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Abstract. A limiting case of the Sobolev trace inequalities is investigated and the best constant
for the case is computed. Moreover, when n = 1 , the same result is obtained from recognizing
the Euler-Lagrange equation for the inequality as the mean curvature formula of plane curves.

1. Introduction

The Sobolev trace inequalities on the upper half-space R
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+ are given by
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where u is an extension of f to the upper half-space that is continuous on the closed
upper half-space and at least once differentiable on the open upper half-space, and Ap,q

is a positive constant independent of the function u . Recently, the importance of having
the sharp form of the inequalities has been recognized. For example, the solution to the
Yamabe problem turns out to depend on knowledge of the best constant of the classical
Sobolev inequality [5].

The sharp form of the Sobolev trace inequality for the case p = 2 and n > 1 is
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where u is a harmonic extension of f to the upper half-space that is continuous on the
closed upper half-space and extremal functions for the inequality are given by f (x) =
(1+ |x|2)−(n−1)/2 . Since this inequality is conformally invariant, the extremal function
given above is unique up to a conformal automorphism. W. Beckner [2] proved this
by inverting the inequality to a fractional integral on the dual space and using a special
case of the sharp Hardy-Littlewood-Sobolev inequality.

In this paper, we treat the Sobolev trace inequality for the case when p = 1. It
can be thought of as one of the limiting cases of the inequalities and is related to the
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isoperimetric inequality. The existence of the extremal function for this case is not
guaranteed by the argument used in [7] for p with 1 < p < n+1.

In section 2, we will show that the extremal function does not exist for this par-
ticular case. However, the sharp constant is computed using a rearrangement technique
on the functions on R

n+1
+ .

In section 3, we exploit the variational equations for the Sobolev trace inequality
to give a simple geometric argument to explain how to get the extremal functions for
the case n = 1.

In the following, R+ denotes the set of all positive real numbers.

2. Sharp Sobolev Trace Inequality in a Limiting Case

The limiting case of the Sobolev trace inequality with p = 1 is given by

∫
Rn

|u(x,0)|dx � C
∫

R
n+1
+

|∇u(x,y)|dxdy (1)

for a positive constant C . To find the best constant for this inequality, we look at the
following quotient:

J(u) ≡
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where u ∈W 1,1(Rn+1
+ ) and u �≡ 0. Then the best constant I can be defined by

I ≡ inf{J(u) : u ∈W 1,1(Rn+1
+ ),u �= 0}.

Define B ≡ {
g ∈W 1,1(Rn+1

+ ) : g � 0 on Rn+1
+ , and

∫
Rn g(x,0)dx = 1

}
. It is suf-

ficient to consider functions in B to compute the best constant for the inequality (1),
since J(·) is dilation invariant and J(u) = J(|u|) . Moreover, we use a rearrangement
technique to reduce further the functions to consider to a class of functions with a spe-
cial property. Namely, we take Φ∗

S to be the Steiner rearrangement of Φ . The proper
definition of the Steiner rearrangement and its properties can be found in [6]. Here Φ∗

S
is symmetric radial decreasing in |x| , and is decreasing in y . Then we have
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By the above observation, it suffices to consider functions in B having the following
property (P) :

g is symmetric radial decreasing in |x| , and is decreasing in y . (P)

For any function g having the property (P) , the inequality (3) becomes equality. It is
now clear that inf{J(g) | g has the property (P), g ∈ B} � 1.

THEOREM 1. The best constant I for the Sobolev trace inequality (1) is 1 :

I ≡ inf{J(u) : u ∈W 1,1(Rn+1
+ ), u �= 0} = 1.

Proof. We will look at the inequalities above. The inequality (3) becomes equal-
ity, since we choose f with the property (P) . The question is when the inequality (2)
becomes equality. For that we require that f satisfy∣∣∣∣∂ f

∂y
(x,y)

∣∣∣∣ = |∇ f (x,y)| for x ∈ R
n and y ∈ R+,

which implies that

∂ f
∂x j

(x,y) = 0 on R
n+1
+ for j = 1,2,3, · · · ,n.

From this, we can see that f should be a function of y variable only. On the other
hand, f (x,0) is a function in L1(Rn) , so we need some restrictions on the decay of
the function at infinity. Any function of y with appropriate decay multiplied by a char-
acteristic function in the x variable will be an extremal function. The problem is that
such functions do not belong to W 1,1(Rn+1

+ ) , which means that the extremal function
does not exist. However, we can use an approximation argument to compute the best
constant. Take a function f (x,y) = φ(y)χB(x) , where φ is a positive non-increasing
function of y variable and B is the unit ball centered at the origin in R

n . Then we have
∫

R
n+1
+

|∇ f (x,y)|dxdy =
∫

Rn
| f (x,0)|dx+σn

∫ ∞

0
φ(y)dy,

where σn is the surface area of the unit ball in R
n . If we can make the second term in

the right hand side go away, then we get the claim we made. This can be accomplished

by choosing φ(y) ≡ exp(− πy2

ε2 ) , which makes the term
∫ ∞
0 φ(y)dy = ε as small as we

want. This completes the proof. �

3. Geometric Aspect of the Variational Equation

Assume in particular that n = 1, and then the Euler-Lagrange equation for (1) is
given by

div

(
∇u(x,y)
|∇u(x,y)|

)
= 0 on (x,y) ∈ R×R+.
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We take a different route to look at the nature of extremal functions for this case. Since
we may assume by the rearrangement that this function u(x,y) is even in x variable,
we will consider functions defined on R+×R+ . Now consider any twice differentiable
nonnegative function u on R+×R+. Sard theorem tells us that almost all the numbers
in R+ are regular values of u . Take any nonnegative regular value c to have u−1(c)
a submanifold of R+ ×R+ - it is actually the level curve of u at c . Now we want to
discuss the curvature of this submanifold. Since this submanifold is 1-dimensional and
sits in R+ ×R+, it is, in fact, a plane curve. The curvature K(x,y) of this curve at
(x,y) ∈ R+×R+ can be computed as follows:

K(x,y) = (−1)
det

(
∇v(x,y)N(x,y)

N(x,y)

)

det

(
v(x,y)
N(x,y)

) ,

where N(x,y) is the unit normal vector field along u−1(c) , v(x,y) is a basis for the
tangent space of u−1(c) at (x,y) and ∇v(x,y)N(x,y) is the derivative of the vector field
N(x,y) with respect to the vector v(x,y) (see [8]). Since ∇u(x,y) is a normal vector
field to the level curves, we can take

N(x,y) =
∇u(x,y)
|∇u(x,y)| and v(x,y) =

(
∂u
∂y

(x,y),−∂u
∂x

(x,y)
)

.

Using the fact that

∇v(x,y)N(x,y) = div

(
∇u(x,y)
|∇u(x,y)|

)(
∂u
∂y

(x,y),−∂u
∂x
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)

,

we can see

K(x,y) = −div

(
∇u(x,y)
|∇u(x,y)|

)
.

By the above observation, we see that the curvatures of all the level curves of an ex-
tremal function u(x,y) are equal to 0, which implies that all the level curves of u are
straight lines. By changes of the coordinates, if necessary, we may assume that the level
curves are parallel to either x or y axis. Then, we can get the same kind of functions as
we had in the previous section for the inequality.
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