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IMPROVED HARDY-SOBOLEV
INEQUALITIES FOR RADIAL DERIVATIVE

WEI-CANG WANG AND QIAO-HUA YANG

(Communicated by J. Pecaric)

Abstract. We prove some Hardy-Sobolev inequalities for radial derivative and obtain the corre-
sponding sharp constant.

1. Introduction

Hardy inequality in R" reads, for all f € C;(RY) and N > 3,

A2 2
/RNWde@ M/R I gy (1.1)

4 v [x]?

2
and (sz) is the best constantin (1.1). A similar inequality with the same best constant
holds if R" is replaced by an arbitrary domain Q C RY and Q contains the origin. On
the other hand, the classical Sobolev inequality

N-2

[ vstaszsy( [ #ar) T 12)

2

is valid for any f € C3(R"), where Sy = nN(N —2)(I'(§)/T(N))¥ is the best con-
stant(cf. [2, 7]). Stubbe’s result ([6]) states that for 0 < 6 < M,

WES N2
ViPdx—8 d o9 NS Pa) T aa
/‘f| X — / x> —m N/RN‘f‘ X (1.3)
7

and the constant in (1.3) is sharp (see also [4]). Recently, Adimurthi, S. Filippas and A.
Tertikas established the following Hardy-Sobolev inequality: for all f € C5(B1),

N-2

LY 2 2(N-1) N
/B\Vf|2dx—u/3 f dx>CNa</XN (a |x|)|f|N2dx> . (14)

4 1 |x|2

Mathematics subject classification (2010): Primary 26D10, 46E35.
Keywords and phrases: Hardy inequality, Sobolev Inequality, radial derivative.
The second author was supported by Independent Research of Wuhan University under Grant #1082001.

© t1€I"€N' Zagreb 203

Paper MIA-14-17



204 WEI-CANG WANG AND QIAO-HUA YANG

where B; C R¥ is the unit ball centered at zero and
Xi(a,s):=(a—Ins)™', a>0, 0<s<1.

The best constant Cy , in (1.4) satisfies
_2(N-1) 1
(N — 2) N SN7 a> N
CN a

a= _2(N-1) h
a N SN, O<a<m

When restricted to radial functions, the best constant in (1.4) is given by

2AN-1)
N Sy,Va > 0.

CN,a,mdial = (N_ 2)7

Our goal in this note is to establish analogous inequalities (1.2)—(1.4) for radial
derivative of f,i.e., f, =Vf- ‘;—‘ with 7 = |x|. Recall that the Hardy inequality in R

for radial derivative reads, for all f € C5(RY) and N >3,

N—2)2 f2
fav> O L
[ x> 5 o

The Sobolev inequality for radial derivative reads (cf. [3]), for all f € C5(RV) and

N >3, )
N7
N
[ = e ( / |F<r>|N2”2dx) 7 (15)
RN RN

where F(r) is the integral mean of f over the unit sphere S¥~!, that is,

1
F(r) = W -1 f(rw)dw

Here we use the polar co-ordinates x = rw . To this end we have:

THEOREM 1.1. The best constant Cy in (1.5) satisfies Cy = Sy. The extreme

function is
N-2

A 2
UA(X)—C(m) ,C7é07)t>0.

Furthermore, if Q@ C RN is a bounded domain containing the origin, then for all f €
Cy(Q) and N > 3,

NT—Z
/Q |frPdx > Sy ( /Q |F(r>|~2”2dx> (1.6)
and the constant in (1.6) is sharp.

We generalize Stubbe’s result to the radial derivative.
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THEOREM 1.2. Let f € CS"(RN) and N > 3. There holds, for 0 < 6 < M,

N-1

2 a N2
2 f 9 ot "
/RN ‘fr‘ dx—5/RN de) (l-w) SN (/;{N \F(r)|N 2dx> (17)

and the constant in (1.7) is sharp.

The following corollary generalizes a result of A. Balinsky et al (cf. [3], inequality
(4.12)).

COROLLARY 1.3. Let f € C3(RN) and N > 3. There holds, for (N —1) < § <

NZ
T
N—1
2 N _
2 2 <NT_6 2N w
/ 0, V1) dx—5/ Paxz g, / | (r)| P2 dx (1.8)
RN RN (N=2)2\ '~ RN

7
and the constant in (1.8) is sharp.

Finally, we generalize Adimurthi et al’s result to the radial derivative.

N-2

THEOREM 1.4. Let f € C5(By) and N > 3. There holds, for all a > 0,
aN-1) " N
(5" @i Par)
By

2, (N=2? 1 f?
~/Bl ‘fr‘ dx— 4 /1 ‘ ‘2d (
(1.9)

and the constant in (1.9) is sharp. Furthermore, if Q C RN is a bounded domain
containing the origin, then

N—2)? 2
/Q|f,|2dx—( - ) /{?dx>(N 2)-*

N-2

o ([ X7 @ Do) "

(1.10)

with D = sup,cq || and the constant in (1.10) is sharp.

COROLLARY 1.5. Let f € C5(Q) and N > 3. There holds, for all a >0,

N-2

—1 Z(Nf 2N N
/Q|<x Vf)Pdx— /fdx> (N—2)" % sy (/QXIN (a, ‘x‘)w( )|dex>
d.11)

and the constant in (1.11) is sharp.

REMARK 1.6. If f is supported in the annulus Ag := {x € RV : R~! < |x| <R},

then
2N=1) (N-1)

A=) 2(N-
2(N-1) N=2 N2
x v (o) > (—L .
D lnM a+2InR
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By Theorem 1.4 and Corollary 1.5 and letting @ — 0+, we have

N-2

/AR|fr|2dx_(N;2)2/A f_zd >[2(N - 2)lnR] ANl SN<ARF(V)|N2N2dx>N

R ‘x‘z

N-2

(f rronsar)

which generalize the results of Balinsky et al (cf. [3], Corollary 4.6, Corollary 4.7).

2 _
I V) P — | Pax= 0 -2)mr
AR 4 AR

2. The proofs
To prove the main result, we first need the following useful lemma.

LEMMA 2.1. Let f € C3(RY) be real-valued and p > 1. There holds

r)] :'M%I/Sle(rw)dwp

1
S W/SM [f(ro)Pdw;  (2.1)

p

' (r)|? fr(ro)do

1
S P
‘ |SN_1| V-1 < —‘SN_l‘ /SN—I |fr(rw)| dow. (22)

Inequalities (2.1) and (2.2) becomes equalities if and only if f(x) is radial, i.e., f(ro)=
f(r).

Proof. By Holder’s inequality,

1
p

1 1 P
et /S o Fro)ldo < e ( /S o f(rw)Pdw>
G-)
+—=1
p 1
1 (2.3)

1 P
= F\H'l_% (/Nl |f(rw)|Pdw)

1 Iz

Inequalities (2.3) becomes equalities if and only if | f(r®)| is constant forall @ € SN=!,
i.e. f(rw) is constant for all @ € S¥~! since S¥~! is a connected set. Therefore, we
obtain, by (2.3),

|F(r)| <|SN 1|/ flro dw) S 1‘/ fro)|Pdo.

= -

(o)
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Similarly, we have
1
FIOI < gy [, o) do.

The inequality above becomes an equality if and only if f(x) is radial.
Using lemma 2.1 and polar co-ordinates on RY, we have the following:

COROLLARY 2.2. Let f € Ci(RY) and p > 1. There holds, for ot <N,

RACII LGl fr ()1 [ (r)|?
L RE av> [ e L. N ar> [ a9

Inequalities (2.4) becomes equalities if and only if f(x) is radial.

Proof of Theorem 1.1. By corollary 2.2,
N-2
N

/RN wzdx;/ |F/(r)|2dx:/RN \VF(r)|2dx > Sy (/RN F(r)|N2N2dx) . (2.5)

RN
Inequalities (2.5) becomes equalities if and only if f(x) is radial and

N-2

P =t =c (2t )

for some ¢ #0 and A > 0 (cf. [2, 7]). To finish the proof of theorem 1.1, it is enough to
show the constant in (1.6) is sharp since f € Cg(Q) C Ci(RY). Consider the sequence
of functions

Vi, =Uy - ¢s(|x])

where ¢s5(¢) is a Cy’ cutoff function which is zero for # > & and equal to one for
1< 8/2; § is small enough so that Bs := {x € R¥||x| <8} C Q. Then V; € C5’(Bs) C
Cy(Q). Itis well known that (cf. [5])

Jo|VV;|2dx

N-2"

JolVal®ax) ™

SNZ lim
A—0+ <

Thus, the constant in (1.6) is sharp and this completes the proof of Theorem 1.1.

Proof of Theorem 1.2. By corollary 2.2 we have, for 0 < oc < (N —2)/2,

2 ! 2 oo
/ ‘fr(x)| dx)/ |F (r)| dx = |SN71‘/ rN7172a‘F/(r)|2dr
RN RN 0

|x|2a |x|2a

( N o= T %Y
a(N—-2—a«a F(r)|V-2
(o) o

7

x|
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N—-1

N
(cf. [4], the proof of theorem 2) and the constant (l — %) Sy is sharp. Set

Na¥

g(x) f;(—l’; and G(r) = f(r) Through integration by parts, we have, by (2.6),

x| -
2
2 g (x)
Ly 0Pz —an—2-a) [ &5
:/ |fr(x)‘2dx
RN |x|2cx
N—1 N2

ot N 27)
alN—2—0a)\ " N2
> (1 a W) Sy </RN dx)
7

The desired result follows. [

Proof of Corollary 1.3. On substituting f(x) = |x|g(x) in Theorem 1.2, we have,
through integration by parts,

2
2 2 20 (5 I
[leveapas—s [ gae= [ 1nPa- -4 [ Loax
(% -9) a2
v ( [ P #ax)
((N;N w RN (2.8)
($-9) .
- sy ( / rG(r)|N2dx>
<(N—2)2> N RN
7
The desired result follows. [
Proof of Theorem 1.4. Using the change of variables f(x) = |x|_¥ g(x) and
F(r)= |x|’NTdG(r) inequality (1.9) is seen to be equivalent to
N-2

2(N—=1) 2N—1) N
stz -2y S5 s ([ 1 e Pa)
B By

Set
Jo, X7 g, (x)Pdx

CHs(a)z inf
g€Cy(By) 2(11VV*21) N N
(fBl i, ™ <a,|x|>|G<r>|~2dx)
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Following ([1]), we change variables by

1 X
vix) =y(7,0), T= =a—Inr, 6=—.
(x) =y(7,0) Xiar) ]

Then

0 2
1 2dod
Cus(@)= inf Ju Jor-1yzdwde _ (2.9

(a,0)=0 , _2(N-1) NZ2
HT I e T Y () Frdwdr) T
with Y(7) = G(7). By theorem 1.1, for any R > 0, we have
s |gr|2dx
Sy = inf R . 2.10
N eeGrn) e 210

S (Ji 16072 ax) T
Changing variables in (2.10) by

gx) =2(1,0), =[x~ "2, o=

it follows that for all R > 0,

oo 2
2(N—1) "~ (v_2) Jen—1 Z-dwdt
N Sy = inf fR ) fS !

(N=2)"
Z(R-N=2) 9)= 0(

2.11
NG
[ o fvr 17 N2 |Z(0)| V2 dd

with Z(¢) = G(¢). Combining this with (2.9) we conclude our claim (1.9).

We now prove inequality (1.10). The lower bound on the best constant follows
from (1.9) with a simple scaling argument. To establish the upper bound, we set, for
a >0 and p > 0 small enough such that B, C €2,

2
. pr |fr |)i|2 dx
DHs(a,,D) = inf N3
feCy(Bp) N 1) N N
(s, 505 (@bl >|~2dx)

Through a scaling argument, we have

2
fBl ‘fl’ f d-x

Dys(a,p) = inf =Cys(a—1Inp).
s (@) feég'}(&)( 2(N-1) usla—Inp)

=
fy %, <a—1np,|x|>F<r>|%dx)

By (1.9), we obtain
_2(N-1)
Dus(a,p)=(N—=2)""~

and the upper bound follows. These complete the proof of Theorem 1.4. [
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Proof of Corollary 1.5. On substituting f(x) = |x|g(x) and F(r) = rG(r) in The-

orem 1.4, we have, through integration by parts,

(N-2)* [ f

N2
x,V 2dx——/ dez/ rzdx—i ~—dx
| ve)Par—= [ fax= [ 14 i i

N-2
2(N-1) 2N-1) N
> (v-2)" SN( [ <a,'%'>|F<r>|%dx) @.12)
Q
_2(N-1) 2(N-1) |x| o &
= V=2 s ([ X7 (@ G [ ax
Q

The desired result follows. [
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