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(Communicated by N. Elezović)

Abstract. In this paper, Itô stochastic integro-differential equations are considered. By estab-
lishing an L -operator integro-differential inequality and using the properties of M -cone and
stochastic analysis technique, we obtain some new sufficient conditions ensuring the exponential
p -dissipativity of the stochastic integro-differential equations. An example is also discussed to
illustrate the efficiency of the obtained results.

1. Introduction

Integro-differential equations arise widely in scientific fields, where it is neces-
sary to take into account aftereffect or delay such as control theory, biology, ecology,
medicine, etc. (cf. [1–4]). Especially, one always describes a model which possesses
hereditary properties by integro-differential equations in practice.

Recently, the asymptotic behavior of dynamical systems has been widely studied
(for instance, see [5–9]). As is well known, dissipativity is one of the most important
components in the theory of asymptotic behavior. It has good application in many areas,
such as stability theory, chaos and synchronization theory, system norm estimation and
robust control [10]. In particular, delay effect on the dissipativity and other behaviors
of integro-differential equations have been attracted the interest of many authors and
various results are reported (for instance, see [4, 11–14]). However, besides delay
effect, stochastic effect likewise exists in real system. A lot of dynamical systems have
variable structures subject to stochastic abrupt changes, which may result from abrupt
phenomena such as stochastic failures and repairs of the components, changes in the
interconnections of subsystems, sudden environment changes, etc. Many interesting
results on stochastic effect have been reported, e.g., see [15–21].

Therefore, it is necessary to consider both stochastic and delay effect on the dis-
sipativity of integro-differential equations. However, to the best of our knowledge,
there are no results on the problems of the exponential p -dissipativity of stochastic
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integro-differential equations. This paper presents one such method by establishing an
L -operator integro-differential inequality and employing M -cone. Based on the ob-
tained method, we shall give sufficient conditions for the exponential p -dissipativity of
a class of stochastic integro-differential equations. An example is given to illustrate the
efficiency of the results.

2. Model and preliminaries

To begin with, we introduce some notation and recall some basic definitions. Let

I denote the n -dimensional unit matrix, N
Δ= {1,2, · · · ,n} , R+ = [0,∞) . For A,B ∈

Rm×n or A,B ∈ Rn , A � B(A � B,A > B,A < B) means that each pair of corresponding
elements of A and B satisfies the inequality “� (�,>,< )”. Especially, A is called a
nonnegative matrix if A � 0, and z is called a positive vector if z > 0.

C[X ,Y ] denote the space of continuous mappings from the topological space X

to the topological space Y . In particular, let C
Δ= C[(−∞,0],Rn] denote the family

of all bounded continuous Rn -valued functions ϕ defined on (−∞,0] with the norm
‖ϕ‖ = sup−∞<θ�0 |ϕ(θ )| , where | · | is Euclidean norm on Rn .

For x ∈ Rn, ϕ ∈C, p > 0, we define

[x]p+ = (|x1|p, · · · , |xn|p)T , especially, [x]1+ = (|x1|, · · · , |xn|)T ,

col{xi}n = col(x1,x2, · · · ,xn), [ϕ(t)]∞ = ([ϕ1(t)]∞, · · · , [ϕn(t)]∞)T ,

[ϕ(t)]∞+ = [[ϕ(t)]1+]∞, [ϕi(t)]∞ = sup
−∞<s�0

{ϕi(t + s)}, i ∈ N ,

and D+ϕ(t) denote the upper right derivative of ϕ(t) at time t .
Let (Ω,F ,{Ft}t�t0 ,P) be a complete probability space with a filtration {Ft}t�t0

satisfying the usual conditions (i.e., it is right continuous and Ft0 contains all P-
null sets). w(t) = (w1(t), · · · ,wm(t))T is an m-dimensional Brownian motion defined
on (Ω, F , {Ft}t�t0 , P) . Let Cb

Ft0
[(−∞,0],Rn] denote the family of all bounded

Ft0 -measurable, C[(−∞,0],Rn]-valued random variables ϕ , satisfying ‖ϕ‖p
Lp =

sup−∞<θ�0 E|ϕ(θ )|p < ∞ , where E denotes the expectation of stochastic process.
In this paper, we consider the following Itô stochastic integro-differential equa-

tions:

dxi(t) =

[
−aixi(t)+

n

∑
j=1

ai j f j(x j(t))+
n

∑
j=1

∫ t

−∞
pi j(t− s)g j(x j(s))ds+ Ji

]
dt

+
m

∑
l=1

σil(t,xi(t))dwl(t), t � t0, (1)

where ai > 0, Ji � 0, ai j, i, j ∈N are constants, f j,g j ∈C[R,R], j ∈N ; pi j(t), i, j ∈
N are continuous and satisfy

(H) :
∫ ∞

0
eλ0t |pi j(t)|dt <∞, i, j ∈ N ,
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in which λ0 is a positive constant, and σi(t,xi) = (σi1(t,xi), · · · ,σim(t,xi)) is i-th row
vector of a matrix σ(t,x) = (σil(t,xi))n×m , σ : R×Rn → Rn×m .

DEFINITION 2.1. For any given t0 ∈ R, ϕ ∈ Cb
Ft0

[(−∞,0],Rn] , an Rn -valued

stochastic process x(t) is called a solution of (1) on (−∞,T ] through (t0,ϕ) , if x(t)
has the following properties:

(10) x : (−∞,T ]×Ω→ Rn is a measurable, sample-continuous process;

(20) (x(t), t ∈ [t0,T ]) is (F )t0�t�T -adapted, x(s) is Ft0 -measurable for all s � t0 ;

(30) x satisfies, almost surely, Eq. (1) for t � t0 and the initial conditions in the form

x(t0 + s) = ϕ(s), s ∈ (−∞,0]. (2)

Throughout this paper, we assume that for any ϕ ∈Cb
Ft0

[(−∞,0],Rn] , there exists

at least one solution of (1) with the initial condition (2) . For conditions guaranteeing
the existence of a solution see [22] .

DEFINITION 2.2. System (1) is said to be exponentially p -dissipative with ex-
ponential convergent rate λ if there is a bounded set M ⊂Cb

Ft0
[(−∞,0],Rn] and a pair

of positive constants K,λ such that for any solution x(t,t0,ϕ) with the initial condition
ϕ ∈Cb

Ft0
[(−∞,0],Rn] ,

dist(E[x(t)]p+,M) � K‖ϕ‖p
Lpe−λ (t−t0), t � t0, (3)

where
dist(ψ ,M) = inf

φ∈M
sup

s∈(−∞,0]
|ψ(t)−φ(s)|, for ψ ∈C[R,Rn],

and the set M is called an exponential attracting set of system (1) . Especially, system
(1) is said to be exponentially dissipative in mean square when p = 2.

DEFINITION 2.3. System (1) is said to be exponentially p -stable with exponen-
tial convergent rate λ if there is a pair of positive constants λ and K such that for any
solution x(t, t0,ϕ) with the initial condition ϕ ∈Cb

Ft0
[(−∞,0],Rn] ,

E|x(t,t0,ϕ)|p � K‖ϕ‖p
Lpe−λ (t−t0), t � t0.

Especially, system (1) is said to be exponentially stable in mean square when p = 2.

DEFINITION 2.4. [23, p. 114]. Let the matrix D = (di j)n×n , dii > 0 and di j � 0,
i �= j . Then D is called an M -matrix if one of the following conditions holds:

(i) all the leading principal minors of D are positive;

(ii) there exists a positive vector z such that Dz > 0;

(iii) D is inverse positive; that is, D−1 exists and D−1 � 0.
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LEMMA 2.1. [24] For an M-matrix D, ΩM(D) Δ= {z ∈ Rn | Dz > 0, z > 0} is
nonempty and for any z1, z2 ∈ΩM(D) , we have

k1z1 + k2z2 ∈ΩM(D), ∀ k1, k2 > 0.

So ΩM(D) is a cone without conical surface in Rn . We call it an“M -cone”.

LEMMA 2.2.. (Arithmetic-mean–geometric-mean inequality [25])

For xi � 0, αi > 0 and
n
∑
i=1

αi = 1 ,

n

∏
i=1

xαi
i �

n

∑
i=1

αixi,

the sign of equality holds if and only if xi = x j for all i, j ∈ N .

3. L -operator integro-differential inequality

In this section, we will first establish an integro-differential inequality and then
introduce an L -operator integro-differential inequality.

THEOREM 3.1. Let P = (pi j)n×n and pi j � 0 for i �= j , J = (J1, · · · ,Jn)T � 0 ,
Q(t) = (qi j(t))n×n , where qi j(t) � 0 are continuous and satisfy

(H0) :
∫ ∞

0
eλ1qi j(t)dt < ∞, i, j ∈ N ,

in which λ1 is a positive constant. Denote Q = (qi j)n×n
Δ= (

∫ ∞
0 qi j(t)dt)n×n and let D =

−(P + Q) be a nonsingular M-matrix and u(t) = (u1(t), · · · ,un(t))T ∈ C[[t0,∞),Rn]
be a solution of the following integro-differential inequality with the initial condition
u(s) ∈C, −∞< s � t0

D+u(t) � Pu(t)+
∫ ∞

0
Q(s)u(t− s)ds+ J, t � t0. (4)

Then

u(t) � ze−λ (t−t0) − (P+Q)−1J, t � t0, (5)

provided that the initial conditions satisfy

u(t) � ze−λ (s−t0) − (P+Q)−1J, −∞< s � t0, (6)

where z = (z1,z2, · · · ,zn)T ∈ΩM(D) and the constant λ ∈ (0,λ1] satisfies the following
inequality [

λ I +P+
∫ ∞

0
Q(s)eλ sds

]
z < 0. (7)
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Proof. Since D is a nonsingular M -matrix, there exists a vector z ∈ΩM(D) such
that

Dz > 0 or [P+Q]z < 0.

By using continuity and condition (H0) , we obtain that there must exist a positive
constant λ � λ1 satisfying the inequality (7) , that is,

n

∑
j=1

[
pi j +

∫ ∞

0
qi j(s)eλ sds

]
z j < −λ zi, i ∈ N . (8)

Let N
Δ= −(P+Q)−1J, N = (N1, ...,Nn)T . One can get that (P+Q)N + J = 0 or

n

∑
j=1

pi jNj +
n

∑
j=1

qi jNj + Ji = 0, i ∈ N . (9)

To prove (5) , we first prove, for any given ε > 0, when u(s) � ze−λ (s−t0) − (P +
Q)−1J, −∞< s � t0 ,

ui(t) < (1+ ε)[zie
−λ (t−t0) +Ni]

Δ= yi(t), t � t0, i ∈ N . (10)

If (10) is not true, then there must be a t1 > t0 and some integer m such that

um(t1) = ym(t1), D+um(t1) � y′m(t1), (11)

ui(t) � yi(t), −∞< t � t1, i ∈ N . (12)

By using (4) , (8)–(12) and pi j � 0(i �= j), qi j(t) � 0, we obtain that

D+um(t1) �
n

∑
j=1

pmju j(t1)+
n

∑
j=1

∫ ∞

0
qmj(s)u j(t1 − s)ds+ Jm

�
n

∑
j=1

pmj(1+ ε)(z je
−λ (t1−t0) +Nj)

+
n

∑
j=1

∫ ∞

0
qmj(s)(1+ ε)(z je

−λ (t1−s−t0) +Nj)ds+ Jm

=
n

∑
j=1

[
pmj +

∫ ∞

0
qmj(s)eλ sds

]
(1+ ε)z je

−λ (t1−t0)

+
n

∑
j=1

[
pmj +

∫ ∞

0
qmj(s)ds

]
Nj(1+ ε)+ Jm

=
n

∑
j=1

[
pmj +

∫ ∞

0
qmj(s)eλ sds

]
(1+ ε)z je

−λ (t1−t0) − εJm

�
n

∑
j=1

[
pmj +

∫ ∞

0
qmj(s)eλ sds

]
(1+ ε)z je

−λ (t1−t0)

<−λ zm(1+ ε)z je
−λ (t1−t0)

=y′m(t1),
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This contradicts the inequality (11) , and so (10) holds. Letting ε → 0, then (5) holds,
and the proof is completed. �

REMARK 3.1. Suppose that J = 0 in Theorem 3.1, then we get Theorem 1 in
[26].

Let C2,1[R+ ×Rn,R+] denote the family of all nonnegative functions V (t,x) on
R+ × Rn which are twice continuously differentiable in x and once in t . For each
V (t,x)∈C2,1[R+×Rn,R+] , we define an operator LV from C2,1[R+×Rn,R+] to C[R,R] ,
associated with the system (1) , by

LV (t,x) = Vt(t,x)+Vx(t,x)F(t,x)+
1
2
trace[σT (t,x)Vxxσ(t,x)],

Vt(t,x) =
∂V (t,x)

∂ t
, Vx(t,x) =

(
∂V (t,x)
∂x1

, · · · , ∂V (t,x)
∂xn

)
, Vxx =

(
∂V 2(t,x)
∂xi∂x j

)
n×n

,

where

F(t,x) = col{−aixi(t)+
n

∑
j=1

ai j f j(x j(t))+
n

∑
j=1

∫ t

−∞
pi j(t− s)g j(x j(s))ds+ Ji}n.

THEOREM 3.2. Let matrices P, J , Q(t) and the condition (H0) be defined as
in Theorem 3.1. Assume that there exist functions Vi(x) ∈C2[Rn,R+] such that for the
operator LV which is associated with the system (1) , such that

LVi(x) �
n

∑
j=1

(
pi jVj(x)+

∫ ∞

0
qi j(s)Vj(x(t− s))ds

)
+ Ji, t � t0, i ∈ N . (13)

Then

EVi(x(t)) � zie
−λ (t−t0) +Ni, t � t0, i ∈ N , (14)

provided that the initial conditions satisfy

EVi(x(t)) � zie
−λ (t−t0) +Ni, −∞< t � t0, i ∈ N , (15)

where N = (N1, · · · ,Nn)T = −(P+Q)−1J , z = (z1,z2, · · · ,zn)T ∈ ΩM(D) and the con-
stant λ ∈ (0,λ1] satisfies the following inequality[

λ I +P+
∫ ∞

0
Q(s)eλ sds

]
z < 0. (16)

Proof. Since x(t) is the solution of the equation (1) and Vi(x) ∈ C2[Rn,R+] , by
the Itô formula, we can get

Vi(x(t)) = Vi(x(t0))+
∫ t

t0
LVi(x(s))ds+

∫ t

t0

∂Vi(x(s))
∂x

σ(s,x(s))dw(s), t � t0, i ∈ N .
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Then we have

EVi(x(t)) = EVi(x(t0))+
∫ t

t0
ELVi(x(s))ds, t � t0, i ∈ N . (17)

So, for small enough Δt > 0, we have

EVi(x(t +Δt)) = EVi(x(t0))+
∫ t+Δt

t0
ELVi(x(s))ds, t � t0, i ∈ N . (18)

Thus from (13),(17) and (18) , we have

EVi(x(t +Δt))−EVi(x(t)) =
∫ t+Δt

t
ELVi(x(s))ds

�
t+Δt∫
t

{
n

∑
j=1

[
pi jEVj(x(r))+

∫ ∞

0
qi j(s)EVj(x(r− s))ds

]
+ Ji

}
dr, t � t0, i ∈ N .

(19)

From (19) , we obtain that

D+EVi(x(t)) �
n

∑
j=1

(
pi jEVj(x(t))+

∫ ∞

0
qi j(s)EVj(x(t − s))ds

)
+ Ji, t � t0, i ∈ N .

(20)

Since D is a nonsingular M -matrix, there exists a vector z ∈ΩM(D) such that

Dz > 0 or [P+Q]z < 0.

By using continuity, we obtain that (16) has at least one positive solution λ . Thus
from Theorem 3.1, we know Theorem 3.2 is true. �

4. Exponential P-dissipativity

In this section, we will obtain several sufficient conditions ensuring the exponential
p -dissipativity of stochastic integro-differential equations (1) by employing Theorem
3.2. Here, we first introduce the following assumptions.

(A1) There exist nonnegative constants u j,v j such that for x j ∈ R ,

| f j(x j)| � u j|x j|, |g j(x j)| � v j|x j|, j ∈ N . (21)

(A2) There exist nonnegative constants ĉi such that for xi ∈ R,

|(σi(t,xi))T (σi(t,xi))| � ĉi|xi|2, i ∈ N .
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(A3) Let D = −(Â+ B̂) be an M -matrix, where

Â =(âi j)n×n, âi j = |ai ju j|, i �= j,

âii =− pai +
n

∑
j=1

|ai ju j|(p−1)+
n

∑
j=1

∫ ∞

0
|pi j(s)|v j(p−1)ds+(p−1)

+
1
2

p(p−1)ĉi + |aiiui|,

B̂ =(b̂i j)n×n
Δ=

(∫ ∞

0
b̂i j(t)dt

)
n×n

, b̂i j(t) = |pi j(t)|v j, i, j ∈ N .

THEOREM 4.1. Assume that the hypothesis (H) and the conditions (A1)–(A3)
hold. Then the system (1) is exponentially p-dissipative with the exponential conver-
gent rate λ which is determined by (22) , and the exponential attracting set

M =
{
φ ∈Cb

Ft0
[(−∞,0],Rn]

∣∣[φ ]∞+ � (−Â− B̂)−1Ĵ
}

,

where Ĵ = (Ĵ1, · · · , Ĵn)T and Ĵi = Jp
i , i ∈ N .

Proof. Since D = −(Â+ B̂) is a nonsingular M -matrix, there exists a vector z ∈
ΩM(D) such that

Dz > 0 or (Â+ B̂)z < 0.

By using continuity and hypothesis (H) , we obtain that there must exist a positive
constant λ � λ0 satisfying the following inequality

[
λ I + Â+

∫ ∞

0
B̂(s)eλ sds

]
z < 0. (22)

Let N̂
Δ= −(Â+ B̂)−1Ĵ, N̂ = (N̂1, · · · , N̂n)T . Then from the definition of M -matrix, we

have

N̂ � 0 or N̂i � 0, i ∈ N . (23)

Let Vi(x(t)) = |xi(t)|p, i ∈ N , where x(t) = (x1(t), · · · ,xn(t))T is the solution of (1).
Then

∂Vi(x)
∂xi

= p|xi|p−1sgn(xi) = p|xi|(p−2)xi,
∂V 2

i (x)
∂x2

i

= p(p−1)|xi|(p−2)sgn(xi),
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where sgn(·) is the sign function. Thus, by the conditions (A1),(A2) and Lemma 2.2,
we have

LVi(x(t))

=p|xi(t)|(p−2)xi(t)

[
−aixi(t)+

n

∑
j=1

ai j f j(x j(t))+
n

∑
j=1

∫ t

−∞
pi j(t−s)g j(x j(s))ds+Ji

]

+
1
2

p(p−1)|xi(t)|p−2sgn(xi(t))σT
i (t,xi(t))σi(t,xi(t))

�−pai|xi(t)|p+p|xi(t)|(p−1)

[
n

∑
j=1

|ai ju j||x j(t))|+
n

∑
j=1

∫ t

−∞
|pi j(t−s)|v j|x j(s)|ds+Ji

]

+
1
2

p(p−1)|xi(t)|p−2
∣∣σT

i (t,xi(t))σi(t,xi(t))
∣∣

�−pai|xi(t)|p+p|xi(t)|(p−1)

[
n

∑
j=1

|ai ju j||(x j(t))|+
n

∑
j=1

∫ ∞

0
|pi j(s)|v j|(x j(t−s)|ds+Ji

]

+
1
2

p(p−1)ĉi|xi(t)|p

�−pai|xi(t)|p+
n

∑
j=1

|ai ju j| [(p−1)|xi(t)|p+|x j(t)|p]

+
n

∑
j=1

∫ ∞

0
|pi j(s)|v j[(p−1)|xi(t)|p+|x j(t−s)|p]ds

+(p−1)|xi(t)|p+Jp
i +

1
2

p(p−1)ĉi|xi(t)|p

=

[
−pai+

n

∑
j=1

|ai ju j|(p−1)+
n

∑
j=1

∫ ∞

0
|pi j(s)|v j(p−1)ds+(p−1)+

1
2

p(p−1)ĉi

]
|xi(t)|p

+
n

∑
j=1

|ai ju j||x j(t)|p+
n

∑
j=1

∫ ∞

0
|pi j(s)|v j|x j(t−s)|pds+JP

i

=
n

∑
j=1

âi jVj(x)+
n

∑
j=1

∫ ∞

0
b̂i j(s)Vj(x(t−s))ds+Ĵi. (24)

So from the condition (A3) , we know that the inequality (13) holds. For the initial
condition ϕ ∈Cb

Ft0
[(−∞,0], Rn] , we can get

EVi(x(t)) � hzi‖ϕ‖p
Lpe−λ (t−t0) � hzi‖ϕ‖p

Lpe−λ (t−t0) + N̂i, t ∈ (−∞,t0], i ∈ N , (25)

where, h = 1
min1�i�n{zi} , z = (z1, · · · ,zn)T ∈ΩM(D) and λ satisfies (22) .

From Lemma 2.1 and z = (z1, · · · ,zn)T ∈ ΩM(D) , we have h‖ϕ‖p
Lpz ∈ ΩM(D) .

Then, all conditions of Theorem 3.2 are satisfied by (24),(25) and (A3) , so

EVi(x(t)) � hzi‖ϕ‖p
Lpe−λ (t−t0) + N̂i, t ∈ [t0,∞), i ∈ N , (26)
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that is

E[x(t)]p+ � h‖ϕ‖p
Lpze−λ (t−t0)− (Â+ B̂)−1Ĵ, t ∈ [t0,∞). (27)

This implies that the conclusion holds and the proof is completed. �

COROLLARY 4.1. Assume that the hypothesis (H) and the conditions (A1)–(A3)
hold. Then the system (1) with J = 0 is exponentially p-stable with exponential con-
vergent rate λ .

5. Example

The following illustrative example will demonstrate the effectiveness of our re-
sults.

EXAMPLE 5.1. Consider the following stochastic integro-differential equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1(t) =
[
−10x1(t)+ (|x1(t)+1|− |x1(t)−1|)− ∫ t

−∞ e−(t−s)|x1(s)|ds

+
∫ t
−∞ 4e−2(t−s)|x2(s)|ds+7

]
dt +2x1(t)dw1(t),

dx2(t) =
[
−8x2(t)+ (|x2(t)+1|− |x2(t)−1|)− ∫ t

−∞ 6e−2(t−s)|x1(s)|ds

+
∫ t
−∞ e−(t−s)|x2(s)|ds+8

]
dt + x2(t)dw2(t).

(28)

For system(28) , we have

fi(xi) = |xi(t)+1|− |xi(t)−1|, gi(xi) = |xi(t)|, i = 1,2,

σ(t,x) = diag{2x1(t),x2(t)} .

and

| fi(xi)| � 2|xi|, |gi(xi)| � |xi|, i = 1,2,∣∣σ1(t,x1)σ1(t,x1)T
∣∣ � 4|x1(t)|2,

∣∣σ2(t,x2)σ2(t,x2)T
∣∣ � |x2(t)|2.

So, it is easy to check that the conditions (A1) - (A3) are satisfied by taking a1 =
10,a2 = 8, p = 2,J1 = 7,J2 = 8,a11 = a22 = 1,a12 = a21 = 0,u1 = u2 = 2,v1 = v2 =
1, ĉ1 = 4, ĉ2 = 1, p11(s) = −e−s, p12(s) = 4e−2s, p21(s) = −6e−2s, p22(s) = e−s .

Then

Â =
(−8 0

0 −6

)
, B̂ =

(
1 2
3 1

)
, D = −(Â+ B̂) =

(
7 −2
−3 5

)
,

and (H) is satisfied with 0 < λ0 < 1. In this example, we may let λ0 = 0.8. It is easy
to prove that D is an M -matrix and

ΩM(D) =
{

(z1,z2)T > 0 | 2
7
z2 < z1 <

5
3
z2

}
.
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Clearly, all the conditions of the Theorem 4.1 are satisfied, so system (28) is exponen-
tially dissipative in mean square.

In order to determine the exponential convergent rate λ , we choose z∗ = (1,2)T ∈
ΩM(D) . From (22) , that is,[

λ I + Â+
∫ ∞

0
B̂(s)eλ sds

]
z∗ < 0,

we obtain λ = 0.5 < 0.8.
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