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SOME REMARKS ON CESÀRO–ORLICZ SEQUENCE SPACES

PAWEŁ FORALEWSKI, HENRYK HUDZIK AND ALICJA SZYMASZKIEWICZ

(Communicated by L. Maligranda)

Abstract. In this paper Cesàro-Orlicz spaces, theory of which started in the papers [7], [28] and
[10], are investigated. The problem of the necessity of condition δ2 for some fundamental topo-
logical and geometrical properties is considered again. Criteria for the Kadec-Klee property with
respect to the coordinatewise convergence as well as for local uniform convexity of the spaces
are given. In the last part, finite dimensional subspaces of Cesàro-Orlicz spaces are investigated.

1. Preliminaries

A map ϕ : R → [0,+∞] is said to be an Orlicz function if ϕ is even, convex, left
continuous on R+ , continuous at zero, ϕ(0) = 0 and ϕ(u) → ∞ as u → ∞ (see [3],
[20], [24], [26], [27], [29] and [30]). For any Orlicz function ϕ we denote:

aϕ = sup{u � 0 : ϕ(u) = 0} and bϕ = sup{u � 0 : ϕ(u) < ∞}.
Given any Orlicz function ϕ , we define on l0 (the space of all real sequences) the

following convex modular Iϕ : l0 → [0,∞] :

Iϕ(x) =
∞

∑
i=1

ϕ(x(i)).

The space
lϕ = {x ∈ l0 : Iϕ(λx) < ∞ for some λ > 0}

is called the Orlicz sequence space (see [3], [20] [24], [26], [27], [29] and [30]). We
equip this space with the Luxemburg norm

|||x|||ϕ = inf
{
λ > 0 : Iϕ

( x
λ

)
� 1

}
.

The arithmetic mean map σ is defined on l0 by the formula:

σx = (σx(i))∞i=1, where σx(i) =
1
i

i

∑
j=1

|x( j)|
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for any i ∈ N and x = (x(i))∞i=1 ∈ l0 . Given any Orlicz function ϕ , we define on l0

another convex modular ρϕ : l0 → [0,∞] , by

ρϕ (x) = Iϕ(σx).

and the Cesàro-Orlicz sequence space

cesϕ = {x ∈ l0 : σx ∈ lϕ},
(see [7], [28]). We equip this space with the norm ‖x‖ϕ = |||σx|||ϕ . The Cesàro-Orlicz
sequence spaces cesϕ = (cesϕ ,‖·‖ϕ) have the Fatou property (see [7]). Consequently,
cesϕ are Banach spaces (see [26]).

We also define a subspace (cesϕ )a of cesϕ by the following formula

(cesϕ )a = {x ∈ cesϕ : ∀ k > 0 ∃ ik ∈ N such that
∞

∑
i=ik

ϕ(σ(kx)(i)) < ∞}.

The space (cesϕ )a is a closed and separable subspace of cesϕ and it is the subspace of
all order continuous elements of cesϕ . For the definition of order continuous elements
in a Banach lattice we refer to [19] and [25].

In particular cases, when ϕ (u) = |u|p for 1 < p < ∞ or ϕ (u) = 0 if |u| � 1 and
ϕ (u) = ∞ if |u| > 1 (which corresponds to p = ∞), we get the well known Cesàro
sequence spaces cesp and ces∞ . They appeared in 1968 as the problem of the Dutch
Mathematical Society to find their duals (see [1], Problem 2). A regular investigation
of Cesàro sequence spaces was done in [31] (see also [2], [16] and [23]). At the end of
the previous century several authors studied some geometric properties of these spaces
(see [4], [5], [6], [8], [9] and [22]).

In recent years the theory of Cesàro-Orlicz sequence spaces has been studied inten-
sively. Some basic topological properties (nontriviality, order continuity, separability
and relationships between the modular and the norm defined itself) as well as some ge-
ometric properties (Fatou property, strict monotonicity and rotundity) were considered
in [7]. Maligranda, Petrot and Suantai calculated in [28] n-dimensional James constant
of Cesàro and Cesàro-Orlicz sequence spaces. They concluded from this result that nei-
ther Cesàro sequence spaces cesp for 1 < p � ∞ nor Cesàro-Orlicz sequence spaces
cesϕ generated by Orlicz functions ϕ satisfing condition δ2 are uniformly nonsquare
(they are not even B-convex). In [10] criteria for extreme points and SU-points of cesϕ
were given. After sending this paper for publication the paper [21] which also concerns
Cesàro-Orlicz spaces was published.

This paper is organized as follows. In the second section we first give an ex-
ample of Orlicz function ϕ which does not satisfy condition δ2 and the space cesϕ
generated itself contains an order linearly isometric copy of l∞ . This result is related
to the problem of the necessity of condition δ2 for some fundamental topological and
geometrical properties of cesϕ (see [7] and [28]). In the third section the Kadec-Klee
property with respect to the coordinatevise convergence is considered. In the fourth
section some convexity properties of cesϕ are investigated. The last section is devoted
to finite dimensional subspaces of cesϕ .
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REMARK 1. Recall that the space cesϕ is nontrivial if and only if there exists
n1 ∈ N such that ∑∞

n=n1
ϕ
( 1

n

)
< ∞ , or equivalently, for any k > 0 there exists nk ∈ N

such that ∑∞
n=nk

ϕ
(

k
n

)
< ∞ (see Theorem 2.1 in [7]). In the whole paper (excluding

Lemma 6 and Theorems 5 and 7, see also Remark 3) we will assume that the Orlicz
function ϕ satisfies this condition in order to have cesϕ �= { /0} .

2. The δ2 condition

Recall that the Orlicz function ϕ is said to satisfy condition δ2 (ϕ ∈ δ2 for short)
if there exist u0 > 0 and K > 0 such that ϕ (u0) > 0 and ϕ (2u) � Kϕ (u) for any
u ∈ [0,u0] . It is well known that if ϕ does not satisfy condition δ2 , then the Orlicz
space (lϕ , ||| · |||ϕ) contains an order linearly isometric copy of l∞ . We do not know,
if for arbitrary Orlicz function ϕ , analogous implication is true for the Cesàro-Orlicz
space (cesϕ , ‖ · ‖ϕ ) . However, we will show an example of Orlicz function ϕ such
that ϕ /∈ δ2 and (cesϕ , ‖ · ‖ϕ ) contains an order linearly isometric copy of l∞ .

EXAMPLE 1. Let ϕ(u) =
∫ u
0 p(t)dt , where

p(t) =
{ 1

2 for t ∈ [ 1
2 ,∞

)
,

1
n!21+2+...+n for t ∈ [

1
n+1 , 1

n

)
and n � 2.

Note that ϕ /∈ δ2 . Indeed, for any n � 2 we have

ϕ
((

1+
1
n

)
1
n

)
=

∫ (1+ 1
n ) 1

n

0
p(t)dt >

∫ (1+ 1
n ) 1

n

1
n

p(t)dt (1)

=
1
n2 ·

1
(n−1)!21+2+...+n−1 =

2n

n
· 1
n!21+2+...+n

> 2n
∫ 1

n

0
p(t)dt = 2nϕ

(
1
n

)
.

Denoting

kn =
n
2
(n+1)!21+2+...+(n−1) for n � 2

and
a1 = 0, a2 = k2, an = 2k2 + . . .+2kn−1 + kn for n � 3,

b1 = 1, bn = 2k2 + . . .+2kn +1 for n � 2,

we define x = (x(m))∞m=1 by the formula

x(m) =

⎧⎪⎨
⎪⎩

bn−1
n − an−1

n−1 for m = bn−1
1
n for m = bn−1 +1, . . . ,an

0 for m = an +1, . . . ,bn−1

for n � 2.
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First we will show that σx(m) = 1
n for m = bn−1,bn−1 + 1, . . . ,an and n � 2.

We will proceed the proof by induction. Since x(m) = 1
2 for n = 2 and m = b1,b1 +

1, . . . ,a2 (b1 = 1,a2 = 12), we have σx(b1) =σx(b1 +1) = . . . = σx(a2) = 1
2 . Assume

now that σx(m) = 1
n for m = bn−1, . . .an . We will show that σx(m) = 1

n+1 for m =
bn, . . . ,an+1 .

By the induction assumption, we have ∑an
n=1 x(m) = an

n . Simultaneously, x(m) = 0
for m = an +1, . . . ,bn−1 . Therefore

bn

∑
m=1

x(m) =
an

∑
m=1

x(m)+ x(bn) =
an

n
+

bn

n+1
− an

n
=

bn

n+1
,

whence σx(bn) = 1
n+1 . By the implication: if σx(k) = α and |x(k + 1)| = α , then

σx(k+1) = α (α � 0), we get that σx(m) = 1
n+1 for m = bn +1, . . . ,an+1 .

Now, we will show that ρϕ (x) < 1. Since σx(m) � 1
n for m = an +1, . . . ,bn−1,

n � 2 and

ϕ
(

1
n

)
=

∫ 1
n+1

0
p(t)dt +

∫ 1
n

1
n+1

p(t)dt

<
1

n+1
· 1

(n+1)!21+...+(n+1) +
1

n(n+1)
· 1
n!21+...+n

<
2

n(n+1)!21+...+n

for n � 2, we get

ρϕ (x) =
∞

∑
n=1

ϕ(σx(n)) =
∞

∑
n=2

(
bn−1

∑
m=bn−1

ϕ(σx(m))

)
�

∞

∑
n=2

(bn−bn−1)ϕ
(

1
n

)

=
∞

∑
n=2

2knϕ
(

1
n

)
<

∞

∑
n=2

2kn
2

n(n+1)!21+...+n

=
∞

∑
n=2

2
n
2
(n+1)!21+...+(n−1) 2

n(n+1)!21+...+n

=
∞

∑
n=2

1
2n−1 =

∞

∑
l=1

1
2l = 1.

Finally, we will show that ρϕ (λx) = ∞ for any λ > 1. For any λ > 1 there exists
k ∈ N such that 1+ 1

k < λ . By (1) and

ϕ
(

1
n

)
=
∫ 1

n

0
p(t)dt >

∫ 1
n

1
n+1

p(t)dt =
1

n(n+1)
· 1
n!21+...+n =

1
n(n+1)!21+...+n ,
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we have

ρϕ (λx) > ρϕ
((

1+
1
k

)
x

)
=

∞

∑
n=1

ϕ
(
σ
(

1+
1
k

)
x(n)

)

>
∞

∑
n=2

(
an

∑
m=bn−1

ϕ
(
σ
(

1+
1
k

)
x(m)

))

�
∞

∑
n=k

(
an

∑
m=bn−1

ϕ
((

1+
1
k

)
σx(m)

))

=
∞

∑
n=k

knϕ
((

1+
1
k

)
1
n

)
>

∞

∑
n=k

knϕ
((

1+
1
n

)
1
n

)
>

∞

∑
n=k

kn ·2nϕ
(

1
n

)

>
∞

∑
n=k

n
2
(n+1)!21+...+(n−1) ·2n · 1

n(n+1)!21+...+n =
∞

∑
n=k

1
2

= ∞.

From Theorem 2 in [13] and Theorem 2.1 in [11], we get for the above Orlicz function
ϕ that (cesϕ , ‖ · ‖ϕ ) contains an order linearly isometric copy of l∞ .

3. The Kadec-Klee property with respect to the coordinatewise convergence

Recall that a Banach space X has the Kadec-Klee property with respect to the
coordinatewise convergence if for any x∈X and any sequence (xm) in X the conditions
‖xm‖→ ‖x‖ and xm(n) → x(n) for all n ∈ N , yield ‖x− xm‖→ 0.

Before presenting the main theorem of this section, concerning the Kadec-Klee
property with respect to the coordinatewise convergence of Cesàro-Orlicz spaces cesϕ ,
we wil give some auxiliary lemmas.

LEMMA 1. (cf. Lemmas 2.1 and 2.5 in [7]) The following assertions are true:

(i) If ρϕ (x) = 1 , then ‖x‖ϕ = 1 for any x ∈ cesϕ .

(ii) For any x ∈ (cesϕ )a the equality ‖x‖ϕ = 1 implies that ρϕ (x) = 1 if and only

if ∑∞
i=1 ϕ

(
bϕ
i

)
� 1 .

(iii) If ϕ ∈ δ2 , then for any x ∈ cesϕ the equality ‖x‖ϕ = 1 implies that ρϕ (x) = 1

if and only if ∑∞
i=1 ϕ

(
bϕ
i

)
� 1 .

Proof. We will show only (ii) . Assume that ∑∞
i=1ϕ

(
bϕ
i

)
� 1 and there exists

x ∈ (cesϕ )a such that ‖x‖ϕ = 1 and ρϕ (x) < 1.
First suppose that there exists k ∈ N such that σx(k) = bϕ . We will prove by

induction that

σx(k+m) � bϕ
m+1

for any m ∈ N. (2)
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For m = 1 we have

σx(k+1) =
|x(1)|+ . . .+ |x(k)|+ |x(k+1)|

k+1
� |x(1)|+ . . .+ |x(k)|

k+1

=
|x(1)|+ . . .+ |x(k)|

k
· k
k+1

= bϕ · k
k+1

� bϕ
2

.

Now, assume that (2) is satisfied for some m ∈ N . Then we have

σx(k+m+1) � |x(1)|+ . . .+ |x(k+m)|
k+m+1

=
|x(1)|+ . . .+ |x(k+m)|

k+m
· k+m
k+m+1

� bϕ
m+1

· k+m
k+m+1

� bϕ
m+1

· 1+m
1+m+1

=
bϕ

(m+1)+1
.

Hence

ρϕ (x) =
∞

∑
i=1

ϕ (σx(i)) �
k−1

∑
i=1

ϕ (σx(i))+
∞

∑
n=1

ϕ
(

bϕ
n

)
� 1,

which contradicts the asumption that ρϕ (x) < 1.
Therefore σx(i) < bϕ for any i ∈ N . Let l be a natural number such that

∞

∑
i=l

ϕ(σ(2x)(i)) < ∞.

Define the function f (λ ) = ρϕ (λx) for λ � 0. It is clear that f is convex on R+
and it has finite values on the interval [0,λ0] , where λ0 ∈ (1,2] , satisfies the condition:
σ(λ0x)(i) < bϕ for i ∈ {1, . . . , l − 1} . So, f is continuous and consequently, it has
the Darboux property on the interval [0,λ0) . Since f (1) = ρϕ (x) < 1, there exists
λ1 ∈ (1,λ0) such that f (λ1) = ρϕ (λ1x) � 1. This yields that ‖x‖ϕ � 1/λ1 < 1, a
contradiction.

Let now ∑∞
i=1ϕ

(
bϕ
i

)
< 1. Then for x = (bϕ ,0,0, . . .) we have

ρϕ (x) =
∞

∑
i=1

ϕ
(

bϕ
i

)
< 1

and ρϕ (λx) = ∞ for any λ > 1, whence ‖x‖ϕ = 1.
Lemma 2 has been proved in [7, Lemma 2.4] under the assumption that bϕ = ∞ .

It is easy to show that the Lemma presented below is also true without this assumption.
Moreover, Lemma 3 presented below can be proved analogously as Lemma 2.9 in [7].

LEMMA 2. The following assertions are true:

(i) If ‖xm‖ϕ → 0 , then ρϕ (xm) → 0 for any sequence (xm) in cesϕ .

(ii) If ϕ ∈ δ2 , then ‖xm‖ϕ → 0 whenever ρϕ (xm) → 0 for any sequence (xm) in
cesϕ .
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LEMMA 3. The following assertions are true:

(i) If ρϕ (xm) → 1 , then ‖xm‖ϕ → 1 for any sequence (xm) in cesϕ .

(ii) Let ϕ ∈ δ2 . Then for any sequence (xm) such that ‖xm‖ϕ � 1 we have ρϕ (xm) →
1 whenever ‖xm‖ϕ → 1 if and only if ∑∞

i=1 ϕ
(

bϕ
i

)
� 1 .

Lemma 4 can be proved analogously as Lemma 4 in [17]. Lemma 5 can be de-
duced by Lemma 4 and Theorem 1.39(3) from [3] (cf. Lemma 5 in [17]).

LEMMA 4. If ϕ ∈ δ2 , then for any ε > 0 there exists δ = δ (ε) > 0 such that for
any x = (x(n))∞n=1 ∈ lϕ with |||x|||ϕ � 1 and |x(n)|� 1

3bϕ for any n∈N and any y∈ lϕ ,
we get the implication:

|||x− y|||ϕ < δ ⇒ |Iϕ(x)− Iϕ(y)| < ε.

LEMMA 5. If ϕ ∈ δ2 , then for every ε > 0 there exists δ = δ (ε) > 0 such that
the condition Iϕ(x−y) < δ implies that |Iϕ(x)− Iϕ(y)| < ε for any x = (x(n))∞n=1 ∈ lϕ
with |||x|||ϕ � 1 and |x(n)| � 1

3bϕ for any n ∈ N , and any y ∈ lϕ .

THEOREM 1. If ϕ ∈ δ2 , then cesϕ has the Kadec-Klee property with respect to

the coordinatewise convergence if and only if ∑∞
i=1 ϕ

(
bϕ
i

)
� 1 .

Proof. Sufficiency. Assume that xm → x coordinatewise and ‖xm‖ϕ → ‖x‖ϕ .
Without loss of generality, we may assume that ‖x‖ϕ = 1 and ‖xm‖ϕ = 1 for all
m ∈ N . From Lemma 1, we have that ρϕ (x) = 1 and ρϕ (xm) = 1 for all m ∈ N . We
will show that ρϕ (x− xm) → 0. Hence, from Lemma 2, we immediately will get that
‖x− xm‖ϕ → 0.

Let ε > 0. There exists n ∈ N such that

∞

∑
i=n+1

ϕ(σx(i)) <
ε

6K
, (3)

where K > 0 is the constant from condition δ2 . Since xm(i) → x(i) for any i ∈ N , we
have σxm(i) → σx(i) for i ∈ N . Therefore, for any i = 1,2, . . . ,n , we can find m(i)
such that

|ϕ(σxm(i))−ϕ(σx(i))| < ε
6nK

(4)

and
ϕ(xm(i)− x(i)) <

ε
2n

(5)

for m > m(i) . Let m0 = max(m(1),m(2), . . . ,m(n)) . Then for m > m0 , by (3) and (4),
we have

n

∑
i=1

ϕ(σxm(i)) �
n

∑
i=1

(
ϕ(σx(i))− ε

6nK

)
> 1− ε

6K
− ε

6K
= 1− ε

3K
,
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whence ∑∞
i=n+1ϕ(σxm(i)) < ε

3K for m > m0 . Since for any i ∈ N ,

σ(x− xm)(i) =
|x(1)− xm(1)|+ |x(2)− xm(2)|+ . . .+ |x(i)− xm(i)|

i

� |x(1)|+ |xm(1)|+ |x(2)|+ |xm(2)|+ . . .+ |x(i)|+ |xm(i)|
i

= σx(i)+σxm(i),

we get for m > m0 :

∞

∑
i=n+1

ϕ(σ(x− xm)(i)) �
∞

∑
i=n+1

ϕ
(

2σx(i)+2σxm(i)
2

)

� 1
2

(
∞

∑
i=n+1

ϕ(2σx(i))+
∞

∑
i=n+1

ϕ(2σxm(i))

)

� K
2

(
∞

∑
i=n+1

ϕ(σx(i))+
∞

∑
i=n+1

ϕ(σxm(i))

)

<
K
2

( ε
6K

+
ε

3K

)
=

ε
4
.

On the other hand, for i = 1,2, . . . ,n , we have

σ(x− xm)(i) =
|x(1)− xm(1)|+ . . .+ |x(i)− xm(i)|

i

� imax(|x(1)− xm(1)|, . . . , |x(i)− xm(i)|)
i

.

Hence for m > m0 , by (5), we get

n

∑
i=1

ϕ(σ(x− xm)(i)) �
n

∑
i=1

ϕ(max(|x(1)− xm(1)|, . . . , |x(i)− xm(i)|)) < n · ε
2n

=
ε
2
.

Therefore, we have ρϕ (x− xm) = Iϕ(σ(x− xm)) < ε for m > m0 .

Necessity. Assume that ϕ ∈ δ2 and ∑∞
i=1ϕ

(
bϕ
i

)
< 1. We will find x ∈ S(cesϕ )

and a sequence (xm) , ‖xm‖ϕ = 1 for m ∈ N , such that xm → x coordinatewise and
‖xm− x‖ϕ � ε > 0 for any m ∈ N .

Let x = (bϕ ,0,0, . . .) . Then ρϕ (x) = Iϕ(σx) < 1. For ε = 1 − Iϕ(σx) , by
Lemma 5, there exists δ = δ (ε) > 0 such that |Iϕ(z)−Iϕ(y)|< ε for each z = (z(n))∞n=1
with |||z|||ϕ � 1 and |z(n)|� 1

3bϕ for all n∈N and each y∈ lϕ satisfying Iϕ(z−y) < δ .
We may assume without loss of generality that δ � ϕ

(
1
2bϕ

)
. Therefore for each m � 3

we can find δm > 0 such that ∑∞
i=mϕ

(
δm
i

)
= δ

2 . Let

xm = (bϕ , 0, . . . ,0︸ ︷︷ ︸
m−2 times

,δm,0, . . .)



CESÀRO-ORLICZ SPACES 371

for m � 3. It is obvious that xm → x coordinatewise. The remaining part of the proof

concerns m � 3. Since ∑∞
i=mϕ

(
bϕ+δm

i − bϕ
i

)
= δ

2 < δ , by Lemma 5, we get

ρϕ (xm) =
m−1

∑
i=1

ϕ
(

bϕ
i

)
+

∞

∑
i=m

ϕ
(

bϕ + δm

i

)

= ρϕ (x)+
∞

∑
i=m

ϕ
(

bϕ + δm

i

)
−

∞

∑
i=m

ϕ
(

bϕ
i

)
< ρϕ (x)+ ε = 1.

By ρϕ
( xm
λ
)

= ∞ for any λ ∈ (0,1) , we have ‖xm‖ϕ = 1. Simulataneously

xm − x = ( 0, . . . ,0︸ ︷︷ ︸
m−1 times

,δm,0, . . .).

Therefore ρϕ (xm − x) = ∑∞
i=m ϕ

(
δm
i

)
= δ

2 < ϕ (bϕ/2) < 1, so ‖xm − x‖ϕ � δ
2 . This

finishes the proof.

4. Rotundity properties of Cesàro-Orlicz spaces

In this section convexity properties of Cesàro-Orlicz spaces will be considered.
We start with some definitions.

We say that ϕ is strictly convex on the interval [a,b] if for any u and v (a � u <
v � b ) we have ϕ

(
v+w

2

)
< 1

2{ϕ(v)+ϕ(w)} .
For any Orlicz function ϕ , by ϕ∗ we denote its complementary function in the

sense of Young, that is, ϕ∗(v) = supu�0{u|v|− ϕ (u)} for any v ∈ R .
For any Banach space X we denote by B(X) its closed unit ball and by S(X) - its

unit sphere. Recall that X is said to be rotund (X ∈ (R) for short) if ‖x+ y‖ < 2 for
every x,y ∈ S(X) with x �= y . A Banach space X is said to be locally uniformly rotund
(X ∈ (LUR)) if for each x ∈ B(X) and ε ∈ (0,2] there is δ = δ (x, ε ) ∈ (0,1) such
that for any y ∈ B(X) the inequality ‖x− y‖ � ε implies that ‖x+ y‖ � 2(1− δ ) . X
is said to be uniformly rotund (X ∈ (UR)) if for any ε ∈ (0,2] there exists δ ∈ (0,1)
such that

∥∥ x+y
2

∥∥� 1− δ whenever x,y ∈ B(X) and ‖x− y‖� ε .
We say that X is uniformly nonsquare (X ∈ (UNSQ) for short) if there exists

σ ∈ (0,1) such that min(‖ x+y
2 ‖,‖ x−y

2 ‖) � 1−σ for every x,y ∈ B(X) .

In [7] it has been shown the following

THEOREM 2. If ϕ ∈ δ2 , then cesϕ is rotund if and only if ∑∞
i=1ϕ

(
bϕ
i

)
� 1 and

ϕ is strictly convex on the interval [0,v2] , where 2ϕ(v2)+∑∞
i=3ϕ

(
2v2
i

)
= 1 .

In [28] it has been shown for any Orlicz function ϕ satisfying condition δ2 that
cesϕ is not uniformly nonsquare, whence it follows immediately that cesϕ is not uni-
formly rotund. Now we will show the following
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THEOREM 3. If ϕ ∈ δ2 , then the space cesϕ is locally uniformly rotund if and

only if ∑∞
i=1ϕ

(
bϕ
i

)
� 1 and there is satisfied at least one of the following conditions:

(i) ϕ is strictly convex on the interval [0,v1] , where ∑∞
i=1ϕ

( v1
i

)
= 1 ,

(ii) ϕ is strictly convex on the interval [0,v2] , where 2ϕ(v2)+∑∞
i=3ϕ

(
2v2
i

)
= 1 and

ϕ∗ satisfies the δ2 condition.

Proof. Sufficiency. Take any x ∈ cesϕ and a sequence (xm) such that ‖x‖ϕ = 1,
‖xm‖ϕ = 1 for all m ∈ N and ‖x+ xm‖ϕ → 2 as m → ∞ . By Theorem 3 in [14]
we can assume that x � 0 and xm � 0 for all m ∈ N . From Lemma 1 we have
ρϕ (x) = ρϕ (xm) = 1 for any m ∈ N . If xm → x coordinatewise, then by Theorem 1
we immediately get ‖xm− x‖ϕ → 0, which finishes the proof.

Now, we will show that the assumption that xm �→ x coordinatewise leads to a
contradiction with the condition ‖xm + x‖ϕ → 2.

Let i1 be the smallest natural number such that xm(i1) �→ x(i1) . We can assume
without loss of generality that

|xm(i1)− x(i1)| > ε (6)

and
|σxm(i1)−σx(i1)| > ε

2i1
(7)

for some ε > 0 and any m∈N . If the function ϕ satisfies condition (i), then by Lemma
0.5 in [18], we have

ϕ
(
σ

xm + x
2

(i1)
)

= ϕ
(
σxm(i1)+σx(i1)

2

)
� 1− p1(ε)

2
(ϕ(σxm(i1))+ϕ(σx(i1)))

(8)
for all m ∈ N with some p1(ε) ∈ (0,1) . Hence

ρϕ
(

xm + x
2

)
= Iϕ

(
σ

xm + x
2

)
= Iϕ

(
σxm +σx

2

)

� 1
2
(Iϕ(σxm)+ Iϕ(σx))− p1(ε)

2
·ϕ

(
ε

2i1

)
= 1− p1(ε)

2
·ϕ

(
ε

2i1

)
for all m∈ N . Therefore, by Lemma 3, we get ‖ x+xm

2 ‖ϕ � 1−σ(ε) for all m∈N with
some σ(ε) ∈ (0,1) , which is a contradiciton.

Now, we assume that ϕ does not satisfy condition (i) and min(σxm(i1),σx(i1)) �
s < v2 for all m∈N (we can pass to a subsequence if necessary to have such a situation).
From Lemma 0.5 or Lemma 0.6 in [18] it follows that we can find p2(ε) ∈ (0,1) such

that inequality (8) is satisfied. As above, we have ρϕ
( xm+x

2

)
� 1− p2(ε)

2 · ϕ (ε/(2i1)) ,
which is again a contradiction.

Let now ϕ does not satisfy condition (i) and

liminf
m→∞

(min(σxm(i1),σx(i1))) � v2. (9)

If there exists a subsequence (mn) such that σxmn(i1) < σx(i1) , then by (9) we get
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σx(i1) � v2 + ε
2i1

. Let now σxm(i1) >σx(i1) for m � m0 . By (9) we have σx(i1) � v2 ,
whence σxm(i1) � v2 + ε

2i1
for m � m0 . Therefore, we can assume that

max(σxm(i1),σx(i1)) � v2 +
ε

2i1

for m � m0 with some m0 ∈ N . We will consider two cases separately.
First assume that there exists i2 > i1 such that |σxm(i2)−σx(i2)| > η > 0 for

all m ∈ N . Since max(σxm(i1),σx(i1)) � v2 + ε
2i1

for all m � m0 and ρϕ (x) =
ρϕ (xm) = 1 for all m ∈ N , by the definition of v2 , there exists t < v2 such that
min(σxm(i2),σx(i2)) � t . Proceeding as above, we can get a contradiction.

Finally, we assume that σxm(i) → σx(i) for each i �= i1 . Since ϕ∗ ∈ δ2 , there
exists q ∈ (0,1) such that ϕ

(
u
2

)
� 1−q

2 ·ϕ(u) for all u ∈ [0,v2] (see [12]). Define

ε1 = q
8 · ϕ

(
ε

2i1

)
and let δ1 = δ1(ε1) be the constant from Lemma 5. We may assume

without loss of generality that δ1 < 1
4 ϕ

(
ε

2i1

)
. Note that for any a ∈ (0,bϕ) we have

that ∑∞
i=n ϕ

(
na
i

)
�∑∞

i=n+1 ϕ
(

(n+1)a
i

)
for all n∈N and limn→∞∑∞

i=n ϕ
(

na
i

)
=∞ . So,

we can find i3 > i1 and m1 ∈ N such that ∑∞
i=i3 ϕ(σx(i)) < δ1 ,

∞

∑
i=i3

ϕ
(

i3 ·min((bϕ/3),v2)
i

)
� 1

and

∑
i={1,...,i3−1}\{i1}

|ϕ(σxm(i))−ϕ(σx(i))| < 1
2
· ϕ

(
ε

2i1

)
(10)

for m � m1 . Now we will show that x(i1) > xm(i1) for m � m1 in inequality (6).
Assume for the contrary that we have x(i1) < xm(i1) for some m � m1 in that place.
Then for the same m , by inequality (7), we have σxm(i1)−σx(i1) > ε

2i1
, whence, by

the superadditivity of the Orlicz function ϕ on R+ , we get

ϕ(σx(i1)) � ϕ(σxm(i1))−ϕ(σxm(i1)−σx(i1)) < ϕ(σxm(i1))− ϕ
(

ε
2i1

)
. (11)

Since ∑∞
i=i3 ϕ(σx(i)) < δ1 < 1

4 ϕ
(

ε
2i1

)
, by inequalities (10) and (11), we have

1 = ϕ(σx(i1))+ ∑
i={1,...,i3−1}\{i1}

ϕ(σx(i))+
∞

∑
i=i3

ϕ(σx(i)

< ϕ(σxm(i1))−ϕ
(

ε
2i1

)
+ ∑

i={1,...,i3−1}\{i1}
ϕ(σxm(i))

+
1
2
·ϕ

(
ε

2i1

)
+

1
4
·ϕ

(
ε

2i1

)

� 1− 1
4
·ϕ

(
ε

2i1

)
< 1,

which is a contradiction. Therefore x(i1) > xm(i1) for m � m1 in inequality (6).
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Analogously as inequality (11), we can show that

ϕ(σxm(i1)) < ϕ(σx(i1))− ϕ
(

ε
2i1

)

for m � m1 . Hence and from inequality (10), by the equalities ρϕ (xm) = ρϕ (x) = 1
for m∈ N , we get that the set Nm = {i � i3 : σxm(i) > σx(i)} is nonempty for m � m1 .
Moreover,

∑
i∈Nm

ϕ(σxm(i))− ∑
i∈Nm

ϕ(σx(i)) >
1
2
· ϕ

(
ε

2i1

)
for m � m1 . Since

∑
i∈Nm

ϕ
(
σxm(i)+σx(i)

2
− σxm(i)

2

)
�

∞

∑
i=i3

ϕ(σx(i)) < δ1,

by Lemma 5, we have∣∣∣∣∣ ∑i∈Nm

ϕ
(
σxm(i)+σx(i)

2

)
− ∑

i∈Nm

ϕ
(
σxm(i)

2

)∣∣∣∣∣< q
8
· ϕ

(
ε

2i1

)

for m � m1 . Hence, for the same m , we have

ρϕ
(

x+ xm

2

)
= Iϕ

(
σ

x+ xm

2

)
= Iϕ

(
σx+σxm

2

)

� 1
2 ∑

i∈N\Nm

ϕ(σx(i))+
1
2 ∑

i∈N\Nm

ϕ(σxm(i))+ ∑
i∈Nm

ϕ
(
σx(i)+σxm(i)

2

)

� 1
2 ∑

i∈N\Nm

ϕ(σx(i))+
1
2 ∑

i∈N\Nm

ϕ(σxm(i))+ ∑
i∈Nm

ϕ
(
σxm(i)

2

)
+

q
8
·ϕ

(
ε

2i1

)

� 1
2 ∑

i∈N\Nm

ϕ(σx(i))+
1
2 ∑

i∈N\Nm

ϕ(σxm(i))+
1−q

2 ∑
i∈Nm

ϕ (σxm(i))+
q
8
·ϕ

(
ε

2i1

)

� 1− q
4
·ϕ

(
ε

2i1

)
+

q
8
·ϕ

(
ε

2i1

)
= 1− q

8
·ϕ

(
ε

2i1

)
,

which is a contradiction.

Necessity. Let ϕ ∈ δ2 . By Theorem 2 we can assume that ∑∞
i=1ϕ

(
bϕ
i

)
� 1 and

ϕ is strictly convex on the interval [0,v2] . Assume now that ϕ is not strictly convex on
the interval [v2,v1] with v2 < v1 and ϕ∗ /∈ δ2 . We will find x ∈ S(cesϕ ) and (xn) in
B(cesϕ ) such that ‖x+ xn‖ϕ → 2 and ‖x− xn‖ϕ � η > 0.

By the assumption, there exist a and b (v2 � a < b � v1 ) such that ϕ is affine on
the interval [a,b] . Let x = (b,c,0, . . .) , where c � 0 is chosen in such a way that

ρϕ (x) = ϕ (b)+
∞

∑
i=2

ϕ
(

b+ c
i

)
= 1.
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For building the disired sequence (xn) , we will define by induction special fours (in,un, jn,kn)
for n � 2. Let i2 > 2 be such that ∑∞

i=i2 ϕ
(

b+c
i

)
� ε

22K2 , where ε = ϕ (b)− ϕ (a) and

K be the constant from condition δ2 . Since ϕ∗ /∈ δ2 , we can find u2 � b+c
i2

such that

ϕ
(u2

2

)
�

1− 1
(2+1)!

2
ϕ (u2).

Let j2 � i2 satisfy the inequalities

b+ c
j2 +1

< u2 � b+ c
j2

and k2 be the biggest natural number such that

j2+k2

∑
i= j2+1

ϕ (u2)+
∞

∑
i= j2+k2+1

ϕ
(

( j2 + k2)u2

i

)
� ε .

Having defined a four (in−1,un−1, jn−1,kn−1) for n > 2 we will define next four (in,un, jn,kn) .
Let in > jn−1 + kn−1 be such that ∑∞

i=in ϕ
(

b+c
i

)
� ε

2nKn . Since ϕ∗ /∈ δ2 , we can find
un � b+c

in
such that

ϕ
(un

2

)
�

1− 1
(n+1)!

2
ϕ (un). (12)

Analogously as for n = 2 we chose jn � in satisfying the condition

b+ c
jn +1

< un � b+ c
jn

and kn being the biggest natural number satisfying the inequality

jn+kn

∑
i= jn+1

ϕ (un)+
∞

∑
i= jn+kn+1

ϕ
(

( jn + kn)un

i

)
� ε .

Now let us define (xn)∞n=1 , by

xn = (a,c+(b−a), 0, . . . ,0︸ ︷︷ ︸
jn−2 times

,( jn +1)un− (b+ c),un, . . . ,un︸ ︷︷ ︸
kn−1 times

,0, . . .)

for all n ∈ N . Since

jn+kn

∑
i= jn+1

ϕ (un)+
∞

∑
i= jn+kn+1

ϕ
(

( jn + kn)un

i

)
→ ε ,

we get ρϕ (xn) → 1.
Now for any n � 2 we will show that

ϕ
(u

2

)
�

1− 1
n

2
ϕ (u) (13)
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whenever 1
n!un � u � un . Note that the functions ψn graphs of which are the straight

lines

ψn(u) =
(

1+
1

(n+1)!

)
ϕ(un)

un
·u− 1

(n+1)!
ϕ (un)

crosing trough the points

(
1
2un,

1− 1
(n+1)!
2 ϕ (un)

)
and (un, ϕ (un)) satisfy the inequality

ψn

(u
2

)
�

1− 1
n

2
ψn(u),

for u � 1
n!un . In order to see that inequality (13) holds, assume for the contrary that

ϕ
(vn

2

)
<

1− 1
n

2
ϕ (vn)

for some vn ∈ [ 1
n!un,un) and n � 2. Since ϕ (un) = ψn(un) and ϕ (un/2) � ψn(un/2)

(see inequality (12)), by convexity of ϕ , we get ϕ (vn/2) > ψn(vn/2) . Let χn be the
function graph of which pass trough the point ( vn

2 , ϕ ( vn
2 )) and is parallel to the straight

line being the graph of ψn . Since

2χn( vn
2 )

χn(vn)
�

2ψn( vn
2 )

ψn(vn)
� 1− 1

n
,

we have χn(vn) < ϕ (vn) . Simultaneously, ϕ (un) = ψn(un) < χn(un) for un > vn

which contradicts the convexity of ϕ .
By (13), we get

ρϕ
(

x+ xn

2

)
� ϕ

(
b+a

2

)
+

jn

∑
i=2

ϕ
(

b+ c
i

)
+

jn+kn

∑
i= jn+1

ϕ
(un

2

)

+
∞

∑
i= jn+kn+1

ϕ
(

( jn + kn)un

2i

)
� 1

2
{ϕ(b)+ϕ(a)}+

jn

∑
i=2

ϕ
(

b+ c
i

)

+
1− 1

n

2

{
jn+kn

∑
i= jn+1

ϕ(un)+
n!( jn+kn)

∑
i= jn+kn+1

ϕ
(

( jn + kn)un

i

)}

→ 1
2
ρϕ (x)+

1
2
ρϕ (xn) → 1,

whence, by Lemma 3, we have ‖x+ xn‖ϕ → 2. Simultaneously, ρϕ (x− xn) � ϕ (b−
a) = η > 0. Since η < 1, we have ‖x− xn‖ϕ � η .

REMARK 2. For any Orlicz function ϕ we get the implication: if an Orlicz space
lϕ is rotund {see Theorem 0.7 in [18]} (locally uniformly rotund {see Theorem 2 in
[18]}), then cesϕ is rotund (locally uniformly rotund) either. Examples 2 and 3 show
Orlicz functions ψ and ϕ such that cesψ and cesϕ are locally uniformly rotund but
lψ and lϕ are not even rotund (recall that an Orlicz space lϕ is rotund if and only if
ϕ ∈ δ2 , ϕ (bϕ) � 1 and ϕ is strictly convex on the interval [0,u2] , where ϕ (u2) = 1

2 ;
see [7]).
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EXAMPLE 2. For the Orlicz function ψ defined by the formula

ψ(u) =

{
u2 for |u| �

√
3

2 ,

∞ for |u| >
√

3
2 ,

we have that ψ ∈ δ2 , ψ is strictly convex on the interval [0,bψ ] , ∑∞
i=1 ϕ ( bψ

i ) = π2

8 > 1
and ϕ (bψ) = 3

4 , so the space cesψ is locally uniformly rotund, but the space lψ is not
rotund.

EXAMPLE 3. Let us define the function

ϕ(u) =

⎧⎨
⎩u2 for |u| �

√
3

2π2−9

2u
√

3
2π2−9

− 3
2π2−9

for |u| >
√

3
2π2−9

.

We have ϕ ∈ δ2 , bϕ = ∞ and ϕ is strictly convex on the interval
[
0,
√

3
2π2−9

]
. Since

2ϕ

(√
3

2π2−9

)
+

∞

∑
i=3

ϕ

(
2
i

√
3

2π2−9

)

=
6

2π2−9
+

12
2π2−9

∞

∑
i=3

1
i2

=
6

2π2−9
+

12
2π2−9

(
π2

6
− 5

4

)
= 1,

and ϕ∗ ∈ δ2 , we know that cesϕ is locally uniformly rotund. Simultaneously,

ϕ

(√
3

2π2−9

)
=

3
2π2−9

<
1
2
,

so the Orlicz space lϕ is not rotund.

5. Finite dimensional subspaces of Cesàro-Orlicz spaces

For any n � 2 we can define the subspace cesn
ϕ of the space cesϕ by the formula

cesn
ϕ = {x = (x(i))∞i=1 ∈ cesϕ : x(i) = 0 for all i > n}.

Obviously, cesn
ϕ are subspaces of (cesϕ )a for all n � 2. The spaces cesn

ϕ (n � 2) will
be investigated with the original norm ‖ · ‖ϕ as well as with the norm

‖x‖n = inf
{
λ > 0 : ρn

(
x
λ
)

� 1
}

,

where

ρn (x) =
n

∑
i=1

ϕ(σx(i)),



378 PAWEŁ FORALEWSKI, HENRYK HUDZIK AND ALICJA SZYMASZKIEWICZ

which has been introduced in [28]. Note that if there exists n1 ∈N such that ∑∞
n=n1

ϕ
(

1
n

)
<

∞ (see Remark 1), then for any n � 2 we have cesn
ϕ = l0n and there exists k(n) > 0

such that
‖x‖n � ‖x‖ϕ � k(n)‖x‖n

for any x ∈ cesn
ϕ . In the opposite case cesn

ϕ is trivial.

REMARK 3. Obviously if ∑∞
n=i ϕ

(
1
n

)
= ∞ for all i ∈ N , the space l0n can be

investigated with the norm ‖ · ‖n and then Lemma 6 and Theorems 5 and 7 remain
true.

REMARK 4. For some Orlicz function ϕ one can easily find the smallest constant
kϕ(n) > 0 such that

‖x‖ϕ � kϕ(n)‖x‖n (14)

for any x ∈ cesn
ϕ , n ∈ N . In the example presented below such the smallest number is

found for the Orlicz function ϕ (u) = u2 .

EXAMPLE 4. Let ϕ (u) = u2 for u ∈ R . Then for any n ∈ N and any x =
(x1, . . . ,xn,0,0, . . .) ∈ cesn

ϕ , we have

‖x‖n =

√
|x1|2 + . . .+

( |x1|+ . . .+ |xn−1|
n−1

)2

+
( |x1|+ . . .+ |xn−1|+ |xn|

n

)2

and

‖x‖ϕ =

√
|x1|2 + . . .+

( |x1|+ . . .+ |xn−1|
n−1

)2

+(|x1|+ . . .+ |xn−1|+ |xn|)2
∞

∑
i=n

1
i2

.

We will show that the smallest number kϕ(n) for which (14) holds equals n
√
∑∞

i=n
1
i2

,

because

‖x‖ϕ = n

√
∞

∑
i=n

1
i2
·
(

|x1|2
n2∑∞

i=n
1
i2

+ . . .+
1

n2∑∞
i=n

1
i2

( |x1|+ . . .+ |xn−1|
n−1

)2

+
( |x1|+ . . .+ |xn−1|+ |xn|

n

)2
) 1

2

� kϕ(n)‖x‖n,

for any x ∈ cesn
ϕ . Simultaneously for y = ynen , we get

‖y‖ϕ =

√
|yn|2

∞

∑
i=n

1
i2

= n

√
∞

∑
i=n

1
i2

√( |yn|
n

)2

= kϕ(n)‖y‖n .

Figure 1 shows spheres of 2-dimensional Cesàro-Orlicz sequence spaces generated by
the function ϕ (u) = u2 equipped with the norms ‖ · ‖2 and ‖ · ‖ϕ .
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Figure 1:

In the further part of the paper the lemma presented below (proof of which is
omitted) will be helpful.

LEMMA 6. The following assertions are true:

(i) If ρn (x) = 1 , then ‖x‖n = 1 for any x ∈ cesn
ϕ .

(ii) For any x ∈ cesn
ϕ the equality ‖x‖n = 1 implies that ρn (x) = 1 if and only if

ϕ (bϕ) � 1 .

Now we will present criteria for rotundity of the spaces (cesn
ϕ ,‖ · ‖ϕ ) and (cesn

ϕ ,‖ · ‖n ).
The case of n = 2 needs a separate treatment. We start with the following

THEOREM 4. The space (ces2
ϕ , ‖ · ‖ϕ ) is rotund if and only if

(i) ∑∞
i=1ϕ

(
bϕ
i

)
� 1 ,

(ii) ϕ vanishes only at zero.

Proof. Sufficiency. Assume that aϕ = 0, ∑∞
i=1ϕ

(
bϕ
i

)
� 1 and take two sequences

x = (x1,x2,0,0, . . .) and y = (y1,y2,0,0, . . .) such that x �= y and ‖x‖ϕ = 1 = ‖y‖ϕ .
We can assume without loss of generality that x,y � 0 (see Theorem 2 in [14]). Since
ces2

ϕ ⊂ (cesϕ )a , by Lemma 1, we have ρϕ (x) = 1 = ρϕ (y) .
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First suppose that x1 + x2 = y1 + y2 . Since x �= y , we can assume that x1 < y1 .
Hence

1 = ρϕ (x) = ϕ(x1)+
∞

∑
n=2

ϕ
(

x1 + x2

n

)
= ϕ(x1)+

∞

∑
n=2

ϕ
(

y1 + y2

n

)

< ϕ(y1)+
∞

∑
n=2

ϕ
(

y1 + y2

n

)
= ρϕ (y) = 1,

which is a contradiction. Therefore, we may assume without loss of generality that
x1 + x2 < y1 + y2 .

Since ϕ is convex, we have

ρϕ
(

x+ y
2

)
= ϕ

(
x1 + y1

2

)
+

∞

∑
n=2

ϕ

(
x1+y1

2 + x2+y2
2

n

)

� 1
2

(ϕ(x1)+ϕ(y1))+
1
2

∞

∑
n=2

(
ϕ
(

x1 + x2

n

)
+ϕ

(
y1 + y2

n

))

=
1
2
ρϕ (x)+

1
2
ρϕ (y) = 1.

If ρϕ
( x+y

2

)
= 1, then we get

ϕ
(

x1 + y1

2

)
=

1
2

(ϕ(x1)+ϕ(y1))

and

ϕ

(
x1+x2

n + y1+y2
n

2

)
=

1
2

{
ϕ
(

x1 + x2

n

)
+ϕ

(
y1 + y2

n

)}
for n � 2. Hence we get that ϕ is affine on the following intervals

. . . ,

[
x1 + x2

n+1
,
y1 + y2

n+1

]
,

[
x1 + x2

n
,
y1 + y2

n

]
, . . . ,

[
x1 + x2

2
,
y1 + y2

2

]
.

Since x1 + x2 < y1 + y2 and n
n+1 → 1 as n → ∞ , so x1 + x2 < n

n+1(y1 + y2) for n ∈ N

large enough. Hence x1+x2
n < y1+y2

n+1 for the same n . It means that the intervals of affinity
of ϕ overlap each other essentially, whence we get that ϕ is affine on the interval [0,α]
for some α > 0. From this fact and the assumption that aϕ = 0, we conclude that the
space (ces2

ϕ , ‖ · ‖ϕ ) is trivial, a contradiction (see Remark 1).

Therefore ρϕ
( x+y

2

)
< 1 and, by Lemma 1, we have ‖ x+y

2 ‖ϕ < 1.

Necessity. First we assume that ∑∞
i=1ϕ

(
bϕ
i

)
< 1. We have ϕ(bϕ) < ∞ and, by

Remark 1, ∑∞
i=2ϕ

(
2bϕ

i

)
< ∞ . So, we can find ε ∈ (0,bϕ ] such that

ϕ(bϕ)+
∞

∑
i=2

ϕ
(

bϕ + ε
i

)
� 1.
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For x = (bϕ , ε ,0,0, . . .) and y =
(
bϕ ,0,0,0, . . .

)
, we have ρϕ (x) � 1, ρϕ (y) < 1,

ρϕ
( x+y

2

)
< 1 and

ρϕ
( x
λ

)
= ρϕ

( y
λ

)
= ρϕ

(
x+ y
2λ

)
= ∞.

for any λ ∈ (0,1) . Therefore ‖x‖ϕ = ‖y‖ϕ = ‖ x+y
2 ‖ϕ = 1, so (ces2

ϕ , ‖ · ‖ϕ ) is not
rotund.

Now assume that ∑∞
i=1ϕ

(
bϕ
i

)
� 1 and aϕ > 0. If ϕ (bϕ) � 1, we can find u1 > 0

such that ϕ (u1) = 1; obviously ∑∞
i=2 ϕ

(
2u1
i

)
� 1. If ϕ (bϕ) < 1, we define u1 = bϕ .

By

∞

∑
i=2

ϕ
(

2bϕ
i

)
= ϕ(bϕ)+ϕ

(
2
3
bϕ

)
+ϕ

(
2
4
bϕ

)
+ϕ

(
2
5
bϕ

)
+ . . .

� ϕ(bϕ)+ϕ
(

1
2
bϕ

)
+ϕ

(
1
3
bϕ

)
+ϕ

(
1
4
bϕ

)
+ . . . =

∞

∑
i=1

ϕ
(

bϕ
i

)
� 1,

we get again ∑∞
i=2 ϕ

(
2u1
i

)
� 1. Since the function

f (v) =
∞

∑
i=2

ϕ
(v

i

)

is continuous on the interval [aϕ ,2u1] and f (aϕ) = 0 we can find c > 0 such that

∞

∑
i=2

ϕ
(

aϕ + c

i

)
= 1.

Defining x = (aϕ ,c,0,0, . . .) and y = (0,aϕ + c,0,0, . . .) , we have ρϕ (x) = ρϕ (y) =
ρϕ

( x+y
2

)
= 1 whence, by Lemma 1, we get ‖x‖ϕ = ‖y‖ϕ = ‖ x+y

2 ‖ϕ = 1. This means
that (ces2

ϕ , ‖ · ‖ϕ ) is not rotund.
Before formulating the next theorem assume that ϕ(bϕ) � 1 and define u1 > 0

and u2 > 0 such that ϕ(u1) = 1 and ϕ(u2) = 1
2 .

THEOREM 5. The space (ces2
ϕ ,‖ · ‖2) is rotund if and only if

(i) ϕ (bϕ) � 1 ,

(ii) ϕ vanishes only at zero,

(iii) if ϕ is affine on an interval [c,d] ⊂ [0,u2] , then ϕ is strictly convex on the
interval [e, f ] ⊂ [u2,u1] , where ϕ(c)+ϕ( f ) = ϕ(d)+ϕ(e) = 1 , and conversely,
if ϕ is affine on [e, f ] , then ϕ is strictly convex on [c,d] , where [c,d] and [e, f ]
are as above.
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Proof. Sufficiency. Assume that conditions (i)-(iii) are satisfied. Let

x = (x1,x2,0,0, . . .), y = (y1,y2,0,0, . . .) ∈ S(ces2
ϕ ,‖ · ‖2), x � 0, y � 0

(see Theorem 2 in [14]) and x �= y . Define u =
(
x1,

x1+x2
2 ,0,0, . . .

)
and v =

(
y1,

y1+y2
2 ,0,0, . . .

)
.

We have u,v ∈ (S(l2ϕ))+ ( l2ϕ is the 2-dimensional Orlicz space, see [15]), u �= v and

σ
x+ y

2
(i) =

σx(i)+σy(i)
2

=
u(i)+ v(i)

2
for i = 1,2.

From Theorem 2.2 in [15], we get that ρ2
( x+y

2

)
= Iϕ

(
u+v
2

)
< 1. By Lemma 6, ‖ x+y

2 ‖2 <

1, so (ces2
ϕ ,‖ · ‖2) is rotund.

Necessity. First we assume that ϕ(bϕ) < 1. We can find u0 ∈ (0,bϕ ] such
that ϕ(u0)+ϕ(bϕ) < 1. For x = (u0,2bϕ − u0,0,0, . . .) and y = (0,2bϕ ,0,0, . . .) we
have σxχ{1,2} = (u0,bϕ) , σyχ{1,2} = (0,bϕ) and σ x+y

2 χ{1,2} =
( u0

2 ,bϕ
)
. Therefore

ρ2 (x) < 1, ρ2 (y) < 1, and ρ2
( x+y

2

)
< 1. Simultaneously, for any λ ∈ (0,1) , we have

ρ2

( x
λ

)
= ρ2

( y
λ

)
= ρ2

(
x+ y
2λ

)
= ∞,

whence ‖x‖2 = ‖y‖2 = ‖ x+y
2 ‖2 = 1. Since x �= y , this means that (ces2

ϕ ,‖ · ‖2) is not
rotund.

Let now ϕ(bϕ) � 1 and aϕ > 0. There exists u1 ∈ (aϕ ,bϕ ] such that ϕ(u1) = 1.
Take two sequences x = (0,2u1,0,0, . . .) and y = (aϕ ,2u1 − aϕ ,0,0, . . .) . Obviously,
x �= y and, moreover, ρ2 (x) = ρ2 (y) = ρ2

( x+y
2

)
= 1. Therefore, the space (ces2

ϕ ,‖·‖2)
is not rotund.

Finally, we assume that conditions (i) and (ii) are satisfied, the function ϕ is affine
on an interval [c,d]⊂ [0,u2] and it is not strictly convex on the interval [e, f ]⊂ [u2,u1] ,
that is, there exsists an interval [e1, f1]⊂ [e, f ] such that ϕ is affine on [e1, f1] . We find
c1 , d1 such that 0 < c � c1 � d1 � c and

ϕ(c1)+ϕ( f1) = ϕ(d1)+ϕ(e1) = 1. (15)

Defining the sequences x = (c1,2 f1 − c1,0,0, . . .) and y = (d1,2e1 − d1,0,0, . . .) , we

have σxχ{1,2} = (c1, f1) , σyχ{1,2} = (d1,e1) and σ x+y
2 χ{1,2} =

(
c1+d1

2 , e1+ f1
2

)
. Since

ϕ is affine on the intervals [c1,d1] and [e1, f1] , by equation (15), we get

ρ2 (x) = ρ2 (y) = ρ2

(
x+ y

2

)
= 1,

whence we have again that (ces2
ϕ ,‖ · ‖2) is not rotund.

If ϕ is affine on an interval [e, f ] and ϕ is not strictly convex on the interval [c,d] ,
the proof proceeds in the same way. So, the proof is finished.

REMARK 5. It is easy to show that if the space (ces2
ϕ ,‖ · ‖2) is rotund, then the

space (ces2
ϕ , ‖ · ‖ϕ ) is rotund either. Example 2 on page 377 and Example 5 show that

there exists an Orlicz function for which the space (ces2
ϕ , ‖ · ‖ϕ ) is rotund, but the space

(ces2
ϕ ,‖ · ‖2) is not rotund.
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EXAMPLE 5. Let p(u) = 1 for u ∈ [ 1
2 ,∞) and p(u) = 1

n for u ∈ [ 1
n+1 , 1

n) , n � 2

and let ϕ (u) =
∫ |u|
0 p(v)dv . Since

ϕ
(

1
n

)
=
∫ 1

n

0
p(v)dv <

∫ 1
n

0

1
n
dv =

1
n2 ,

the space ces2
ϕ is nontrivial. We have aϕ = 0, bϕ = ∞ , so the space (ces2

ϕ , ‖ · ‖ϕ ) is
rotund. Since for any interval [a,b] (0 � a < b <∞) we can find real numbers c and d
such that a � c < d � b and ϕ is affine on [c,d] , we get that the space (ces2

ϕ ,‖ ·‖2) is
not rotund.

THEOREM 6. The following conditions are equivalent:

(i) ((cesϕ )a, ‖ · ‖ϕ ) is rotund,

(ii) (cesn
ϕ , ‖ · ‖ϕ ) is rotund for any n � 3 ,

(iii) (a) ∑∞
i=1ϕ

(
bϕ
i

)
� 1 ,

(b) ϕ is strictly convex on the interval [0,v2] , where 2ϕ(v2)+∑∞
i=3ϕ

( 2
i v2

)
=

1 .

Proof. The implication (i) ⇒ (ii) is obious. The proofs of the others implica-
tions are the same as the proof of Theorem 2.7 in [7]; only in the proof of the im-
plication (ii) ⇒ (iii) we must take the following sequences: x = (b,c,k,0,0, . . .) and
y = (b1,c1,k1 + k,0,0, . . .) .

THEOREM 7. The following conditions are equivalent:

(i) (cesn
ϕ , ‖ · ‖n ) is rotund for any (equivalently for some) n � 3 ,

(ii) (a) ϕ (bϕ) � 1 ,

(b) ϕ is strictly convex on the interval [0,u2] , where ϕ(u2) = 1
2 .

Proof. (ii) ⇒ (i) . Let x,y ∈ S(cesn
ϕ , ‖ · ‖n ) , x � 0, y � 0 (by Theorem 2 in [14]

it is enough to consider only nonnegative elements) and x �= y , where n � 3. Let us
note that u = (σx(1), ...,σx(n),0, . . .) and v = (σy(1), ...,σy(n),0, . . .) are elements of
lnϕ ( lnϕ is the n-dimensional Orlicz space, see [15]) and u �= v . Since

0 � σ
x+ y

2
(i) =

σx(i)+σy(i)
2

=
u(i)+ v(i)

2

for i = 1, ...,n , by Theorem 2.3 in [15], we get ρn
( x+y

2

)
= Iϕ

(
u+v
2

)
< 1. By Lemma

6, ‖ x+y
2 ‖n < 1, so (cesn

ϕ , ‖ · ‖n ) is rotund.
(i) ⇒ (ii) . The necessity of the condition ϕ (bϕ) � 1 can be proved analogously

as in Theorem 5. Suppose now that there exist a and b (0 � a < b � u2) such that ϕ
is affine on the interval [a,b] .
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Assume first that 2ϕ (a)+ ϕ
(

n−1
n a

)
< 1. Then, we can find ε > 0 such that

a+ ε � min
(
b, n−1

n−2a
)

and ϕ (a)+ ϕ (a+ ε )+ ϕ
(

(n−1)(a+ε)
n

)
� 1. We can also find

us ∈ [0,u1] such that ϕ (a)+ϕ (a+ ε )+ ϕ (us)= 1. Obviously us � (n−1)(a+ε)
n . Define

two sequences

x = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,(n−2)a,a+(n−1)ε ,nus− (n−1)(a+ ε ),0, . . .)

and
y = ( 0, ...,0︸ ︷︷ ︸

n−3 times

,(n−2)(a+ ε ),a− (n−2)ε ,nus− (n−1)a,0, . . .).

We have

σxχ{1,...,n} = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,a,a+ ε ,us), σyχ{1,...,n} = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,a+ ε ,a,us)

and

σ
x+ y

2
χ{1,...,n} =

⎛
⎝ 0, ...,0︸ ︷︷ ︸

n−3 times

,a+
ε
2
,a+

ε
2
,us

⎞
⎠ .

Since ϕ is affine on [a,b] , we get ρn (x) = ρn (y) = ρn
( x+y

2

)
= 1, so (cesn

ϕ , ‖ · ‖n ) is
not rotund.

Let now 2ϕ(a)+ϕ
(

n−1
n a

)
� 1. We can find η > 0 (a+η � min

(
b, n

n−1a
)
) and

vs (0 < vs < a ) such that ϕ(vs)+ϕ(a +η)+ϕ(a) = 1. Defining the following two
sequences

x = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,(n−2)vs,(n−1)a− (n−2)vs,a+nη ,0, . . .),

and

y = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,(n−2)vs,(n−1)(a+η)− (n−2)vs,a− (n−1)η ,0, . . .),

we have

σxχ{1,...,n} = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,vs,a,a+η), σyχ{1,...,n} = ( 0, ...,0︸ ︷︷ ︸
n−3 times

,vs,a+η ,a)

and

σ
x+ y

2
χ{1,...,n} =

⎛
⎝ 0, ...,0︸ ︷︷ ︸

n−3 times

,vs,a+
η
2

,a+
η
2

⎞
⎠ .

Therefore ρn (x) = ρn (y) = ρn
( x+y

2

)
= 1, whence we get again that (cesn

ϕ , ‖ · ‖n ) is
not rotund.
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REMARK 6. For n � 3 there holds the dependence: if the space (cesn
ϕ , ‖ · ‖n ) is

rotund, then the space (cesn
ϕ , ‖ · ‖ϕ ) is rotund either. Examples 2 and 3 on page 377

show that for some Orlicz functions ϕ the space (cesn
ϕ , ‖ · ‖ϕ ) is strictly convex, but

the space (cesn
ϕ , ‖ · ‖n ) is not strictly convex.
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(2001), 2695–2702.

[7] Y.A. CUI, H. HUDZIK, N. PETROT, S. SUANTAI AND A. SZYMASZKIEWICZ,Basic topological and
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