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GROTHENDIECK’S INEQUALITY AND APPLICATIONS

O. I. REINOV

Abstract. We give a small survey in connection with the famous Grothendieck’s inequality. We
consider some classical applications, an application to the geometry of Banach spaces as well as
applications to the well known problem of whether the Sp -algebras with their Schur products
should be Q -algebras.

The famous Grothendieck inequality, which can be seen as a matrix inequality
associated to certain bilinear operators and called by him “the fundamental theorem of
the metric theory of tensor products of Banach spaces”, is equivalent to the following
assertion:

Let {ai j}n
i, j=1 be a finite matrix of real numbers such that |∑n

i, j=1 ai jtis j|� 1 when-
ever |ti|, |s j| � 1. Then for every set of unit vectors {xi}n

i=1 and {y j}n
j=1 in a Hilbert

space ‖∑i, j ai j(xi,y j)‖ � K, where K is an absolute constant.
This theorem has a lot of generalizations and applications in very different di-

rections. Some of them are investigations of multilinear extensions of the inequality as
well as considerations of the cases of so-called operator spaces and of non-commutative
Lp -spaces (such as the Schatten spaces Sp). Let us mention just a few fields of appli-
cations:

• Theory of absolutely p -summing operators with application to the isomorphic
classification of Banach spaces and to the geometry of normed spaces in general (an
example: disk algebra CA(T) is not isomorphic to a factor space of a C(K)-space);

• Investigations of uniform Banach algebras and, generally, of Q-algebras (com-
mutative Banach algebras which are isomorphic as Banach algebras to the quotients of
uniform Banach algebras). An example: the answers (for 1 � p � ∞) to the old (es-
sentially, due to Varopoulos) problem whether Sp -spaces (with their Schur products)
should be Q-algebras;

• Problems of vector measures theory and related questions in geometric theory
of Banach spaces (such as constructions of counterexamples to some long standing
problems. For instance, to the question of whether a separable Banach space does not
contain l1 if and only if its dual space is separable).

We shall be concerned with just some small (but hope, ones of the main) parts of
the topic in connection with this beautiful Grothendieck inequality.
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I. Some classical applications

We begin with definitions of absolutely p -summing operators (for general nota-
tions, definitions and results, see, e.g., [4], [6], [18], [5]).

An operator T from a Banach space X into a Banach space Y is said to be p-
absolutely summing, notation T ∈ Πp(X ,Y ), where 0 < p � ∞, if there is a constant
C ∈ (0,∞) such that for all finite families (xi)n

i=1 ⊂ X

n

∑
i=1

||Txi||p � Cp sup{
n

∑
i=1

|〈x′,xi〉|p : x′ ∈ X∗, ||x′|| � 1}.

The p -summing norm πp(T ) is defined as infC.
The Grothendieck’s inequality can be easily reformulated in terms of 1-absolutely

summing operators: every linear continuous operator from a L1(μ)-space into a Hilbert
space is 1-absolutely summing. So, the first application of the inequality is its refor-
mulation in terms of absolutely summing operators (the proofs can be found in [5], [6],
[18] etc. ).

THEOREM I.1. L(l1, l2) = Π1(l1, l2).

Proof. Put P( f ) := ( f̂ (2n))∞n=1 for f ∈ H1(T). By Paley’s inequality [2], the as-
sociated operator with operator P is a projection (“Paley projection”) in H1(T), which
can be considered as an operator from H1(T) onto l2. Let T be any operator from l1 to
l2, J : CA(T) → H1(T) is the identity embedding. Then the operator PJ : CA(T) → l2
is “onto” and therefore, there is a factor map Q : l1 →CA(T) such that T = PJQ. Since
J is 1-absolutely summing, we are done. �

The next application is the so-called “little Grothendieck Theorem” (see, for ex-
ample, [3],Theorem 5.4):

THEOREM I.2. Any operator from a C(K)-space to a Hilbert space is 2-absolutely
summing.

Proof. It is not difficult to see that an operator T ∈ L(X ,Y ) is 2-absolutely sum-
ming iff for any U ∈ L(l2,X) the operator TU is of type Π2. In the case where T maps
X =C(K) into l2, this is the same as TU (or U∗T ∗ ) is a Hilbert-Schmidt operator. By
Grothendieck, U∗ :C∗(K)→ l2 is of type Π1; thus, 2-absolutely summing. Done. �

One more nice application:

THEOREM I.3. Hardy space H1(T) is not isomorphic to any complemented sub-
space of L1(μ)-space.

Proof. There is an operator from H1(T) to l2 which is not 1-absolutely summing
(for one of the possible proof, see [18], pp. 300-301, where a Hardy inequality is used;
another proof consists of considering the Paley projection: in above notation, if P is 1-
absolutely summing then PJ is a nuclear (hence, compact) from CA(T) onto l2!). �

And also, we have a nice characterization of Hilbert spaces (see [18]):
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THEOREM I.4. A Banach space is isomorphic to a Hilbert space iff it is isomor-
phic to a subspace of an L1(ν)-space and to a quotient of an L∞(μ)-space.

Proof. Every operator from L∞(μ) to L1(ν) is 2-absolutely summing (see, e.g.,
[18], Theorem 5.1), hence, can be factored through a Hilbert space. �

The following interesting application will be given without any proof (a proof can
be found, e.g., in [4] or in [18]).

THEOREM I.5. All normalized unconditional bases in l1(Γ) are equivalent to the
unit vector basis in l1(Γ). The same is true for the space c0(Γ).

We conclude this section by a result on the disc algebra (see [5] or [6]).

THEOREM I.6. The disk algebra CA(T) is not isomorphic to a factor space of
C(K).

Proof. Consider S :C(K)→CA(T) and J :CA(T) →H1(T), where J is the natu-
ral inclusion. If S is “onto” then JS is 1-integral, so it is nuclear (values in a separable
dual). Thus, J is compact. �

II. An application to (Ip,Np)-multiplicators

One of the simplest way to get a multi-dimensional analogue of Grothendieck’s in-
equality (see [7], [8],)by using Grothendieck inequality itself, can be found in [9]. The
authors define there (p. 95) a notion of the so-called p -regular norm on the tensor prod-
uct X ⊗Y of two Banach spaces in such a way that this definition gives them, almost
immediately, the multi-dimensional inequality of A. Grothendieck (see [9], Theorem 3
and its Corollary 1). Namely:

DEFINITION II.1. Let (S,μ) and (T,ν) be finite measure spaces, p > 0, A and
B be subspaces of Lp(μ) and Lp(ν) respectively. Identify A⊗B with the set

spanLp(μ×ν){h : h(s,t) = f (s)g(t), f ∈ A,g ∈ B}
and put A⊗p B = closLp(μ×ν)A⊗B. A norm α on X ⊗Y is said to be p-regular if for
any (S,μ), (T,ν), A and B as above and for any operators U : A → X and V : B → Y
the operator U ⊗V can be extended to a continuous operator (still denoted by U ⊗V )
from A⊗pB into X⊗αY (the completion with respect to α) and ||U⊗V ||� ||U || ||V ||.

THEOREM II.1. Let C,D,X ,Y be Banach spaces, p > 0, S ∈ Πp(C,X), T ∈
Πp(D,Y ). If α is a p-regular norm on X ⊗Y, then S⊗T ∈ Πp(C ̂̂⊗D,X ⊗α Y ) and
πp(S⊗T) � πp(S)πp(T ).

Proof. Just apply Pietsch factorization theorem and the definition II.1. �

Thus, this theorem contains essentially only a modification of the definition; but it
has some nice consequences which justify that the authors called it “the theorem”. In
follows immediately from the theorem, e. g.:
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COROLLARY II.1. If Ti ∈ L(l1, l2), i = 1, . . . ,n, then

T1 ⊗ . . .⊗Tn ∈Π1(l1 ̂̂⊗ . . . ̂̂⊗l1, l2(Z )) and πp(T1⊗ . . .⊗Tn) � Kn
G ||T1|| . . . ||Tn||.

Therefore, the multi-dimensional generalization of Grothendieck’s inequality is
just a “right” definition (of a tensor norm) plus an application of the classical 1-dimen-
sional inequality of A. Grothendieck. This “right” definition let us to get a lot of other
applications. As an example, we obtain also another interesting consequence (with not
very difficult proof). Bellow, it is denoted by Iμ,p the identity imbedding from C(K)
into Lp(μ) (where μ is a finite Radon measure on a compact K).

COROLLARY II.2. Let X be a Banach spaces, T is a linear continuous operator
from X to C(K) and p > 0. Suppose that there is a sequence of finite dimensional
projectors {Pn} in X with the following properties:

1) supn ||Pn|| < +∞;
2) (id−Pn)X = (Xn

1 ⊕ . . .Xn
kn

)p for some subspaces Xn
1 , . . . ,Xn

kn
of the space (id−

Pn)X ;
3) for every n there exists a family In

1 , . . . , In
kn

of pairwise disjoint Borel subsets
of the compact K such that all the functions from T(Xn

j ) vanish out of the set In
j

( j = 1, . . . ,kn).
Let μ be a measure on K with limn sup1� j�kn

μIn
j = 0. Then: (a) the operator

Iμ,pT is compact for all p, p > 0; (b) if 1 � r < 2 and 1 < p < r′ then Iμ,pT ∈
Np(X ,Lp(μ)); (c) if 1 � r < 2 and 0 < p < r′ then Iμ,pT ∈ QNp(X ,Lp(μ)).

Now, we will consider one more of the applications. Namely, we will show (fol-
lowing [9]) how to obtain James-tree-like spaces JTr with some unusual properties
(applying Corollary II.2 for checking these properties). All the difficulties in the con-
struction of such a space is knowing the corollary II.2 and applying just some beliefs in
its existence and some mathematical thinking.

We will sketch a construction of the spaces JTr for r ∈ [1,∞) with the properties,
mentioned in the following theorem.

THEOREM II.2. A. 1) If 1 � r <∞, and p > 0 then every p-absolutely summing
operator from JTr is compact. 2) If 1 � r < 2 and 1 < p < r′ then every p-integral
operator from JTr is p-nuclear. 3) If 1 � r < 2 and 1 � p < r′ then every p-absolutely
summing operator from JTr is quasi- p-nuclear.

B. If 1 < r < 2 and p � r′ or r � 2 and p � 1 then there exists an operator from
JTr which is p-integral but not quasi- p-nuclear.

As a simple consequence of this theorem we get some more examples [cf. [10]] of
separable Banach spaces having non-separable duals and not containing l1.

Note that the proof of the part A of the theorem (when the space is constructed) is
a simple application of the corollary II.2 (and thus, of the theorem II.1).

Let us describe shortly the James-tree-like spaces from [9]. The separable Banach
space JTr consists of functions on a dyadic tree. The norm in JTr is defined in such
a way that every trace of JTr on each branch of the tree gives us the classical James’s
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space J (of codimension 1 in its second dual); for every level of the tree, say n -th, con-
sisting of 2n vertexes, the corresponding restriction of JTr onto 2n natural subtrees of
the tree (growing from those vertexes) gives the direct l2

n

r -sum of 2n 1-complemented
subspaces of JTr (which are isometric to JTr itself).

More precisely, dyadic tree is a partially ordered set T which is uniquely (up
to isomorphism) determined by the following requirements: I) there is the smallest
element in T (“the root of the tree”), 2) if t ∈T then {s ∈T : s > t}= A∪B, where
each of the sets A and B has the lowest element and any two elements a and b, a ∈
A,b∈ B are incomparable, and 3) no infinite chain in T has an upper bound. Elements
of T are referred to as vertexes. The root of the tree is the vertex of the zero level, two
vertexes (directly following it) are the vertexes of level 1, the next incomparable four
vertexes are called the vertexes of level 2. In general, by induction, we can naturally
define the vertexes of the n -th level (there are exactly 2n ones).

If s ∈ T then the set {t : t � s} is called a subtree growing from s. The branch
growing from a vertex s (of the n -th level) is any totally ordered set in which s is the
smallest element and that contains a vertex of the m-th level for every m,m � n. By
subtrees (branches) of the n -th level we understand any subtrees (branches), growing
from the vertexes of a n -th level.

Branches of the zero level are in natural bijective correspondence with the se-
quences of zeros and ones, that is, with the points of the dyadic Cantor set C . In
this correspondence (it is allowed some freedom of speech here), subtrees of the n -th
level correspond to 2n dyadic intervals of the n -th rank (which form a partition of C ),
which we denote by In

1 , . . . , In
2n . In what follows, if I is any dyadic interval then the cor-

responding subtree is denoted by TI ; Fn
s is the branch of n -th level, corresponding to

s,s ∈ C . Every branch F can be considered as a sequence (if numbering its elements
in ascending order) and, therefore, the expression of the form ||g|F || has a sense, where
g is a (finite) function on T and || · || is a norm in some sequence space.

The definition of the classical James’s space J can be found in [11]. Recall it.
The space J is the completion of the set of all finite sequences with respect to the norm
|| · ||J :

||x||J := sup

{( m

∑
j=1

|
n j+1−1

∑
k=n j

xk|2
)1/2

: 1 � n1 < n2 < .. . < nm, m = 1,2, . . .

}
.

Finally, we define the space JTr, 1 � r <∞. JTr is the space of functions on T ,
obtained by completion of the set of finite functions with respect to the norm ||| · |||r,

|||x|||r := sup
n

sup

{( 2n

∑
j=1

||x|Fn
s j
||rJ
)1/r

: s j ∈ In
j , 1 � j � 2n

}
.

We consider only the proof of Part B of Theorem II.2, — moreover, only the case
where r � 2 and 2 > p � 1. It is this case where the Grothendieck’s inequality is used.

So, let us consider the part B of Theorem II.2 for r � 2 and 2 > p � 1. Define
an operator S from JTr into C(C ) by (Sx)(s) := lima∈F0

s
∑b�a x(b). Let μ be the

Lebesgue measure on C . We shall show that Iμ,pS /∈ NQ
p .
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Assume that the latter is not true. Let ε > 0, and find such a finite dimensional
(say, m-dimensional) operator U that νQ

p (Iμ,pS−U) < ε. Put

XN := spanJTr
{e(N)

1 , . . . ,e(N)
2N };

XN is isometric to l(2
N )

r (note that the vectors e(N)
j correspond under this isometry to the

standard basis of l(2
N )

r and Iμ,pS(e(N)
j ) are the characteristic functions of dyadic inter-

vals of N -th rank). Let PN be the natural projection from Lp(μ) onto

span{Iμ,pS(e(N)
j )}1� j�2N , ||PN || = 1. Operators PNIμ,pS|XN and PNU |XN =: uN can be

considered as the operators acting from l(2
N )

r into l(2
N)

p , the first one being “identi-

cal” with 2−N/p h(2N)
r,p , where h(2N)

r,p is the identity embedding of l(2
N)

r into l(2
N )

p , and

rankuN � m. Since νQ
p (Iμ,pS−U) < ε, we have 2−N/pπp(h

(2N)
r,p −2N/p uN) � ε.

On the other hand, if r � 2 and 2 > p � 1 then limN 2−N/pπp(h
(2N)
r,p −2N/p uN) �

C > 0, where C is an absolute constant. Indeed, to prove this we may and do assume

that r = 2. Denote the operator h(2N)
2,p −2N/p uN by A, and let M := 2N and b1, . . . ,bM

be the rows of the matrix A. Since p < 2,

πp(A) � π2(A) � γ∞(A) = γ1(A∗) � K−1
G π1(A∗) � K−1

G πp(A∗)

(the second and third norms are the norms in the ideals of operators which can be
factored through C(K) and L1, respectively). Since rank2N/p uN � m for every N,
we can find (for all N large enough) at least M/2 vectors b j with l2 -norms greater
then, say, 1/4. Now, it is enough to recall that M = 2N and to apply the definition of

πp -operators to get πp(A∗) �
(
∑1� j�M ||b j||p2

)1/p � C0 2N/p. Done.

III. An application to Sp -algebras

Let us recall that a uniform algebra is a closed subalgebra of C(K) for some com-
pact space K. One says that a Banach algebra is a Q-algebra [12] if there exists a
uniform algebra A and a closed ideal I of A so that B is isomorphic as a Banach al-
gebra to the quotient algebra A/I. An operator algebra is a Banach algebra which can
be identify up to norm equivalence with a closed subalgebra of L(H) for some Hilbert
space H. It is known that a quotient algebra of an operator algebra is also an operator
algebra [12], [13], [14]. This is a result of B. Cole who proved it for the quotient al-
gebras of the uniform algebras; but the proof goes essentially even for the general case
(see, e.g., [14]). Thus, every Q-algebra is an operator algebra. It is also clear that a
closed subalgebra of an operator algebra is an operator algebra. What is nice and what
has been proved by N. Varopoulos [14] is the fact that if a Banach L∞ space admits
a Banach algebra structure then it is necessarily the structure of an operator algebra.
The theorem was stated for Banach C(K)-spaces B, but as was mentioned in [14], the
proof has a local Banach spaces technique character, so it suffice to suppose that B is a
L∞ -space in the sense of Lindenstrauss and Pelzcinski [18]
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It is interesting that the first application of Grothendieck’s theorem in the theory
of operator algebras seems to be applied in [14] by N. Varopoulos. More precisely,
Varopoulos has proved a “multidimensional” analogue of the following theorem due to
A.Grothendieck [1] (see also [18]): there is a C > 0, for which every complex bilinear
form on C(X) of norm 1, where X is a compact, can be extended to a bilinear form on
L2(X ,μ)×L2(X ,ν) of norm � C, for some probability measures μ ,ν on X .

Unfortunately, the formulation of this generalization of the Grothendieck theorem
is a little bit complicated and there is no place to bring this nice result of Varopoulos
to here (see Lemma 3.1 in [14].) One can say that the heart of the proof of Varopoulos
Theorem [14] is his criterium for a Banach algebra to be an operator algebra and a very
clever application of the Grothendieck theorem.

In [15] N. Varopoulos has proved a criterion for a Banach algebra to be a Q-
algebra (the criterion was very close to the one of A.M. Davie [19], as Varopoulos
noted, and the proof was also analogous). Varopoulos has introduced the new notion
of so called injective algebras and used his criterion for proving ([15], Theorem 1) that
any injective algebra is a Q-algebra. Recall the definition. A Banach algebra R is said
to be an injective algebra if the linear mapping induced by the algebra multiplication

m : R⊗R→ R (m(x⊗ y) = xy; x,y ∈ R)

is continuous for the injective norm of the tensor product R ̂̂⊗R of A. Grothendieck.
The next nice theorem in [15] is an interpolation theorem, which was used not

only by Varopoulos, but also by many other authors in considering of Sp -algebras.
This result (Theorem 2 [15]) asserts that for two Q-algebras that form an interpolation
pair, the intermediate algebra is also a Q-algebra.

As examples of applications, following Varopoulos, let us consider the algebras lp,
1 � p � ∞ (with pointwise multiplications). A.M. Davie [19] proved that the spaces
lp are Q-algebras for 1 � p � 2. It was communicated to Varopoulos by Sten Kaijser
(see [15], p. 4) that l1 is an injective algebra and thus, by Varopoulos, a Q-algebra . So,
interpolating between l1 and l∞, Varopoulos got the fact that lp is Q-algebra for every
p ∈ [1,∞].

Returning to the paper [14] by Varopoulos, let us mention, among the other results,
the following one which gave a rise to a 35 years standing open question in the theory
of operator algebras. To formulate this result we need some notations from Proposition
4.2 of [14]. Let H be a separable Hilbert space and fix E := {en}∞n=1, an orthonormal
basis in H. Let

M := {m = (mi j; i, j = 1,2, . . .)}
be the space of matrix representations of bounded operators on H with respect to the
basis E (that is, mi j = 〈Tei,e j〉 for T ∈ L(H)). Then one can give on M commutative
Banach algebra structure by defining

m ·n = (mi j ·ni j : i, j = 1,2, . . .)

for m,n ∈ M, and that algebra is then an operator algebra.
For a proof that M under the pointwise multiplication is a normed algebra see

[16]. Combined with a criterion of Varopoulos [14] for a Banach algebra to be an
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operator algebra, the proof in [16] gives more, namely, that M is operator algebra. As
mentioned in [14], M appeared in the literature for the first time in [17] in 1911.

Thus, taking in account that the space S2(H) of all Hilbert–Schmidt operators
with Schur (“pointwise”) multiplication is evidently an operator algebra, Varopoulos
in [14] proved essentially that Sp(H) (under the Schur multiplication) is an operator
algebra for every p ∈ [2,∞]. The fact that Sp is an operator algebra for all p ∈ [1,∞]
was proved later by D.P. Blecher and C. Le Merdy [20].

The main question, leaving open in [14] was:
Is the above algebra M a Q-algebra or is it not?

The mathematical community was solving, step by step, the problem of Varopou-
los, or more generally, the problem of whether the commutative Schur Sp -algebras
were Q-algebras for 1 � p � ∞. The crucial thing was, surely, to solve the problem in
the main cases where p = 1 and p = ∞ (having in minds the beautiful interpolation
result of Varopoulos).

I would like to emphasize 3 main steps.
1) The case where p = 4 was settled in 1998 by C. Le Merdy [21].
2) The case where p = 1 was settled in 2006 by David Pérez-Garcı́a [22].
3) The case where p = ∞ was settled in 2009 by J. Briët, H. Buhrman, T. Lee and

T. Vidick [23].
Thus, by Varopoulos, there were solved, step by step, the cases 1) 2 � p � 4, 2)

1 � p � 2 and 3) 1 � p � ∞.
In any case, one of the main tool in proving the corresponding result was the

Grothendieck’s inequality in one or another formulation, or some of its generaliza-
tions. For instance, in [21], among the other different and difficult facts, the author has
used the little Grothendieck theorem (see the paper for details). We do not touch the
technique from the last nice paper [23] (see the short note by Jop Briët, “A problem
of Varopoulos - Short survey on Schatten-Schur algebras”). Let us mention only that
Grothendieck theorem was also one of the crucial point in the proof.

When I was giving this small lecture, I was unaware of the result on the case
where p = ∞. So, a question, I recalled during the lecture, was “Is Sp a Q-algebra for
4 � p � ∞?”. Now, as we said, the problem is closed.

For me (and, hope, not only for me), it is interesting to consider a main part of
David Pérez-Garcı́a’s proof for the trace class. In fact, it is fairly to compare a multidi-
mensional inequality proved in [22] and a A. M. Davie’s criterion which was used by
David Pérez-Garcı́a, Here they are.

A multilinear Grothendieck’s inequality (with a simple proof in that paper):

THEOREM III.1. [22](Theorem 2.2.) For every m ∈ N, n � 2, (ai1...in) ⊂ C and
x1
i1
, . . . ,xn

in ∈ Blm2
we have∣∣∣∣ m

∑
i j=1

ai1...in

m

∑
k=1

x1
i1(k) . . .x

n
in(k)

∣∣∣∣� Kn−1
G sup

|ti j |�1

∣∣∣∣ m

∑
i j=1

ai1...in ti1 . . . tin

∣∣∣∣
(here Blm2

is the closed unit ball of the m-dimensional Euclidean space lm2 ).
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REMARK. Compare with Corollary II.1.
A. M. Davie’s criterion [19]:

THEOREM III.2. A commutative Banach algebra A is a Q-algebra if and only if
there exists a positive constant K such that∥∥∥∥ m

∑
i j=1

ai1...in xi1 . . .xin

∥∥∥∥� Kn sup
|ti j |�1

∣∣∣∣ m

∑
i j=1

ai1...in ti1 . . .tin

∣∣∣∣,
for every sequence x1, . . . ,xm ∈ A with ||xi|| � 1 and for every choice of ai1...in ∈ C.

I can guess that David Pérez-Garcı́a was successfully looking at both of the the-
orems and then it was nothing for him to solve the problem for the case where p = 1
(for the details, see the paper [22] itself).

Acknowledgments. I would like to bring my sincere acknowledgments to Profes-
sor Josip Pečarić for inviting me to give a lecture during the “International Conference
on Mathematical Inequalities and Applications” (March 07 – March 12, 2010. Lahore,
Pakistan).
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