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Abstract. We prove that the four-parameter family of means

R(u,v;r,s;x,y) =
[

E(r,s;xu,yu

E(r,s;xv,yv)

]1/(u−v)

is Schur-geometrically convex (concave) in x,y if (u+ v)(r + s) � (�)0 , and Schur-concave
(convex) in u,v � 0 if r + s � (�)0.

1. Introduction

In [2] the authors investigated Schur-geometric convexity of extended mean values
(called also Stolarsky means, as they were introduced by Kenneth B. Stolarsky in [7])

E(r,s;x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r
s

ys− xs

yr − xr

)1/(s−r)

if sr(s− r)(x− y) �= 0,(
1
r

yr − xr

logy− logx

)1/r

if r(x− y) �= 0, s = 0,

e−1/r
(
yyr

/xxr)1/(yr−xr)
if r = s, r(x− y) �= 0,√

xy if r = s = 0,

x if x = y

.

Their main result is that E(r,s;x,y) is Schur-geometrically convex in variables x,y if
r + s � 0, and Schur-geometrically concave otherwise. Shi et al. in [6] were working
on Schur-geometrical convexity of Gini means defined by

G(r,s;x,y) =

⎧⎪⎪⎨
⎪⎪⎩
[
xr + yr

xs + ys

]1/(r−s)

r �= s

exp

(
xr logx+ yr logy

xr + yr

)
r = s

.
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They proved that G(r,s;x,y) is Schur-geometrically convex in x,y if r,s � 0.
Qi ([4]) proved that for fixed x �= y Stolarsky means are Schur-geometrically con-

cave in variables r,s if r,s are positive, and Schur-geometrically convex for negative
r,s . In [5] Sándor gave another proof of this fact and obtained the same result for Gini
means.

It is worth noting that both Gini and Stolarsky means emerge from the logarithmic
and arithmetic means in the same way: if M(x,y) stands for either logarithmic mean
(L ) or the arithmetic mean (A), then the corresponding two-parameter family is defined
as

M(r,s;x,y) =

⎧⎪⎨
⎪⎩
(

M(xs,ys)
M(xr ,yr)

)1/(s−r)

r �= s

exp( d
dr logM(xr,yr)) s = r.

(1.1)

Obviously we could build two-parameter means taking as a starting point other
known means like for example generalized Heronian means

Hn(x,y) = ∑n
i=0 x(n−i)/nyi/n

n+1
→ Hn(r,s;x,y) =

(
∑n

i=0 x(n−i)r/nyir/n

∑n
i=0 x(n−i)s/nyis/n

)1/(r−s)

(1.2)

As L(x,y) = E(1,0;x,y), A(x,y) = E(2,1;x,y), Hn(x,y) = E(1/n,1+ 1/n;x,y)
are all Stolarsky means, it is quite natural to ask what happens if we consider two-
parameter means generated from Stolarsky means E(u,v;x,y) . This leads us to the
four-parameter family of means defined by

R(r,s;u,v;x,y) =

⎧⎨
⎩
[

E(u,v;xr ,yr)
E(u,v;xs,ys)

]1/(r−s)
r �= s

exp( d
dr logE(u,v;xr,yr)) r = s.

Given (1.1), we can write R in general case as

R(r,s;u,v;x,y) =
[
L(xru,yru)
L(xsu,ysu)

L(xsv,ysv)
L(xrv,yrv)

] 1
r−s

1
u−v

, (1.3)

which shows that R are symmetric in respective pairs of variables, positively homoge-
neous in x,y and R(u,v;r,s) = R(r,s;u,v) .

R-means were introduced in [8], where the comparison theorem was established,
and their monotonicity and convexity is discussed in [9].

In this paper we answer the following questions:

• when is R Schur-convex (Schur-concave) in variables r,s?

• when is R Schur-geometrically convex (Schur-geometrically concave) in vari-
ables x,y?
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2. Definitions and lemmas

Let us recall some definitions: we say that x = (x1,x2) is majorized by y = (y1,y2)
(and write x ≺ y ) if max(x1,x2) � max(y1,y2) and x1 + x2 = y1 + y2 . For positive xi

we denote logx = (logx1, logx2) . A real, symmetric function of two variables f is
said to be Schur-convex (concave) if x ≺ y implies f (x) � (�) f (y) . A real, symmet-
ric function of two variables f is said to be Schur-geometrically convex (concave) if
logx ≺ logy implies f (x) � (�) f (y) .

If U is a permutation matrix, then x ≺ xU ≺ x which implies, that any Schur-
convex or Schur-geometrically convex function is symmetric (i.e f (x) = f (xU) .

The lemma below can be easily deduced from [3, p. 55, Lemma A.2.b] and pro-
vides a useful characterization of Schur-convex and Schur-geometrically convex func-
tions:

LEMMA 2.1. Let I ⊂ R be an interval (possibly unbounded).
A symmetric function f : I × I → R is Schur convex (concave) if and only if for

every a ∈ I the function f+
a (x) = f (a+ x,a− x) is increasing (decreasing) on (0,∞)∩

(I−a)∩ (a− I) .
A symmetric function f : I× I →R is Schur-geometrically convex (concave) if and

only if for every positive a ∈ I the function f ∗a (x) = f (ax,a/x) is increasing (decreas-
ing) on (1,∞)∩ (I/a)∩ (a/I) .

In what follows we shall use frequently the following characterisation of convex
functions (see [1, p. 26])

LEMMA 2.2. Function f is convex (concave) if and only if the function

g(x,y) =
f (x)− f (y)

x− y
, x �= y

is increasing (decreasing) in both variables.

Two more tools will be useful:

LEMMA 2.3. For t,A,B > 0 let

h(t,A,B) = At cothAt−Bt cothBt.

If s �= t and A �= B, then

sgn(h(t,A,B)−h(s,A,B)) = sgn(t− s)(A−B).

Proof. The function k(x) = xcothx is even, so k′(0) = 0 and k′′(x) = 2coshx
sinh3 x

(x−
tanhx) � 0, hence k is increasing for positive x , which is equivalent to (A−B)h(t,A,B)
> 0.
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Applying Lemma 2.2 to the convex function k , we see that h(t,A,B)
t(A−B) increases in t .

The inequality

0 �
(

h(t,A,B)
t(A−B)

)′
=

t(A−B)h′(t,A,B)− (A−B)h(t,A,B)
t2(A−B)2

implies (A−B)h′(t,A,B) > 0 for every t , so h′ and A−B are of the same sign. The
Mean Value Theorem gives now

sgn(h(t,A,B)−h(s,A,B)) = sgn(t− s)h′(ξ ,A,B) = sgn(t− s)(A−B),

which completes the proof. �

LEMMA 2.4. Let f : R → R be even and strictly increasing in R+. Then

sgn
f (a)− f (b)

a−b
= sgn(a+b).

If f strictly decreases in R+ , then

sgn
f (a)− f (b)

a−b
= −sgn(a+b).

Proof. If a = −b , then the result is obvious. Otherwise in case of increasing f
we have

sgn
f (a)− f (b)

a−b
= sgn

f (|a|)− f (|b|)
a−b

= sgn
f (|a|)− f (|b|)

|a|− |b| sgn
|a|− |b|
a−b

= sgn
|a|2−|b|2

(|a|+ |b|)(a−b)
= sgn(a+b). �

LEMMA 2.5. The function

h(t) =
t3 cosh t

sinh3 t

is even, increases from 0 to 1 on (−∞,0) and decreases on (0,∞) .

Proof. It is clear that h(0) = 1 and h(±∞) = 0, and since it is even it is sufficient
to show that it decreases for positive t . Direct diffrentiation leads to quite complicated
inequality, so let us make a little trick here: let

g(t) =
sinh t

cosh1/3 t
.

Then

g′(t) =
2
3

cosh2/3 t +
1
3

cosh−4/3 t,

g′′(t) =
4
9

sinh t cosh−7/3 t
(
cosh2 t−1

)
,

so g is convex for t � 0, therefore its divided difference g(t)/t increases and h , its
cubed reciprocal, decreases. �
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LEMMA 2.6. If f ′′′ is positive (negative), then the divided difference

g(x,y) =

⎧⎨
⎩

f (x)− f (y)
x− y

x �= y

f ′(x) x = y

is Schur-convex (concave).

Proof. By Taylor’s theorem f (a) = f (a− t)+ f ′(a− t)t + f ′′(ξ1)t2/2 and f (a) =
f (a + t)− f ′(a + t)t + f ′′(ξ2)t2/2, where a− t < ξ1 < a < ξ2 < a + t . Therefore, if
f ′′′ > 0, then f ′′ increases and

d
dt

g(a+ t,a− t)=
[ f ′(a+ t)+ f ′(a− t)]t− [ f (a+ t)− f (a− t)]

2t2

=
f ′′(ξ2)− f ′′(ξ1)

4
> 0,

and we can apply Lemma 2.1 to complete the proof. �

3. Schur convexity of four-parameter means

THEOREM 3.1. R-means are Schur-geometrically convex in variables x,y if (u+
v)(r+ s) � 0 and Schur-geometrically concave otherwise.

Proof. The R-means inherit their homogeneity in x,y the same way Stolarsky
means inherit it from the logarithmic mean, therefore, in spite of Lemma 2.1, one can
easily see that R(u,v;r,s;x,y) is Schur-geometrically convex (Schur-geometrically con-
cave) in x,y if and only if R(u,x;r,s;x,1/x) increases (decreases) for x > 1, or equiv-
alently, that T (t) = logR(u,v;r,s;et ,e−t) increases (decreases) for t > 0. We have

T (t) =
log |sinhurt|− log |sinhust|− log |sinhvrt|+ log |sinhvst|

(u− v)(r− s)

=
logsinh |ur| t− logsinh |us| t− logsinh |vr|t + logsinh |vs| t

(u− v)(r− s)

and

T ′(t) =
|ur| t coth |ur| t−|us|t coth |us|t−|vr|t coth |vr| t + |vs|t coth |vs|t

t(u− v)(r− s)

=
h(|u| , |r| t, |s|t)−h(|v| , |r|t, |s|t)

t(u− v)(r− s)
.

Applying Lemma 2.3, we obtain

sgnT ′(t) = sgn
|u|− |v|
u− v

sgn
|r|− |s|
r− s

= sgn(u+ v)(r+ s),
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since |u|−|v|
u−v = u2−v2

(u−v)(|u|+|v|) = u+v
|u|+|v| .

The argument presented above is valid on a dense set of parameters satisfying
uv(|u|−|v|)rs(|r|−|s|) �= 0, therefore, by continuity, the theorem holds for other values
of parameters as well. �

As an application of the above theorem, observe that for 0 � μ < ν � 1
2 we have

(logxνy1−ν , logx1−νyν)≺ (logxμy1−μ , logx1−μyμ) , therefore when (u+v)(r+s) � 0,
we have

R(u,v;r,s;xνy1−ν ,x1−νyν) � R(u,v;r,s;xμy1−μ ,x1−μyμ).

Observe that R(u,v;r,s;xμy1−μ ,x1−μyμ) is the four-parameter mean generated by

L(xμy1−μ ,x1−μyμ)) = Lμ(x,y) =
1

1−2μ

∫ 1−μ

μ
xty1−tdt.

Let us consider now Schur-convexity of R in variables u,v .

THEOREM 3.2. For arbitrary positive x,y, the function R(u,v;r,s;x,y) is Schur-
convave in {(u,v) : u,v � 0} if r + s � 0 and Schur-convex if r + s � 0 . In {(u,v) :
u,v � 0} the Schur-convexity reverses.

Proof. Setting ω = log
√

x/y we can write

logR(u,v;r,s;x,y) = log
√

xy+
logE(r,s;euω ,e−uω)− logE(r,s;evω ,e−vω)

u− v
,

and by Lemma 2.6 Schur-convexity of R(u,v) depends on third derivative of

K(t) = logE(r,s;etω ,e−tω ) =
log |sinhrωt|− log |sinhsωt|

r− s
− logr− logs

r− s
.

However

K′′′(t) = 2
(rω)3 coshrωt

sinh3 rωt
− (sω)3 coshsωt

sinh3 sωt
r− s

=
2ω
t2

(rωt)3 coshrωt

sinh3 rωt
− (sωt)3 coshsωt

sinh3 sωt
rωt− sωt

and applying Lemmas 2.4 and 2.5, we obtain

sgnK′′′(t) = −sgn(ω)sgn(rωt + sωt) = −sgn(t)sgn(r+ s),

which completes the proof. �
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