
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REMARK. From the proof of Lemma 2.1 it is obvious that the constant 13/20 is
obtained as the largest value taken by the function

f (k) =
4k+1

4(2k−1)

when its argument is at least 3 . For polynomials having Hermite expansion of the form
f (z) = ∑n

i=m b2iH2i(z) with m > 3, the constant 13/20 in the statement of Lemma 2.1,
in inequality (2.10) and in the statements of Theorems 1.5–1.8 can be improved to
f (m) < 13/20. �

3. Applications and examples.

In this section we present several possibilities to extend the results proved so far,
along with a few consequences of the statements or of the proofs of the main results.

3.1. Particular cases

One may obtain various estimates for the roots of a polynomial by choosing differ-
ent sequences of positive real numbers μ1, . . . ,μn satisfying the requirements of each
of Theorems 1.1–1.8. For instance, the hypothesis μ1 + . . .+μn � 1 from Theorem 1.1
is satisfied by μ j = 1/n , or μ j = 2−n

(n
j

)
, or more generally μ j = λ j(1− λ )n− j

(n
j

)
(with 0 < λ < 1) for all j . As we saw in the proof of Theorem 1.1, we may consider
only the relevant μ j , namely those μ j for which bn− j �= 0. For an example when the
μ j depend on the coefficients b j , we take μ j = |bn− j|/∑i |bi| for all the indices j for
which bn− j �= 0, which results in the next statement.

COROLLARY 3.1. If a complex polynomial f (z) has the Hermite expansion f (z)
= ∑n

i=0 biHi(z) , with |bn| � |b0|+ . . .+ |bn−1| , then all the roots of f lie in the strip
| Imz| � 1/2 .

Applying Theorem 1.2 with μ1 = μ2 = . . . = μn > 0 we obtain:

COROLLARY 3.2. If a complex polynomial f (z) has the Hermite expansion f (z)
= ∑n

i=0 biHi(z) , then all the roots of f lie in the strip

| Imz| � 1
2

max

( |b0|
|bn| ,1+

|b1|
|bn| ,1+

|b2|
|bn| , . . . ,1+

|bn−1|
|bn|

)
.

Note that Corollary 3.2 is stronger than Theorem A whenever |b0| is sufficiently
large, precisely for |b0| > |bn|+ max

1�k�n−1
|bk| .

By taking μ j = 1 for j = 1, . . . ,n we obtain a particularly simple instance of
Theorem 1.3.
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COROLLARY 3.3. If a complex polynomial f (z) has the Hermite expansion f (z)=
∑n

i=0 biHi(z) , then all the roots of f lie in the strip

| Imz| � 1
2

max

(
1,

|b0|+ |b1|+ . . .+ |bn−1|
|bn|

)
.

Note that Corollary 3.1 is implied by Corollary 3.3.
Similarly, from Theorem 1.4 one obtains the following.

COROLLARY 3.4. If a complex polynomial f (z) has the Hermite expansion f (z)=
∑n

i=0 biHi(z) with b0b1 · · ·bn �= 0 , then all the roots of f lie in the strip

| Imz| � 1
2

max

( |b0|
|b1| ,

2|b1|
|b2| ,

2|b2|
|b3| , . . . ,

2|bn−1|
|bn|

)
.

In a similar way one may obtain analogous corollaries for hyperbolas instead of
strips containing all the roots. We illustrate the idea with a single example.

COROLLARY 3.5. If ρ is the unique positive root of the polynomial Xn−Xn−1−
·· ·−X−1 , then each root of a complex polynomial f (z) given by its Hermite expansion
f (z) = ∑n

i=0 biHi(z) , with b0b1 · · ·bn �= 0 , satisfies

|Re z Imz| � 13ρ
20

max
1� j�n

( |bn− j|
|bn|

)1/ j

.

Proof. Take μ j = ρ− j , j = 1,2, . . . ,n in Theorem 1.5. �

A close look at the proofs reveals that we did not use the full strength of the
hypothesis z0 is a root of f , all what is actually needed in the proofs of Theorems 1.1,
1.2 and 1.3 is the fact that z0 belongs to the set

A :=
{

z : |bnHn(z)| �
n−1

∑
j=0

|b jHj(z)|
}

.

Therefore, we can state the following.

THEOREM 3.6. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) = ∑n

i=0 biHi(z) and let μ0 = 0 and μ1, . . . ,μn be arbitrary positive real numbers.
Then

A ⊆
{

z : | Imz| � 1
2

max
0� j�n−1

(
μ j

μ j+1
+

μn

μ j+1
· |b j|
|bn|

)}
,

A ⊆
{

z : | Imz| � 1
2

max

(
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |b j−1|
|bn|

)}
.

If moreover μ1 + . . .+ μn � 1 , then

A ⊆
{

z : | Imz| � 1
2

max
1� j�n

( |bn− j|
μ j|bn|

)1/ j}
.
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Define now

A :=
{

z : |b2nH2n(z)| �
n−1

∑
j=0

|b2 jH2 j(z)|
}

. (3.1)

Following the proofs of Theorems 1.5–1.7, one can prove the result below.

THEOREM 3.7. Suppose a complex polynomial f (z) has the Hermite expansion
f (z) =∑n

i=0 b2iH2i(z) and let μ0 = 0 and μ1, . . . ,μn be arbitrary positive real numbers.
Then the set A defined by (3.1) is contained in B∩C, where

B :=
{

z : |Re z Imz| � 13
20

max
0� j�n−1

(
μ j

μ j+1
+

μn

μ j+1
· |b2 j|
|b2n|

)}

and

C :=
{

z : |Rez Imz| � 13
20

max

(
μ2

μ1
,
μ3

μ2
, . . . ,

μn

μn−1
,

n

∑
j=1

μ j

μn
· |b2 j−2|
|b2n|

)}
.

If moreover μ1 + . . .+ μn � 1 , then

A ⊆
{

z : |Rez Imz| � 13
20

max
1� j�n

( |b2n−2 j|
μ j|b2n|

)1/ j}
.

3.2. Modified Hermite expansion

As already mentioned, it is possible to bound the imaginary part of the roots of
a polynomial given by its expansion with respect to other orthogonal polynomials.
We state a set of results invoking the modified Hermite polynomials introduced by
Jörgensen [7] and defined by

Hen(z) := 2−n/2Hn
( z√

2

)
.

The coefficients of Hermite polynomials grow very fast with the degree. Thus,
the leading coefficient of Hn is 2n , and many other coefficients of Hn are even bigger.
This fact has as consequence the appearance in the Hermite expansion of a “nicely”
looking polynomial of coefficients bi differing by several orders of magnitude. This
in turn implies a large upper bound in each of the Theorems 1.1–1.8. The coefficients
of Hen are much smaller than the coefficients of the corresponding Hn . Unfortunately,
this feature does not necessarily imply better bounds for the roots of f .

It is not difficult to obtain similar results for polynomials given by their expan-
sion with respect to the modified Hermite polynomials. In the forthcoming results, the
coefficient ci of maximal index is supposed to be nonzero.

THEOREM 3.8. Suppose a complex polynomial f (z) has the modified Hermite
expansion f (z) = ∑n

i=0 ciHei(z) and let μ1, . . . ,μn be positive real numbers such that
μ1 + · · ·+ μn � 1 . Then all the roots of f lie in the strip

| Imz| � max
1� j�n

( |cn− j|
μ j|cn|

)1/ j

.
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THEOREM 3.9. Suppose a complex polynomial f (z) has the modified Hermite
expansion f (z) = ∑n

i=0 c2iHe2i(z) and let μ0 = 0 and μ1, . . . ,μn be arbitrary positive
real numbers. Then all the roots of f lie in the hyperbola

|Re z Imz| � 13
5

max
0� j�n−1

(
μ j

μ j+1
+

μn

μ j+1
· |c2 j|
|c2n|

)
.

3.3. Numerical examples

The explicit examples below illustrate the ideas discussed so far in this section.

EXAMPLE 3.10. Let us consider the polynomial

f1 := (z2 +2z+37)(z2 +2z+25) = z4 +4z3 +66z2 +124z+925.

Then the Hermite expansion for the polynomial 24 f1 is

3H4 +32H3 +654H2 +1680H1 +23472H0.

According to Theorem 1.1, all the roots of f1 satisfy

| Imz| � 1
2

max

(
32
3μ1

,

√
218
μ2

, 3

√
560
μ3

, 4

√
7824
μ4

)
,

for any positive real numbers μ1 , μ2 , μ3 , μ4 with sum at most 1.
The optimal choice for the parameters μ j is when the four numbers whose max-

imum defines the enclosing strip for the roots are as close as possible to each other.
Thus, by choosing

μ1 = 0.48, μ2 = 0.44, μ3 = 0.04,μ4 = 0.04

one obtains
| Imz| � 12.051,

while the slightly different choice

μ1 = 0.48, μ2 = 0.44, μ3 = 0.05,μ4 = 0.03

yields the comparatively better estimate

| Imz| � 11.300.

If one applies Theorem 1.2 with μ j forming a geometric progression of ratio 22.3,
one gets an even better estimate

| Imz| � 11.150.

This is only slightly worse than the result

| Imz| � 11.148

provided by Theorem 1.4 with

μ1 = 0.627, μ2 = 0.188, μ3 = 1.089.
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EXAMPLE 3.11. Put
f2 = z4 +81,

so that
16 f2 = H4 +12H2 +1308H0

and
f2 = He4 +6He2 +84.

Choosing μ2 = 0.282 and μ4 = 0.718 in Theorem 1.1 results in

| Imz| � 3.267,

while Theorem 1.4 applied with μ1 = 2.555 yields

| Imz| � 3.266.

Since f2 is an even polynomial, we may also use Theorems 1.5–1.8. Thus, from Theo-
rem 1.5 for μ1 = 0.282, μ2 = 0.718 one obtains that

|Re z Imz| < 27.747,

and Theorem 1.8 gives for μ1 = 2.555

|Re z Imz| < 27.730.

Using the expansion of f2 with respect to the modified Hermite polynomials, one
gets worse estimations:

| Imz| � 3.557,

according to Theorem 3.8 with μ2 = 0.475, μ4 = 0.525, and

|Re z Imz| < 32.875,

by choosing μ1 = 6.644μ2 in Theorem 3.9.
As the next example shows, the discrepancies between the estimates obtained from

the Hermite expansion and those corresponding to modified Hermite expansion are less
important when the imaginary parts of the roots have greater moduli.

EXAMPLE 3.12. The roots of the polynomial

f3 = z4 +1296 =
1
16

H4 +
3
4
He2 +

5187
4

= He4 +6He2 +1299

are twice the roots of f2 . Theorem 1.1 with μ2 = 0.08 and μ4 = 0.92 yields the
estimate

| Imz| � 6.128,

which is 44.44% bigger than the true value of | Imz| . Note that in the previous Example
the overestimation is around 54%. Similarly, for the roots of f3 one obtains from
Theorem 3.8 a strip whose width is 47.63% larger than the width of the optimal strip,
while the corresponding ratio for f2 is 67.68%. The same phenomenon can be easily
detected when using the modified Hermite expansion.
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3.4. Future work

Besides properties specific to orthogonal polynomials (e.g., recurrence relation,
estimates for the roots, relationship with the derivative), two essential ingredients of
the proofs are the triangle inequality (see Eq. (2.1)) and the inequality (2.2) relating the
hypotenuse to the legs of a rectangle triangle. The quality of the final estimates for the
roots seems to be downgraded because of these two inequalities, which are too general
and do not take advantage on any information specific to orthogonal polynomials. Ap-
parently, obtaining sharper estimates for strips and hyperbolas containing all the roots
of a polynomial will be possible by replacing Eqs. (2.1)–(2.2) above by more adequate
inequalities, adapted to the context we are working in.
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[10] M. MARDEN, Geometry of polynomials, Mathematical Surveys and Monographs No. 3, A.M.S., Prov-
idence, Rhode Island, 1989.

[11] O. PERRON, Algebra, vol. II, Theorie der algebraischen Gleichungen, Walter de Gruyter & Co.,
Berlin, 1951.

[12] W. SPECHT, Die lage der Nullstellen eines Polynoms, Math. Nachr., 15 (1956), 353–374.
[13] W. SPECHT, Die lage der Nullstellen eines Polynoms II, Math. Nachr., 16 (1957), 257–260.
[14] W. SPECHT, Die lage der Nullstellen eines Polynoms III, Math. Nachr., 16 (1957), 369–389.
[15] W. SPECHT, Die lage der Nullstellen eines Polynoms IV, Math. Nachr., 21 (1960), 201–222.
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