
Mathematical
Inequalities

& Applications
Volume 14, Number 1 (2011), 79–92

SOME GENERALIZATIONS FOR OPIAL’S INEQUALITY

INVOLVING SEVERAL FUNCTIONS AND THEIR DERIVATIVES

OF ARBITRARY ORDER ON ARBITRARY TIME SCALES

BAŞAK KARPUZ AND UMUT MUTLU ÖZKAN

(Communicated by M. Bohner)

Abstract. In this paper, some various types of Opial’s inequality involving several functions and
their higher-order derivatives are presented on arbitrary time scales. The well-known Muirhead’s
inequality is employed to obtain very interesting results. While dealing with higher-order deriva-
tives, the generalized Taylor’s formula and the generalized polynomials are used to simplify our
proofs too. Our new results generalize and extend the existing results in the literature, and some
of the works done by Pachpatte. Moreover, our results are not only new for arbitrary time scales,
but also new for the continuous and the discrete cases.

1. Introduction

Opial type inequalities have many applications in the theories of differential and
difference equations, for instance such inequalities are used to prove existence of solu-
tions (see [1, § 2.27 and § 2.28]). The readers may find very interesting results about
continuous and discrete versions of Opial’s inequality in the book [1], which is a very
nice collection of the most popular articles on this subject. In this paper, we will study
Opial’s inequality on arbitrary time scales, which unifies and extends continuous and
discrete calculus (see [7]). The readers are referred to the book [3] for fundamen-
tals of the time scale theory. Thus, our results not only cover the continuous and
the discrete cases, but also cover and improve the new results on time scales in [4].
For some classical results on Opial’s inequality, the readers are referred to the articles
[2, 5, 6, 8, 9, 10, 12, 13, 14, 15]. In the literature, one can find so many results on the
continuous and/or the discrete cases. However, to the best of knowledge, [4] is the only
paper that succeeds to unify some of these results by the means of the time scale theory.
In this paper, after a long period of time, we succeed to extend, generalize and improve
most results of the papers stated above.

Now, we give some of the easiest versions of the Opial’s inequality as follows:
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THEOREM A. Continuous Opial’s inequality, see [1, 15] For f ∈ C1
rd([a,b]R,R)

with f (a) = 0 , we have

∫ b

a

∣∣ f (ξ ) f ′(ξ )
∣∣dξ � b−a

2

∫ b

a

[
f ′(ξ )

]2
dξ

with equality f (t) = c(t −a) for t ∈ [a,b]R , where c is a constant.

The discrete version of the above result due to Lasota reads as follows:

THEOREM B. Discrete Opial’s inequality, see [1, 9] For f be a sequence defined
on [a,b]Z with f (a) = 0 , we have

b−1

∑
ξ=a

∣∣[ f (ξ )+ f (ξ +1)]Δ f (ξ )
∣∣� (b−a)

b−1

∑
ξ=a

[
Δ f (ξ )

]2

with equality f (t) = c(t −a) for t ∈ [a,b]Z , where c is a constant.

The time scale unification of the above two results due to Bohner and Kaymakçalan
is quoted below.

THEOREM C. Dynamic Opial’s inequality, see [4] For f ∈ C1
rd([a,b]T,R) with

f (a) = 0 , we have

∫ b

a

∣∣[ f (ξ )+ f σ (ξ )] f Δ(ξ )
∣∣Δξ � (b−a)

∫ b

a

[
f Δ(ξ )

]2Δξ
with equality f (t) = c(t −a) for t ∈ [a,b]T , where c is a constant.

Some very interesting generalizations are given by Pachpatte, who works with
two functions in Opial type inequalities (see [1, 12, 13, 14]). We quote two important
generalizations of Pachpatte’s below. First, we give the continuous case.

THEOREM AA. See [1, 12] For f ,g ∈ C1
rd([a,b]R,R) with f (a) = g(a) = 0 , we

have
∫ b

a

[∣∣ f (ξ )g′(ξ )
∣∣+ ∣∣g(ξ ) f ′(ξ )

∣∣]dξ � b−a
2

∫ b

a

[[
f ′(ξ )

]2 +
[
g′(ξ )

]2]dξ
with equality f (t) = g(t) = c(t−a) for t ∈ [a,b]R , where c is a constant.

One can easily see that Theorem AA reduces to Theorem A by letting f = g .
And next, we give the following result which can be regarded as the discrete cor-

responding of Theorem AA.

THEOREM BB. See [1, 13, 14] For f ,g two sequences defined for t ∈ [a,b]Z with
f (a) = g(a) = 0 , we have

b−1

∑
ξ=a

[∣∣ f (ξ )Δg(ξ )
∣∣+ ∣∣g(ξ +1)Δ f (ξ )

∣∣]� b−a
2

b−1

∑
ξ=a

[[
Δ f (ξ )

]2 +
[
Δg(ξ )

]2]
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with equality f (t) = g(t) = c(t−a) for t ∈ [a,b]Z , where c is a constant.

Letting f = g , one can see that Theorem BB reduces to Theorem B provided that f
is of fixed sign. In the case that f alternates in sign, the left-hand side of the inequality
in Theorem BB is not less than the left-hand side of the inequality in Theorem B, this
fact follows from the following simple inequality:

|α +β |� |α|+ |β | for α,β ∈ R.

It is not hard to check that the inequality given above holds with equality provided that
at least one of α and β is 0 or they have same signs. This reason shows us why
Theorem BB reduces to Theorem B when f is of fixed sign.

The motivation of this paper comes from the works done by Pachpatte, we extend
and generalize his key idea to several functions and arbitrary time scales. Since the
dynamic unification of Theorem A and Theorem B is given in Theorem C, it is natural
to ask the question ”Is it possible to give a dynamic generalization to Theorem AA and
Theorem BB?”. In this paper, we shall give the expected affirmative answer for the
question stated above with an important application of the generalized Taylor’s formula
on time scales. We not only generalize the results by Pachpatte, but also improve some
of the very important results about this subject. Unlike to the earlier results due to Pach-
patte, we will consider several functions instead of two, and their (Delta) derivatives of
higher-order.

Now, we state Muirhead’s inequality, which allows us to obtain new interesting
results.

THEOREM D. See [11, pp. 338] Let Sn be the symmetry group of the set [1,n]N ,
and A := (α1,α2, . . . ,αn) , B := (β1,β2, . . . ,βn) be two vectors with nonnegative entries
and ∑k

j=1α j � ∑k
j=1β j for all k ∈ [1,n− 1]N and ∑n

j=1α j = ∑n
j=1β j , then it is said

that A majorizes B (we prefer the notation A�B), and the following inequality is true:

∑
π∈Sn

n

∏
j=1

x
α j
π j � ∑

π∈Sn

n

∏
j=1

x
β j
π j ,

where π j denotes the j -th component of the permutation π , and x j ∈ R
+
0 holds for all

j ∈ [1,n]N .

One can easily see that for (2,0)� (1,1) Theorem D gives us the following well-
known inequality

x2
1 + x2

2 � 2x1x2 with x1,x2 � 0.

This inequality gives us the well-known inequality between arithmetic and geometric
means by letting y1 := 2x2

1 and y2 := 2x2
2 , i.e.,

y1 + y2

2
� √

y1y2.

This paper is arranged as follows: in § 2, we give some preliminaries adapted from
[3]; in § 3, we start to state our main results on generalizations of Opial’s inequality,
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where we make a very nice application of the generalized Taylor’s formula on time
scales; in § 4, we consider weighted cases of the results in § 3; and finally in § 5, before
we close, we give some remarks about our results. Throughout the paper, for conve-
nience, the empty sum and the empty product are assumed to be 0 and 1, respectively,
i.e., for α,β ∈ Z with β < α , ∑β

j=α f j = 0 and ∏β
j=α f j = 1.

2. Time scales essentials

Here, for completeness in the paper, we quote some definitions and results from
[3], which will be applied in our proofs.

DEFINITION 2.1. A time scale T is a nonempty closed subset of R .

DEFINITION 2.2. On an arbitrary time scale T , the forward jump operator σ :
T→T is defined by σ(t) := inf(t,∞)T for t ∈ T , the backward jump operator ρ : T→
T is defined by ρ(t) := sup(−∞,t)T for t ∈ T , and the graininess function μ : T→R

+
0

is defined by μ(t) := σ(t)− t for t ∈ T . For convenience, we set inf /0 := supT and
sup /0 := infT .

DEFINITION 2.3. Let t be a point in T . If σ(t) = t holds, then t is called right-
dense, otherwise (σ(t) > t ) it is called right-scattered. Similarly, if ρ(t)= t holds, then
t is called left-dense, a point which is not left-dense (ρ(t) < t ) is called left-scattered.

DEFINITION 2.4. A function f : T→R is called rd-continuous provided that it is
continuous at right-dense points of T and its left-sided limits exists (finite) at left-dense
points of T . The set of rd-continuous functions is denoted by Crd(T,R) , and C1

rd(T,R)
denotes the set of functions of which delta derivative belongs to Crd(T,R) .

Now, we give the following formula for differentiation of several functions.

THEOREM 2.1. (See [3, Exercise 1.22]) Let n ∈ N and f j : T → R be differen-
tiable functions for j ∈ [1,n]N , then we have[

n

∏
j=1

f j(t)

]Δ
=

n

∑
j=1

{[
j−1

∏
i=1

f σi (t)

]
f Δj (t)

[
n

∏
i= j+1

fi(t)

]}
for t ∈ T.

THEOREM 2.2. (Existence of antiderivatives [3, Theorem 1.74]) Let f be a rd-
continuous function. Then f has an antiderivative F such that FΔ = f holds.

DEFINITION 2.5. If f ∈ Crd(T,R) and a ∈ T , then we define the integral by

F(t) :=
∫ t

a
f (ξ )Δξ for t ∈ T.

THEOREM 2.3. ([3, Theorem 1.77]) Let f ,g be rd-continuous functions, a,b,c∈
T and α,β ∈ R . Then, the following statements are true:
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1.
∫ b
a

[
α f (ξ )+βg(ξ )

]
Δξ = α

∫ b
a f (ξ )Δξ +β

∫ b
a g(ξ )Δξ ,

2.
∫ b
a f (ξ )Δξ = −∫ a

b f (ξ )Δξ ,

3.
∫ c
a f (ξ )Δξ =

∫ b
a f (ξ )Δξ +

∫ c
b f (ξ )Δξ ,

4.
∫ b
a f (ξ )gΔ(ξ )Δξ = f (b)g(b)− f (a)g(a)− ∫ b

a f Δ(ξ )g(σ(ξ ))Δξ .

Now, we give the definition of the generalized polynomials as follows:

hn(t,s) :=

⎧⎨
⎩

1, n = 0∫ t

s
hn−1(ξ ,s)Δξ , n ∈ N

and

gn(t,s) :=

⎧⎨
⎩

1, n = 0∫ t

s
gn−1(σ(ξ ),s)Δξ , n ∈ N

for all s, t ∈ T .
The readers can find very useful and interesting results on the generalized polyno-

mials in [3, § 1.6].

PROPERTY 2.1. Using induction it is easy to see that hn(t,s) � 0 holds for all
n ∈ N and s, t ∈ T with t � s and (−1)nhn(t,s) � 0 holds for all n ∈ N and s,t ∈ T

with t � s. Moreover, hn(t,s) is increasing with respect to its first component for all
t � s.

The following result can be inferred from [3, Lemma 1.119].

LEMMA 2.1. For n ∈ N and t ∈ T , we have gn(t,s) = 0 for all s ∈ [ρn−1(t),t]T .

The following result is found in [3, Theorem 1.112], which will be needed in our
proofs.

LEMMA 2.2. For n ∈ N , t ∈ T and s ∈ T
κn

, we have hn(t,s) = (−1)ngn(s,t) .

By Lemma 2.1 and Lemma 2.3, we can give the following result.

LEMMA 2.3. For n ∈ N and t ∈ T , we have hn(t,s) = 0 for all s ∈ [ρn−1(t),t]T .

Now, we quote the following well-known result.

THEOREM 2.4. (Taylor’s formula [3, Theorem 1.113]) Let n∈N and f ∈Cn
rd(T,R)

be an n times differentiable function. For s ∈ T
κn−1

, we have

f (t) =
n−1

∑
j=0

h j(t,s) f Δ
j
(s)+

∫ ρn−1(t)

s
hn−1(t,σ(ξ )) f Δ

n
(ξ )Δξ for all t ∈ T.
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Also, we need the following integral inequality.

LEMMA 2.4. (Hölder’s inequality [3, Theorem 6.13]) Let a,b ∈ T . For f ,g ∈
Crd(T,R) , we have

∫ b

a

∣∣ f (ξ )g(ξ )
∣∣Δξ �

(∫ b

a

∣∣ f (ξ )
∣∣pΔξ) 1

p
(∫ b

a

∣∣g(ξ )
∣∣qΔξ) 1

q

,

where p > 1 and 1/p+1/q = 1 .

3. Generalizations of Opial’s inequality on time scales

In this section, we give our generalized Opial’s inequalities, which also generalize
some of the important works done by Pachpatte.

THEOREM 3.1. Let n ∈ N , a,b ∈ T and f j ∈ C1
rd(T,R) for all j ∈ [1,n + 1]N

with f j(a) = 0 for all j ∈ [1,n+1]N . Then, the following inequality holds

∫ b

a

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δj (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ � (b−a)n

n+1

∫ b

a

n+1

∑
j=1

∣∣ f Δj (ξ )
∣∣n+1Δξ (1)

with equality f j(t) = c(t−a) for all j ∈ [1,n+1]N , where c is a constant.

Proof. The proof of this theorem can be done by following very similar steps to
that of the following one, and we skip it here. �

REMARK 3.1. Theorem 3.1 reduces to Theorem AA and Theorem BB by letting
n = 1, T = R , and n = 1, T = Z , respectively. Also, note that Theorem AA and The-
orem BB generalize Theorem A and Theorem B, respectively. Theorem 3.1 includes
Theorem C with n = 1 and f1 = f2 for arbitrary time scales.

THEOREM 3.2. Let m,n ∈ N , a,b ∈ T and f j ∈ C1
rd(T,R) with f j(a) = 0 for all

j ∈ [1,n+1]N . Then, the following inequality holds

∫ b

a

m

∑
j=0

∣∣∣∣∣
[

n+1

∏
i=1

f σi (ξ )

] j[
n+1

∏
i=1

fi(ξ )

]m− j∣∣∣∣∣
n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δj (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ
�(b−a)(n+1)(m+1)−1

n+1

∫ b

a

[
n+1

∑
j=1

∣∣ f Δj (ξ )
∣∣](n+1)(m+1)

Δξ

(2)

with equality f j(t) = c(t−a) for all j ∈ [1,n+1]N , where c is a constant.
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Proof. Set Fj(t) :=
∫ t
a | f Δj (ξ )|Δξ for t ∈ [a,b]T and all j ∈ [1,n+1]N . Then, on

[a,b]T , we have FΔ
j = | f Δj | and Fj � | f j| for all j ∈ [1,n + 1]N . Now, set F(t) :=

∏n+1
j=1 Fj(t) for t ∈ [a,b]T . It follows that

∫ b

a

m

∑
j=0

∣∣∣∣∣
[

n+1

∏
i=1

f σi (ξ )

] j[ n+1

∏
i=1

fi(ξ )

]m− j∣∣∣∣∣
n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δj (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ
�
∫ b

a

m

∑
j=0

[
n+1

∏
i=1

Fσ
i (ξ )

] j[ n+1

∏
i=1

Fi(ξ )

]m− j n+1

∑
j=1

{[
j−1

∏
i=1

Fσ
i (ξ )

]
FΔ

j (ξ )

[
n+1

∏
i= j+1

Fi(ξ )

]}
Δξ

=
∫ b

a

m

∑
j=0

[
Fσ (ξ )

] j[
F(ξ )

]m− j
FΔ(ξ )Δξ =

∫ b

a

[[
F(ξ )

](m+1)
]Δ
Δξ

=
[
F(b)

]m+1
=

n+1

∏
j=1

[
Fj(b)

]m+1
� 1

n+1

n+1

∑
j=1

[
Fj(b)

](n+1)(m+1)
(3)

is true, where we have applied the arithmetic mean and geometric mean inequalities at
the last step. On the other hand, for j ∈ [1,n+1]N , we have

[
Fj(b)

](n+1)(m+1)
=

(∫ b

a

∣∣ f Δj (ξ )
∣∣Δξ
)(n+1)(m+1)

�(b−a)(n+1)(m+1)−1
∫ b

a

∣∣ f Δj (ξ )
∣∣(n+1)(m+1)Δξ

(4)

by applying Hölder’s inequality. Considering (4) in (3), we get (2).
On the other hand, by letting f j(t) = c(t−a) for t ∈ [a,b]T and all j ∈ [1,n+1]N

for some constant c , one can easily see that (2) holds with equality. The proof is hence
completed. �

REMARK 3.2. By letting n = 1, T = R , Theorem 3.2 reduces to [12, Theorem 4],
which generalizes some results in [8]. To the best our knowledge, this result for T �= R

is new.

THEOREM 3.3. Let �,n∈ N , a,b ∈ T and f j ∈ C�
rd(T,R) with f Δ

i

j (a) = 0 for all
j ∈ [1,n+1]N and all i ∈ [0, �)N0 . Then, the following inequality holds

∫ b

a

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δ

�

j (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ

�
(

1
n+1

∫ b

a

(∫ σ(ξ )

a

[
h�−1(σ(ξ ),σ(ζ ))

]2
Δζ

)n

Δξ

) 1
2 n+1

∑
j=1

(∫ b

a

[
f Δ

�

j (ξ )
]2
Δξ

) n+1
2

.
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Proof. By the initial values, Lemma 2.3 and Taylor’s formula, we have

f j(t) =
∫ t

a
h�−1(t,σ(ξ )) f Δ

�

j (ξ )Δξ for all t ∈ [a,b]T and all j ∈ [0,n+1]N. (5)

Now, set

Fj(t) :=
∫ t

a

[
f Δ

�

j (ξ )
]2
Δξ for all t ∈ [a,b]T and all j ∈ [0,n+1]N. (6)

Then, from Property 2.1, Hölder’s inequality and (5), we have∣∣∣∣∣
[

j−1

∏
i=1

f σi (t)

]
f Δ

�

j (t)

[
n+1

∏
i= j+1

fi(t)

]∣∣∣∣∣
=

∣∣∣∣∣
[

j−1

∏
i=1

∫ σ(t)

a
h�−1(σ(t),σ(ξ )) f Δ

�

i (ξ )Δξ

][
FΔ

j (t)
] 1

2

[
n+1

∏
i= j+1

∫ t

a
h�−1(t,σ(ξ )) f Δ

�

i (ξ )Δξ

]∣∣∣∣∣
�H(t)

([
j−1

∏
i=1

Fσ
i (t)

]
FΔ

j (t)

[
n+1

∏
i= j+1

Fi(t)

]) 1
2

(7)

for all j ∈ [1,n+1]N , where

H(t) :=

(∫ σ(t)

a

[
h�−1(σ(t),σ(ξ ))

]2
Δξ

) n
2

for all t ∈ [a,b]T. (8)

Integrating (7) from a to b and applying Hölder’s inequality, we get

∫ b

a

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δ

�

j (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ

�
(∫ b

a

[
H(ξ )

]2
Δξ

) 1
2
(∫ b

a

[
j−1

∏
i=1

Fσ
i (ξ )

]
FΔ

j (ξ )

[
n+1

∏
i= j+1

Fi(ξ )

]
Δξ

) 1
2

.

Then, summing the resulting inequality over j ∈ [1,n+1]N , we get

∫ b

a

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δ

�

j (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ

�
(∫ b

a

[
H(ξ )

]2
Δξ

) 1
2 n+1

∑
j=1

(∫ b

a

[
j−1

∏
i=1

Fσ
i (ξ )

]
FΔ

j (ξ )

[
n+1

∏
i= j+1

Fi(ξ )

]
Δξ

) 1
2

�
(∫ b

a

[
H(ξ )

]2
Δξ

) 1
2
(

(n+1)
n+1

∑
j=1

∫ b

a

[
j−1

∏
i=1

Fσ
i (ξ )

]
FΔ

j (ξ )

[
n+1

∏
i= j+1

Fi(ξ )

]
Δξ

) 1
2
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=

(
(n+1)

∫ b

a

[
H(ξ )

]2
Δξ

) 1
2
(∫ b

a

[
n+1

∏
j=1

Fj(ξ )

]Δ
Δξ

) 1
2

=

(
(n+1)

∫ b

a

[
H(ξ )

]2
Δξ

) 1
2
(

n+1

∏
j=1

Fj(b)

) 1
2

�
(

1
n+1

∫ b

a

[
H(ξ )

]2
Δξ

) 1
2 n+1

∑
j=1

[
Fj(b)

] n+1
2

, (9)

where the elementary inequalities

n+1

∑
j=1

λ
1
2
j �

(
(n+1)

n+1

∑
j=1

λ j

) 1
2

and

(
n+1

∏
j=1

λ j

) 1
2

� 1
n+1

n+1

∑
j=1

λ
n+1
2

j

for all λ j ∈ R
+
0 and j ∈ [1,n+1]N

are employed while passing from the second step to the third one, and passing to the last
step, respectively. Obviously, from (6) and (8), we see that (9) is the desired inequality,
and the proof is hence completed. �

THEOREM 3.4. Let �,m,n ∈ N , a,b ∈ T and f j ∈ C�
rd(T,R) with f Δ

i

j (a) = 0 for
all j ∈ [1,n+1]N and all i ∈ [0, �)N . Then, the following inequality holds

∫ b

a

m

∑
j=0

∣∣∣∣∣
[

n+1

∏
i=1

f σi (ξ )

] j[ n+1

∏
i=1

fi(ξ )

]m− j∣∣∣∣∣
n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δ

�

j (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ

�
(

m+1
n+1

∫ b

a

(∫ σ(ξ )

a

[
h�−1(σ(ξ ),σ(ζ ))

]2
Δζ

)m+n

Δξ

) 1
2

×
n+1

∑
j=1

(∫ b

a

[
f Δ

�

j (ξ )
]2
Δξ

) (m+1)(n+1)
2

.

Proof. It is very easy to prove this theorem by following very similar steps to the
proofs of Theorem 3.2 and Theorem 3.3. �

4. Weighted cases

In this section, we give weighted cases of the results given in § 3.

THEOREM 4.1. Let n∈N , a,b∈T and f j ∈C1
rd(T,R) with f j(a) = 0 for all j ∈

[1,n+ 1]N , and that p ∈ Crd(T,R+) with
∫ b
a

[
p(ξ )

]−1/nΔξ < ∞ and q ∈ Crd(T,R+
0 )
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be a nonincreasing function. Then, the following inequality holds

∫ b

a
qσ (ξ )

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δj (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ
� 1

n+1

(∫ b

a

1[
p(ξ )

] 1
n

Δξ

)n(∫ b

a
p(ξ )qσ(ξ )

n+1

∑
j=1

∣∣ f Δj (ξ )
∣∣n+1Δξ

)
.

(10)

Proof. First, we set

Fj(t) :=
∫ t

a

[
qσ (ξ )

] 1
n+1
∣∣ f Δj (ξ )

∣∣Δξ , then FΔ
j (t) =

[
qσ (t)

] 1
n+1
∣∣ f Δj (t)

∣∣
for t ∈ [a,b]T and all j ∈ [1,n+1]N . Then we have

Fj(t) � q
1

n+1 (t)
∫ t

a
| f Δj (ξ )|Δξ � q

1
n+1 (t)

∣∣∣∣∣
∫ t

a
f Δj (ξ )Δξ

∣∣∣∣∣� q
1

n+1 (t)
∣∣ f j(t)

∣∣
for t ∈ [a,b]T and all j ∈ [1,n + 1]N (note here that for any t ∈ [a,b]T , ξ ∈ [a,t)T

implies σ(ξ ) � t and thus qσ (ξ ) � q(t)). Now, set F(t) := ∏n+1
j=1 Fj(t) for t ∈ [a,b]T .

It follows very similar to the proof of Theorem 3.2 that

∫ b

a
qσ (ξ )

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δj (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ
�
∫ b

a

n+1

∑
j=1

{[
j−1

∏
i=1

Fσ
i (ξ )

]
FΔ

j (ξ )

[
n+1

∏
i= j+1

Fi(ξ )

]}
Δξ

=
∫ b

a
FΔ(ξ )Δξ = F(b) =

n+1

∏
j=1

Fj(b) � 1
n+1

n+1

∑
j=1

[
Fj(b)

]n+1

=
1

n+1

n+1

∑
j=1

{∫ b

a

1[
p(ξ )

] 1
n+1

[
p(ξ )qσ (ξ )

] 1
n+1
∣∣ f Δj (ξ )

∣∣Δξ
}n+1

� 1
n+1

(∫ b

a

1[
p(ξ )

] 1
n

Δξ

)n n

∑
j=1

{∫ b

a
p(ξ )qσ (ξ )

∣∣ f Δj (ξ )
∣∣n+1Δξ

}
, (11)

where we have applied Hölder’s inequality in the last step. It is clear that (10) equal to
(11), and this completes the proof. �

REMARK 4.1. Theorem 4.1 reduces to [12, Theorem 2] and [13, Theorem 2] by
letting n = 1, T = R , and n = 1, T = Z , respectively. Also Theorem 4.1 includes [4,
Theorem 4.1] with n = 1 and f1 = f2 on arbitrary time scales provided that f1 f σ1 � 0
holds on [a,b]κ

T
.
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THEOREM 4.2. Let n ∈ N , a,b ∈ T and f j ∈ C1
rd(T,R) with f j(a) = 0 for all

j ∈ [1,n + 1]N , and that p ∈ Crd(T,R+) with
∫ b
a

[
p(ξ )

]−1/(m+n)Δξ < ∞ and q ∈
Crd(T,R+

0 ) be a nonincreasing function. Then, the following inequality holds

∫ b

a
qσ (ξ )

m

∑
j=0

∣∣∣∣∣
[

n+1

∏
i=1

f σi (ξ )

] j[n+1

∏
i=1

fi(ξ )

]m− j∣∣∣∣∣
×

n+1

∑
j=1

∣∣∣∣∣
[

j−1

∏
i=1

f σi (ξ )

]
f Δj (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]∣∣∣∣∣Δξ

� 1
n+1

(∫ b

a

1[
p(ξ )

] 1
m+n

Δξ

) (m+n)(m+1)(n+1)
m+n+1

×
n+1

∑
j=1

(∫ b

a
p(ξ )qσ (ξ )

∣∣ f Δj (ξ )
∣∣m+n+1Δξ

) (m+1)(n+1)
m+n+1

.

Proof. Proof for this result can be obtained easily, so we prefer not to give it
here. �

The following two weighted versions of Theorem 3.3 and Theorem 3.4 can be
obtained easily, and we omit the proofs.

THEOREM 4.3. Let �,n ∈ N , a,b ∈ T and f j ∈ C�
rd(T,R) with f Δ

i

j (a) = 0 for
all j ∈ [1,n+ 1]N and all i ∈ [0, �)N0 , and that q ∈ Crd(T,R+

0 ) . Then, the following
inequality holds

∫ b

a
q(ξ )

n+1

∑
j=1

{[
j−1

∏
i=1

f σi (ξ )

]
f Δ

�

j (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]}
Δξ

�
(

1
n+1

∫ b

a

([
q(ξ )

]2 ∫ σ(ξ )

a

[
h�−1(σ(ξ ),σ(ζ ))

]2
Δζ

)n

Δξ

) 1
2

×
n+1

∑
j=1

(∫ b

a

[
f Δ

�

j (ξ )
]2
Δξ

) n+1
2

.

REMARK 4.2. Theorem 4.3 reduces to [12, Theorem 5] by letting n = 1, T = R ,
which generalizes [6, Theorem 1]. To the best our knowledge, this result for T �= R is
not stated in the literature yet.

THEOREM 4.4. Let �,m,n∈N , a,b∈T and f j ∈C�
rd(T,R) for all j ∈ [1,n+1]N

with f Δ
i

j (a) = 0 for all j ∈ [1,n+ 1]N and all i ∈ [0, �)N0 , and that q ∈ Crd(T,R+) .
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Then, the following inequality holds

∫ b

a
q(ξ )

m

∑
j=0

{[
n+1

∏
i=1

f σi (ξ )

] j[ n+1

∏
i=1

fi(ξ )

]m− j}

×
n+1

∑
j=1

{[
j−1

∏
i=1

f σi (ξ )

]
f Δ

�

j (ξ )

[
n+1

∏
i= j+1

fi(ξ )

]}
Δξ

�
(

m+1
n+1

∫ b

a

([
q(ξ )

]2 ∫ σ(ξ )

a

[
h�−1(σ(ξ ),σ(ζ ))

]2
Δζ

)m+n

Δξ

)1/2

×
n+1

∑
j=1

(∫ b

a

[
f Δ

�

j (ξ )
]2
Δξ

) (m+1)(n+1)
2

.

REMARK 4.3. Theorem 4.4 reduces to [12, Theorem 4] by letting n = 1, T = R .
To the best our knowledge, this result for T �= R is also new for the literature.

5. Final comments and remarks

Our results can be extended by the applying of Muirhead’s inequality stated in
Theorem D, for instance the result of Theorem 3.2 can be arranged as follows:

COROLLARY 5.1. In additions to assumptions of Theorem 3.2, suppose that there
exists (α1,α2, . . . ,αn+1) such that ∑n+1

j=1 α j = n+1 and ∑k
j=1α j � k for all k ∈ [1,n]N ,

then the right-hand side of (2) can be replaced by the following one

1
(n+1)! ∑

π∈Sn+1

{
n+1

∏
j=1

(b−a)α j(m+1)
∫ b

a

∣∣∣∣∣
[

n+1

∏
j=1

f Δπ j
(ξ )

]α j(m+1)∣∣∣∣∣Δξ
}

,

where Sn+1 is the set of all permutations of the set [1,n+ 1]N , and π j stands for the
j -th component of the permutation π .

Proof. By the second term in (3) and Muirhead’s inequality, we have

n+1

∏
j=1

[
Fj(b)

]m+1
=

1
(n+1)! ∑

π∈Sn+1

n+1

∏
j=1

[
Fπ j(b)

]m+1

� 1
(n+1)! ∑

π∈Sn+1

n+1

∏
j=1

[
Fπ j(b)

]α j(m+1)
,

where (α1,α2, . . . ,αn+1)� (1,1, . . . ,1) . The rest of the proof is similar to that of Theo-
rem 3.2. �
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REMARK 5.1. It is not hard to see that Corollary 5.1 reduces to Theorem 3.2 by
letting β j = 1 for all j ∈ [1,n+1]N .

COROLLARY 5.2. (See [12, Theorem 6] and [1, Theorem 2.14.4]) In additions to
assumptions of Theorem 3.2, suppose that there exists an integer k � 2 such that a+
j(b− a)/k ∈ [a,b]T holds for j ∈ [1,k− 1]N , then the right-hand side of (2) can be
replaced by the following smaller one

1
n+1

(
b−a

k

)(m+1)(n+1)−1∫ b

a

[
n+1

∑
j=1

∣∣ f Δj (ξ )
∣∣](m+1)(n+1)

Δξ .

Proof. In this case, we apply Theorem 3.2 on each one of the intervals [a+ j(b−
a)/k,a+( j + 1)(b− a)/k]T for j ∈ [0,k− 1]N0 , and then sum the resulting inequali-
ties. �

REMARK 5.2. Our results in § 3 and § 4 can also be easily improved as done for
Theorem 3.1 by considering Corollary 5.1 and Corollary 5.2.

REMARK 5.3. Our results in § 3 and § 4 can be extended by applying Hölder’s
inequality with different p values.

REMARK 5.4. Arbitrary functions can be inserted into the inequalities of Theo-
rem 4.3 and Theorem 4.4 to improve their results as in Theorem 4.1 and Theorem 4.2.
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