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Abstract. Let T−
ϕ be the operator defined by

T−
ϕ f (x) =

∫ x

−∞
ϕ(x − y)f (y)dy,

where ϕ is a positive function on (0,∞) verifying ϕ(a + b) ≈ ϕ(a) + ϕ(b) .
In this paper, we characterize the pairs (u, v) of positive measurable functions such that

T−
ϕ maps the weighted amalgam (Lp(v), �q) in (Lp(u), �q) for all values of p, q, p, q with

1 < p, q, p, q < ∞ .
As particular cases, we characterize some higher order Hardy inequalities in weighted

amalgams.

1. Introduction

If 1 � p, q < ∞ and u is a positive measurable function on R , the amalgam
space (Lp(u), �q) consists of the measurable functions f on the real line such that the
norm

||f ||p,u,q =

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n
|f |pu

) q
p
⎫⎬
⎭

1
q

is finite.
The amalgam spaces were introduced by Wiener ([10]) in 1926. The paper [2] is a

survey about the role played by these spaces in Harmonic Analysis.
C. Carton-Lebrun, H. P. Heinig and S. C. Hofmann characterized in [1] the pairs of

positive locally integrable functions (u, v) such that the Hardy operator Pf (x) =
∫ x
−∞ f

verifies
||Pf ||p,u,q � C||f ||p,v,q (1.1)

in the case 1 < q � q < ∞ . More recently, P. Ortega and C. Ramı́rez ([7]) have
characterized the pairs (u, v) such that (1.1) holds in the case 1 < q < q < ∞ .
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In this paper, we deal with the operator T−
ϕ defined for nonnegative functions f

by

T−
ϕ f (x) =

∫ x

−∞
ϕ(x − y)f (y)dy,

where ϕ is a positive function on (0,∞) such that ϕ(x + y) ≈ ϕ(x) + ϕ(y) . This
means that there exist two positive constants C1 and C2 such that

C1(ϕ(x) + ϕ(y)) � ϕ(x + y) � C2(ϕ(x) + ϕ(y))

for all x, y ∈ (0,∞) .
As important particular cases we find the Riemann-Liouville operators

T−
α f (x) =

∫ x

−∞
(x − y)α f (y)dy α > 0.

Our purpose is to characterize the pairs of positive functions (u, v) such that the
inequality

||T−
ϕ f ||p,u,q � C||f ||p,v,q (1.2)

holds for all nonnegative f with a constant C > 0 independent of f , where 1 <
p, q, p, q < ∞ .

The main results will be stated and proved in section 3. They will be extensions to
amalgams of well known results due to F. J. Martı́n-Reyes and E. Sawyer ([5]) and V.
D. Stepanov ([9]) on weighted inequalities for T−

ϕ in Lp spaces.
In order to characterize (1.2) weproceed essentially by establishing the relationship

between inequality (1.2) and the boundedness in suitable weighted spaces of the local

operators Tnf (x) =
∫ x

n−1
ϕ(x − y)f (y)dy and the discrete operator Td({am})(n) =∑n−1

m=−∞ ϕ(n − m)am .
As a consequence of our results, we characterize the pairs of weights (u, v) such

that the higher order Hardy inequality in amalgams

||F||p,u,q � C||F(k)||p,v,q (1.3)

holds for all F ∈ AC(k−1)
L (−∞,∞) , where k � 2 and AC(k−1)

L (−∞,∞) designs the
space consisting of the functions F of one real variable whose (k − 1) -st derivative is
absolutely continuous and verify

F(−∞) = F′(−∞) = ... = F(k−1)(−∞) = 0.

Some higher order Hardy inequalities in weighted amalgams were studied by H.
Heinig and A. Kufner in [3]. Specifically, if k , k1 and k2 are integers such that
k = k1 + k2 , k1, k2 � 1 , and AC(k−1)

k1,k2
(0,∞) is the space of all functions F of one real

variable whose (k − 1) -st derivative is absolutely continuous and verify

F(0) = F′(0) = · · · = F(k1−1)(0) = 0,

F(k1)(∞) = F(k1+1)(∞) = · · · = F(k−1)(∞) = 0,
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Heinig and Kufner characterized the pairs of weights (u, v) such that the higher order
Hardy inequality in amalgams

⎧⎨
⎩

∞∑
n=0

(∫ n+1

n
|F|pu

) q
p
⎫⎬
⎭

1
q

� C

⎧⎪⎨
⎪⎩

∞∑
n=0

(∫ n+1

n
|F(k)|pv

) q
p

⎫⎪⎬
⎪⎭

1
q

holds for all F ∈ AC(k−1)
k1,k2

(0,∞) whenever 1 < q � q < ∞ . However, they did not
work when k1 = 0 or k2 = 0 . We deal with these extremal cases in section 4.

Similar results can be obtained for the operator T+
ϕ defined by

T+
ϕ f (x) =

∫ ∞

x
ϕ(x − y)f (y)dy

and for the higher order Hardy inequalities in AC(k−1)
R (−∞,∞) , i.e., the space of the

functions F whose (k − 1) -st derivative is absolutely continuous and verify

F(∞) = F′(∞) = ... = F(k−1)(∞) = 0.

2. Notations and preliminaries

Throughout the paper, ϕ will design a positive function defined on (0,∞) such
that ϕ(x + y) ≈ ϕ(x) + ϕ(y) . As a consequence of this property, we have that, up to a
constant, ϕ increases, i.e., there exists C > 0 such that ϕ(x) � Cϕ(y) for all x � y .

In the statements and proofs of the results we will use the following notations,
where u and v are positive locally integrable functions on the real line:

(i) If 1 < p � p < ∞ ,

A0
n = sup

β∈(n−1,n+1)

(∫ n+1

β
ϕp(t − β)u(t)dt

) 1
p
(∫ β

n−1
v1−p′(t)dt

) 1

p′
;

A1
n = sup

β∈(n−1,n+1)

(∫ n+1

β
u(t)dt

) 1
p
(∫ β

n−1
ϕp′(β − t)v1−p′(t)dt

) 1

p′
;

Cn = max{A0
n, A

1
n}.

(ii) If 1 < p < p < ∞ and 1
r = 1

p − 1
p ,

B0
n =

⎧⎨
⎩
∫ n+1

n−1

(∫ n+1

x
ϕp(t − x)u(t)dt

) r
p (∫ x

n−1
v1−p′(t)dt

) r
p′

v1−p′(x)dx

⎫⎬
⎭

1
r

;

B1
n =

⎧⎨
⎩
∫ n+1

n−1

(∫ n+1

x
u(t)dt

) r
p (∫ x

n−1
ϕp′(x − t)v1−p′(t)dt

) r
p′

u(x)dx

⎫⎬
⎭

1
r

;

Dn = max{B0
n, B

1
n}.
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(iii) If 1 < q � q < ∞ ,

A0 = sup
n∈Z

( ∞∑
k=n

ϕq(k − n)uk

) 1
q
(

n∑
k=−∞

v1−q′
k

) 1

q′
;

A1 = sup
n∈Z

( ∞∑
k=n

uk

) 1
q
(

n∑
k=−∞

ϕq′(n − k)v1−q′
k

) 1

q′
;

A = max{A0, A1}.
(iv) If 1 < q < q < ∞ and 1

s = 1
q − 1

q ,

B0 =

⎧⎨
⎩
∑
n∈Z

( ∞∑
k=n

ϕq(k − n)uk

) s
q
(

n∑
k=−∞

v1−q′
k

) s
q′

v1−q′
n

⎫⎬
⎭

1
s

;

B1 =

⎧⎨
⎩
∑
n∈Z

( ∞∑
k=n

uk

) s
q
(

n∑
k=−∞

ϕq′(n − k)v1−q′
k

) s
q′

un

⎫⎬
⎭

1
s

;

B = max{B0, B1}.
(v) By Ã and B̃ we mean, respectively, the numbers A and B defined above

but corresponding to the particular sequences uk =
(∫ k+1

k u
) q

p
and vk =(∫ k

k−1 v1−p′
)− q

p′ .

(vi) If k � 2 , by Ck
n , Dk

n , Ak , Ãk , Bk and B̃k we design, respectively, the numbers
Cn , Dn , A , Ã , B and B̃ defined above but corresponding to the particular
function ϕ(t) = tk−1 .

We will apply the following results which provide the characterizations of the
weighted inequalities for the operators Tn and Td .

THEOREM A. ([4]) If n ∈ Z , 1 < p, p < ∞ and u , v are positive locally
integrable functions, then the operator Tn is bounded from Lp(v, (n − 1, n + 1)) to
Lp(u, (n − 1, n + 1)) if and only if

(i) in the case 1 < p � p < ∞ , Cn < ∞ ;
(ii) in the case 1 < p < p < ∞ , Dn < ∞ .

THEOREM B. ([4]) Let 1 < q, q < ∞ and suppose that {un} and {vn} are
sequences of positive numbers. Then the operator Td is bounded from �q({vn}) to
�q({un}) if and only if

(i) in the case 1 < q � q < ∞ , A < ∞ ;
(ii) in the case 1 < q < q < ∞ , B < ∞ .

We will also need two lemmas. The first one is essentially due to Y. Rakotondrat-
simba, who studied in [8] weighted inequalities in amalgams for fractional integrals and
fractional maximal operators. It reads as follows:
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LEMMA 1. If f is a nonnegative measurable function, n ∈ Z and x ∈ (n, n + 1) ,
then

T−
ϕ (f χ(−∞,n−1))(x) ≈

n−1∑
m=−∞

ϕ(n − m)am,

where am =
∫ m

m−1 f .

Proof. If k � 2 , x ∈ (n, n + 1) and y ∈ (n − k, n + 1 − k) then
k
2

� x − y � 2k

and therefore ϕ(x − y) ≈ ϕ(k) . On the other hand, since k − 1 < k � 2(k − 1) , we
also have ϕ(k) ≈ ϕ(k − 1) . Then

T−
ϕ (f χ(−∞,n−1))(x) =

∫ n−1

−∞
ϕ(x − y)f (y)dy =

∞∑
k=2

∫ n+1−k

n−k
ϕ(x − y)f (y)dy

≈
∞∑
k=2

∫ n+1−k

n−k
ϕ(k)f (y)dy ≈

∞∑
k=2

∫ n+1−k

n−k
ϕ(k − 1)f (y)dy

=
∞∑
k=2

ϕ(k − 1)an+1−k =
n−1∑

m=−∞
ϕ(n − m)am.

�
The second lemma we will apply characterizes the embedding of the sequence

space �q({vq
n}) into �q({uq

n}) for 1 < q < q < ∞ .

LEMMA 2. Let 1 < q < q < ∞ and 1
s = 1

q − 1
q . Suppose that {un} and {vn}

are sequences of positive real numbers. The following statements are equivalent:
(i) There exists C > 0 such that the inequality

{∑
n∈Z

(|an|un)q

} 1
q

� C

{∑
n∈Z

(|an|vn)q

} 1
q

holds for all sequences {an} of real numbers.
(ii) The sequence {unv−1

n } belongs to the space �s .

3. The main results

Our first result characterizes the pairs of weights (u, v) such that the inequality
(1.2) holds in the case 1 < q � q < ∞ .

THEOREM 1. Let 1 < p, p < ∞ and 1 < q � q < ∞ . Suppose that u , v are
locally integrable positive functions on R . Then there exists a constant C > 0 such
that the inequality (1.2) holds for all nonnegative functions f if and only if

(i) in the case 1 < p � p < ∞ , sup
n∈Z

Cn < ∞ and Ã < ∞ ;

(ii) in the case 1 < p < p < ∞ , sup
n∈Z

Dn < ∞ and Ã < ∞ .
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Proof. Suppose that the inequality (1.2) holds. Let n ∈ Z and let f be a
nonnegative function supported in (n − 1, n + 1) . Then

||f ||p,v,q =

⎧⎪⎨
⎪⎩
(∫ n

n−1
f pv

) q
p

+

(∫ n+1

n
f pv

) q
p

⎫⎪⎬
⎪⎭

1
q

� Cp,q

(∫ n+1

n−1
f pv

) 1
p

,

||T−
ϕ f ||p,u,q �

⎧⎨
⎩
(∫ n

n−1
(T−

ϕ f )pu

) q
p

+

(∫ n+1

n
(T−

ϕ f )pu

) q
p
⎫⎬
⎭

1
q

� Cp,q

(∫ n+1

n−1
(T−

ϕ f )pu

) 1
p

= Cp,q

(∫ n+1

n−1

(∫ x

n−1
ϕ(x − y)f (y)dy

)p

u(x)dx

) 1
p

and (1.2) gives(∫ n+1

n−1

(∫ x

n−1
ϕ(x − y)f (y)dy

)p

u(x)dx

) 1
p

� C

(∫ n+1

n−1
f pv

) 1
p

for all n , with a constant C independent of n . Therefore the operators Tn are bounded
from Lp(v, (n− 1, n + 1)) to Lp(u, (n− 1, n + 1)) with a constant C independent of n
and by Theorem A we have supn∈Z

Cn < ∞ if 1 < p � p < ∞ and supn∈Z
Dn < ∞

if 1 < p < p < ∞ .
On the other hand, if {am} is a sequence of nonnegative numbers and

f =
∑
m∈Z

amχ(m−1,m)

(∫ m

m−1
v1−p′

)−1

v1−p′ ,

then
∫ m

m−1
f = am ,

∫ m

m−1
f pv = ap

m

(∫ m

m−1
v1−p′

)1−p

and Lemma 1 gives

⎧⎨
⎩
∑
n∈Z

(
n−1∑

m=−∞
ϕ(n − m)am

)q(∫ n+1

n
u

) q
p
⎫⎬
⎭

1
q

=

⎧⎨
⎩
∑
n∈Z

(
n−1∑

m=−∞
ϕ(n − m)

∫ m

m−1
f

)q(∫ n+1

n
u

) q
p
⎫⎬
⎭

1
q

=

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n

(
n−1∑

m=−∞
ϕ(n − m)

∫ m

m−1
f

)p

u(x)dx

) q
p

⎫⎪⎬
⎪⎭

1
q
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� C

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n

(
T−
ϕ (f χ(−∞,n−1))(x)

)p
u(x)dx

) q
p
⎫⎬
⎭

1
q

� C

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n

(
T−
ϕ f (x)

)p
u(x)dx

) q
p
⎫⎬
⎭

1
q

� C

⎧⎨
⎩
∑
n∈Z

(∫ n

n−1
f pv

) q
p

⎫⎬
⎭

1
q

= C

⎧⎨
⎩
∑
n∈Z

aq
n

(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭

1
q

.

Thus the operator Td is bounded from �q

⎛
⎝
⎧⎨
⎩
(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭
⎞
⎠ to

�q

⎛
⎝
⎧⎨
⎩
(∫ n+1

n
u

) q
p
⎫⎬
⎭
⎞
⎠ and therefore, by Theorem B, we have Ã < ∞ .

Conversely, let us suppose that (i) or (ii) holds depending on the relationship
between p and p . Then, by Lemma 1,

||T−
ϕ f ||p,u,q � C

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n
(T−

ϕ f χ(−∞,n−1))pu

) q
p

+
∑
n∈Z

(∫ n+1

n
(T−

ϕ f χ(n−1,n+1))pu

) q
p
⎫⎬
⎭

1
q

� C

⎧⎨
⎩
∑
n∈Z

Td({am})q(n)

(∫ n+1

n
u

) q
p
⎫⎬
⎭

1
q

+C

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n
(Tnf )pu

) q
p
⎫⎬
⎭

1
q

= C(I1 + I2),

where am =
∫ m

m−1 f .

Since (i) or (ii) holds, by TheoremA we know that the operators Tn are uniformly
bounded from Lp(u, (n − 1, n + 1)) to Lp(v, (n − 1, n + 1)) and therefore, taking into
account that 1 < q � q < ∞ , we have

I2 � C

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n−1
f pv

) q
p

⎫⎬
⎭

1
q

� C

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n−1
f pv

) q
p

⎫⎪⎬
⎪⎭

1
q

� C||f ||p,v,q.

On the other hand, since Ã < ∞ , by Theorem B, Td is bounded from
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�q

⎛
⎝
⎧⎨
⎩
(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭
⎞
⎠ to �q

⎛
⎝
⎧⎨
⎩
(∫ n+1

n
u

) q
p
⎫⎬
⎭
⎞
⎠ and Hölder inequality gives

I1 � C

⎧⎨
⎩
∑
n∈Z

aq
n

(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭

1
q

= C

⎧⎨
⎩
∑
n∈Z

(∫ n

n−1
f

)q(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭

1
q

� C

⎧⎨
⎩
∑
n∈Z

(∫ n

n−1
f pv

) q
p
(∫ n

n−1
v1−p′

) q
p′
(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭

1
q

= C

⎧⎨
⎩
∑
n∈Z

(∫ n

n−1
f pv

) q
p

⎫⎬
⎭

1
q

= C||f ||p,v,q.

�
The result corresponding to the case 1 < q < q < ∞ is the following one:

THEOREM 2. Let 1 < p, p < ∞ , 1 < q < q < ∞ and 1
s = 1

q − 1
q . Suppose that

u , v are locally integrable positive functions on R . Then there exists a constant C > 0
such that the inequality (1.2) holds for all nonnegative functions f if and only if

(i) in the case 1 < p � p < ∞ , {Cn} ∈ �s and B̃ < ∞ ;
(ii) in the case 1 < p < p < ∞ , {Dn} ∈ �s and B̃ < ∞ .

Proof. Let us suppose that (i) or (ii) holds. As in the proof of Theorem 1, we split
the norm of T−

ϕ f into I1 and I2 . Following the same steps we prove that I1 (the global
discrete part) is bounded by C||f ||p,v,q . In this case, the relationship between q and q
is not relevant . But we need to proceed in a different way in order to estimate I2 (the
local continuous part). We will apply the boundedness of Tn from Lp(v, (n−1, n+1))
to Lp(u, (n − 1, n + 1)) , Hölder inequality for sums with exponents q

q and q
q−q and

{Jn} ∈ �s , where Jn = Cn if 1 < p � p < ∞ and Jn = Dn if 1 < p < p < ∞ . Thus,

I2 �

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n−1
Tnf (x)pu(x)dx

) q
p
⎫⎬
⎭

1
q

� C

⎧⎨
⎩
∑
n∈Z

Jq
n

(∫ n+1

n−1
f (x)pv(x)dx

) q
p

⎫⎬
⎭

1
q

� C

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝∑

n∈Z

(∫ n+1

n−1
f (x)pv(x)dx

) q
p

⎞
⎟⎠

q
q (∑

n∈Z

J
qq

q−q
n

) q−q
q

⎫⎪⎪⎬
⎪⎪⎭

1
q

= C

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n−1
f (x)pv(x)dx

) q
p

⎫⎪⎬
⎪⎭

1
q (∑

n∈Z

Js
n

) 1
s

� C||f ||p,v,q.

Suppose now that (1.2) holds. Working as in the proof of Theorem1,we see that the
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operator Td is bounded from �q

⎛
⎝
⎧⎨
⎩
(∫ n

n−1
v1−p′

)− q
p′
⎫⎬
⎭
⎞
⎠ to �q

⎛
⎝
⎧⎨
⎩
(∫ n+1

n
u

) q
p
⎫⎬
⎭
⎞
⎠

and therefore, by Theorem B, we have B̃ < ∞ .
Assume that 1 < p � p < ∞ . As in Theorem 1, we find that the operators Tn

are uniformly bounded from Lp(v, (n− 1, n+ 1)) to Lp(u, (n− 1, n+ 1)) , which gives
supn∈Z

A1
n < ∞ and supn∈Z

A0
n < ∞ . By the definition of A1

n , for every n ∈ Z there
exists βn ∈ (n − 1, n + 1) such that

A1
n −

(∫ n+1

βn

u(t)dt

) 1
p
(∫ βn

n−1
ϕp′(βn − t)v1−p′(t)dt

) 1

p′
<

1
2|n|

.

Since we have to prove that {A1
n} ∈ �s , it suffices to show that

⎧⎨
⎩
(∫ n+1

βn

u(t)dt

) 1
p
(∫ βn

n−1
ϕp′(βn − t)v1−p′(t)dt

) 1

p′
⎫⎬
⎭ ∈ �s.

Let {an} be a sequence of nonnegative numbers and f (x) =
∑

k∈Z
akχ(k−1,βk)(x)

ϕ(βk − x)p′−1v1−p′(x) . If n ∈ Z and x ∈ (βn, n + 1) , then

T−
ϕ f (x) �

∫ x

−∞
anχ(n−1,βn)ϕ(x − y)ϕ(βn − y)p′−1v1−p′(y)dy

� Can

∫ βn

n−1
ϕ(βn − y)ϕ(βn − y)p′−1v1−p′(y)dy

= Can

∫ βn

n−1
ϕ(βn − y)p′v1−p′(y)dy.

This inequality implies

||T−
ϕ f ||p,u,q =

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n
T−
ϕ f (x)pu(x)dx

) q
p
⎫⎬
⎭

1
q

� Cp,q

⎧⎨
⎩
∑
n∈Z

(∫ n+1

n−1
T−
ϕ f (x)pu(x)dx

) q
p
⎫⎬
⎭

1
q

� Cp,q

⎧⎨
⎩
∑
n∈Z

aq
n

(∫ n+1

βn

(∫ βn

n−1
ϕ(βn − y)p′v1−p′(y)dy

)p

u(x)dx

) q
p
⎫⎬
⎭

1
q

= Cp,q

⎧⎨
⎩
∑
n∈Z

aq
n

(∫ βn

n−1
ϕ(βn − y)p′v1−p′(y)dy

)q(∫ n+1

βn

u(x)dx

) q
p
⎫⎬
⎭

1
q

.
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On the other hand,

||f ||p,v,q � C

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n−1
f pv

) q
p

⎫⎪⎬
⎪⎭

1
q

� C

⎧⎪⎨
⎪⎩
∑
n∈Z

aq
n

(∫ βn

n−1
ϕ(βn−y)p′v1−p′(y)dy

) q
p

⎫⎪⎬
⎪⎭

1
q

.

Therefore, by (1.2), we have

⎧⎨
⎩
∑
n∈Z

aq
n

(∫ βn

n−1
ϕ(βn − y)p′v1−p′(y)dy

)q(∫ n+1

βn

u(x)dx

) q
p
⎫⎬
⎭

1
q

� C

⎧⎪⎨
⎪⎩
∑
n∈Z

aq
n

(∫ βn

n−1
ϕ(βn − y)p′v1−p′(y)dy

) q
p

⎫⎪⎬
⎪⎭

1
q

for all sequences {an} , i.e., the identity is bounded from �q

({(∫ βn
n−1 ϕ(βn − y)p′

v1−p′(y)dy
) q

p

})
to �q

({(∫ βn
n−1 ϕ(βn − y)p′v1−p′(y)dy

)q (∫ n+1
βn

u(x)dx
) q

p
})

.

Applying Lemma 2 we obtain⎧⎨
⎩
(∫ βn

n−1
ϕ(βn − y)p′v1−p′(y)dy

) 1

p′
(∫ n+1

βn

u(x)dx

) 1
p
⎫⎬
⎭ ∈ �s.

Let us prove now that {A0
n} ∈ �s . In order to do this, we observe that (1.2) is

equivalent to the dual inequality

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n
((T−

ϕ )∗g)p′v1−p′
) q′

p′
⎫⎪⎬
⎪⎭

1

q′

� C

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n
gp′u1−p′

) q′
p′
⎫⎪⎬
⎪⎭

1
q′

,

where (T−
ϕ )∗g(x) =

∫∞
x ϕ(y − x)g(y)dy .

Working as above, in order to prove that {A0
n} ∈ �s it suffices to show that⎧⎨

⎩
(∫ n+1

βn

ϕp(t − βn)u(t)dt

) 1
p
(∫ βn

n−1
v1−p′(t)dt

) 1

p′
⎫⎬
⎭ ∈ �s

where βn ∈ (n − 1, n + 1) verifies

A0
n −

(∫ n+1

βn

ϕp(t − βn)u(t)dt

) 1
p
(∫ βn

n−1
v1−p′(t)dt

) 1

p′
<

1
2|n|

.
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Let {an} be a sequence of nonnegative numbers and f (x) =
∑

k∈Z
akχ(βk,k+1)(x)

ϕ(x − βk)p−1u(x) . If n ∈ Z and x ∈ (n − 1, βn) , then

(T−
ϕ )∗f (x) � an

∫ ∞

x
ϕ(y − x)χ(βn,n+1)(y)ϕ(y − βn)p−1u(y)dy

� an

∫ n+1

βn

ϕ(y − βn)pu(y)dy

and we deduce

||(T−
ϕ )∗f ||

p′,v1−p′ ,q′ � Cp,q

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n−1
((T−

ϕ )∗f )p′v1−p′
) q′

p′
⎫⎪⎬
⎪⎭

1

q′

� Cp,q

⎧⎪⎨
⎪⎩
∑
n∈Z

aq′
n

(∫ βn

n−1
v1−p′

) q′
p′
(∫ n+1

βn

ϕ(y−βn)pu(y)dy

)q′
⎫⎪⎬
⎪⎭

1

q′

.

The function f also verifies

||f ||p′,u1−p′ ,q′ � C

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n−1
f p′u1−p′

) q′
p′
⎫⎪⎬
⎪⎭

1
q′

� C

⎧⎪⎨
⎪⎩
∑
n∈Z

aq′
n

(∫ n+1

βn

ϕ(y − βn)pu(y)dy

) q′
p′
⎫⎪⎬
⎪⎭

1
q′

.

Thus from (1.2) we obtain

⎧⎪⎨
⎪⎩
∑
n∈Z

aq′
n

(∫ βn

n−1
v1−p′

) q′
p′
(∫ n+1

βn

ϕ(y − βn)pu(y)dy

)q′
⎫⎪⎬
⎪⎭

1

q′

� C

⎧⎪⎨
⎪⎩
∑
n∈Z

aq′
n

(∫ n+1

βn

ϕ(y − βn)pu(y)dy

) q′
p′
⎫⎪⎬
⎪⎭

1
q′

.

This means that the identity is bounded from �q′

⎛
⎜⎝
⎧⎪⎨
⎪⎩
(∫ n+1

βn

ϕ(y − βn)pu(y)dy

) q′
p′
⎫⎪⎬
⎪⎭
⎞
⎟⎠

to �q′

⎛
⎜⎝
⎧⎪⎨
⎪⎩
(∫ βn

n−1
v1−p′

) q′
p′
(∫ n+1

βn

ϕ(y − βn)pu(y)dy

)q′
⎫⎪⎬
⎪⎭
⎞
⎟⎠ and Lemma 2 gives
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⎧⎨
⎩
(∫ βn

n−1
v1−p′

) 1

p′
(∫ n+1

βn

ϕ(y − βn)pu(y)dy

) 1
p
⎫⎬
⎭ ∈ �s.

Suppose now that 1 < p < p < ∞ . Let us see that {B0
n} ∈ �s . Let {an} be a

sequence of nonnegative numbers and

f (x) =
∑
k∈Z

akχ(k−1,k+1)(x)

(∫ k+1

x
ϕ(y − x)pu(y)dy

) r
pp (∫ x

k−1
v1−p′

) r
pp′

v1−p′(x)

=
∑
k∈Z

f k(x).

If n ∈ Z , we have

∫ n+1

n−1
(T−

ϕ f (x))pu(x)dx =
∫ n+1

n−1
T−
ϕ f (x)(T−

ϕ f (x))p−1u(x)dx

�
∫ n+1

n−1

(∫ x

n−1
ϕ(x − y)f n(y)dy

)(∫ x

n−1
ϕ(x − s)f n(s)ds

)p−1

u(x)dx

=
∫ n+1

n−1
f n(y)

(∫ n+1

y
ϕ(x − y)u(x)

(∫ x

n−1
ϕ(x − s)f n(s)ds

)p−1

dx

)
dy

� C
∫ n+1

n−1
f n(y)

(∫ n+1

y
ϕ(x − y)u(x)

(∫ y

n−1
ϕ(x − y)f n(s)ds

)p−1

dx

)
dy

= C
∫ n+1

n−1
f n(y)

(∫ n+1

y
ϕ(x − y)pu(x)dx

)(∫ y

n−1
f n(s)ds

)p−1

dy

= C
∫ n+1

n−1
f n(y)

(∫ n+1

y
ϕ(x − y)pu(x)dx

)

×
⎛
⎝∫ y

n−1
an

(∫ n+1

s
ϕ(t−s)pu(t)dt

) r
pp (∫ s

n−1
v1−p′

) r
pp′

v1−p′(s)ds

⎞
⎠

p−1

dy

� Cap−1
n

∫ n+1

n−1
f n(y)

(∫ n+1

y
ϕ(x − y)pu(x)dx

)1+ r(p−1)
pp

×
(∫ y

n−1

(∫ s

n−1
v1−p′

) r
pp′

v1−p′(s)ds

)p−1

dy
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= Cap−1
n

∫ n+1

n−1
f n(y)

(∫ n+1

y
ϕ(x − y)pu(x)dx

)1+ r
p′p (∫ y

n−1
v1−p′

) r
p′p′

dy

= Cap
n

∫ n+1

n−1

(∫ n+1

y
ϕ(t − y)pu(t)dt

) r
p (∫ y

n−1
v1−p′

) r
p′

v1−p′(y)dy

= Cap
n(B

0
n)

r,

which implies

||T−
ϕ f ||p,u,q � C

{∑
n∈Z

aq
n(B

0
n)

rq
p

} 1
q

.

Since

||f ||p,v,q �

⎧⎪⎨
⎪⎩
∑
n∈Z

(∫ n+1

n−1
f pv

) q
p

⎫⎪⎬
⎪⎭

1
q

� C

{∑
n∈Z

aq
n(B

0
n)

rq
p

} 1
q

,

(1.2) yields {∑
n∈Z

aq
n(B

0
n)

rq
p

} 1
q

� C

{∑
n∈Z

aq
n(B

0
n)

rq
p

} 1
q

for all sequences {an} of nonnegative numbers and by Lemma 2, {B0
n} ∈ �s .

The proof of {B1
n} ∈ �s follows the same pattern, but applying the dual inequality

of (1.2) to the function

f (x) =
∑
k∈Z

akχ(k−1,k+1)(x)

(∫ k+1

x
u

) r
p′p (∫ x

k−1
v1−p′(y)ϕ(x − y)p′dy

) r
p′p′

u(x).

�

4. Higher order Hardy inequalities

As we mentioned in the introduction, in this section we characterize the pairs of
weights (u, v) such that the higher order Hardy inequality (1.3) holds for all F ∈
AC(k−1)

L (−∞,∞) . It is well known ([6]) that (1.3) holds if and only if the operator

Tf (x) =
∫ x

−∞
(x − t)k−1f (t)dt

verifies
||Tf ||p,u,q � C||f ||p,v,q.
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Since T is one of the operators considered in section 3 (corresponding to ϕ(t) =
tk−1 ), by applying Theorems 1 and 2 to this particular ϕ we obtain the desired charac-
terizations:

THEOREM 3. Let u, v be positive measurable functions of one real variable.
Then there exists a constant C > 0 such that the inequality (1.3) holds for all
F ∈ AC(k−1)

L (−∞,∞) if and only if
(i) in the case 1 < p � p < ∞ and 1 < q � q < ∞ , supn∈Z

Ck
n < ∞ and

Ãk < ∞ ;
(ii) in the case 1 < p < p < ∞ and 1 < q � q < ∞ , supn∈Z

Dk
n < ∞ and

Ãk < ∞ ;
(iii) in the case 1 < p � p < ∞ and 1 < q < q < ∞ , {Ck

n}n ∈ �s and B̃k < ∞ ;
(iv) in the case 1 < p < p < ∞ and 1 < q < q < ∞ , {Dk

n}n ∈ �s and B̃k < ∞ .
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