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SCORES, INEQUALITIES AND REGULAR HYPERTOURNAMENTS

MUHAMMAD ALI KHAN, S. PIRZADA AND KOKO K. KAYIBI

(Communicated by R. A. Brualdi)

Abstract. A k -hypertournament is a complete k -hypergraph with each k -edge endowed with
an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k -
hypertournament, the score si (losing score ri ) of a vertex vi is the number of edges containing
vi in which vi is not the last element (in which vi is the last element). In this paper we obtain
inequalities involving powers of scores and losing scores by using classical results from math-
ematical analysis (such as Hölder’s inequality) and show that equality holds if and only if the
hypertournament is regular. We then use these inequalities to give a short proof of a result on
the existence of regular hypertournaments. We also obtain an upper bound on the number of
directed paths of length 2 in tournaments and hypertournaments, prove that the bound is sharp
and that it is realized by regular hypertournaments.

1. Introduction

A k -hypergraph is a pair H = (V,E) , where V is the set of vertices and E is the
set of k -subsets of V , called edges [2].

A tournament is a complete oriented graph. In a tournament the score of a ver-
tex is its out-degree and the sequence of scores listed in non-decreasing order is called
the score sequence. Landau’s theorem [9] gives a necessary and sufficient condition
for a sequence of non-negative integers to be the score sequence of some tournament.
Brualdi and Shen [4] have strengthened Landau’s inequalities on scores of a tourna-
ment, giving better necessary and sufficient conditions for the existence of tournament
score sequences.

Hypertournaments are generalizations of tournaments. Given two non-negative
integers n and k with n � k > 1, a k -hypertournament on n vertices is a pair (V,A) ,
where V is the set of vertices with |V | = n, and A is the set of k -tuples of vertices,
called arcs, such that for any k -subset S of V , A contains exactly one of the k! k -
tuples whose entries belong to S . A hypertournament is said to be regular if all vertices
have the same score (equivalently the same losing score) [8]. Koh and Ree [8] have
proved the following necessary and sufficient condition for the existence of regular
hypertournaments.
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THEOREM 1.1. For n � 3 and 2 � k � n−1 , a regular k -hypertournament on n
vertices exists if and only if n divides

(n
k

)
.

Several authors have generalized concepts and results from tournaments to hyper-
tournaments. The recent work on reconstruction of complete interval tournaments due
to Ivanyi [5] can be extended to hypertournaments. The concept of kings in tourna-
ments has been introduced in hypertournaments by Brcanov and Petrovic [3], but is
still in its infancy. Zhou et al. [18] extended the concept of scores in tournaments to
that of scores and losing scores in hypertournaments, and derived a result analogous to
Landau’s theorem on tournaments. The score s(vi) or si of a vertex vi is the number
of arcs containing vi in which vi is not the last element, and the losing score r(vi) or ri

of a vertex vi is the number of arcs containing vi in which vi is the last element. The
score sequence (losing score sequence) is formed by listing the scores (losing scores)
in non-decreasing order. The last decade has seen a growing interest in the score struc-
ture of k -hypertournaments [6, 10, 15], multipartite hypertournaments [11, 12, 13] and
oriented k -hypergraphs [14, 17].

The following characterizations of losing score sequences and score sequences of
k -hypertournaments can be found in [18].

PROPOSITION 1.2. Given two non-negative integers n and k with n � k > 1, a
non-decreasing sequence R = [r1,r2, . . . ,rn] of non-negative integers is a losing score
sequence of some k -hypertournament if and only if for each 1 � j � n,

j

∑
i=1

ri �
(

j
k

)
,

with equality when j = n.

PROPOSITION 1.3. Given non-negative integers n and k with n � k > 1 , a non-
decreasing sequence S = [s1,s2, . . . ,sn] of non-negative integers is a score sequence of
some k -hypertournament if and only if for each 1 � j � n,

j

∑
i=1

si � j

(
n−1
k−1

)
+
(

n− j
k

)
−
(

n
k

)
,

with equality when j = n.

Bang and Sharp [1] proved Landau’s theorem using Hall’s theorem on a system of
distinct representatives of a collection of sets. Based on Bang and Sharp’s ideas, Koh
and Ree [8] have given a different proof of Proposition 1.2 and 1.3. Some more results
on scores of k -hypertournaments can be found in [7, 16].

As is evident from Proposition 1.2 and 1.3, inequalities play a pivotal role in the
theory of hypertournaments. In this paper we investigate how classical inequalities can
provide more insight into the behaviour of score and losing score sequences and hence
the structure of hypertournaments. In particular, we focus on the powers of scores and
losing scores. In section 2, we prove that the sum of power means of score and losing
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score sequences is never less than
(n−1
k−1

)
while the sum of their geometric means never

exceeds
(n−1
k−1

)
. We then consider score and losing score sequences as vectors in Eu-

clidean space and obtain an upper bound on their inner product that is best possible. On
the way we make use of several classical inequalities such as Hölder’s, Minkowski’s
and Mahler’s inequality. We also discuss the case of equality in detail for the inequal-
ities derived in this paper and prove that equality holds in all these inequalities if and
only if the hypertournament is regular. Some applications of these results are presented
in section 3. We give a proof of Theorem 1.1 that is much shorter than the original proof
by Koh and Ree. We also derive sharp upper bounds on the number of directed paths
of length 2 in tournaments and hypertournaments. The bounds are realized by regular
hypertournaments.

2. Inequalities involving powers of scores and losing scores

In this section we apply some famous inequalities from mathematical analysis
such as Hölder, Minkowski and Mahler’s inequalities to k -hypertournaments to obtain
results on the powers of scores and losing scores. It is noteworthy that equality holds in
all the results obtained in this section if and only if the hypertournament is regular.

The following result gives a lower bound on ∑ j
i=1 rg

i , where 1 < g < ∞ is a real
number.

THEOREM 2.1. Let n and k be two non-negative integers with n � k > 1 . If
R = [ri]

n

1
is a losing score sequence of a k -hypertournament, then for 1 < g < ∞

j

∑
i=1

rg
i � j

kg

(
j−1
k−1

)g

,

where 1 � j < n. In particular,

n

∑
i=1

rg
i � n

kg

(
n−1
k−1

)g

, (1)

with equality in (1) if and only if the hypertournament is regular.

Proof. By Proposition 1.2, we have

(
j
k

)
�

j

∑
i=1

ri,

for 1 � j < n . So by using Hölder’s inequality

(
j
k

)
�

j

∑
i=1

ri =
j

∑
i=1

ri ·1 �
(

j

∑
i=1

rg
i

) 1
g
(

j

∑
i=1

1h

) 1
h

,

for 1 � j < n , where 1
g + 1

h = 1.
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Thus (
j
k

)
�
(

j

∑
i=1

rg
i

) 1
g
(

j

∑
i=1

1h

) 1
h

=

(
j

∑
i=1

rg
i

) 1
g

j
1
h .

That is

j
−1
h

(
j!

k!( j− k)!

)
�
(

j

∑
i=1

rg
i

) 1
g

,

or

j1−
1
h

k

(
( j−1)!

(k−1)!( j− k)!

)
�
(

j

∑
i=1

rg
i

) 1
g

.

Hence
j

∑
i=1

rg
i � j

kg

(
j−1
k−1

)g

. (2)

For j = n , Proposition 1.2 gives (
n
k

)
=

n

∑
i=1

ri,

So inequalities (2) now become

n

∑
i=1

rg
i � n

kg

(
n−1
k−1

)g

,

with equality if and only if r1 = r2 = · · · = rn (condition of equality for Hölder’s in-
equality), that is if and only if the hypertournament is regular. �

We now proceed to obtain results which combine scores and losing scores. The
following theorem relates powers of scores and losing scores.

THEOREM 2.2. Let n and k be two non-negative integers with n � k > 1 . If
S = [si]

n

1
in non-increasing order and R = [ri]

n

1
in non-decreasing order are respectively

the score and losing score sequences of a k -hypertournament, then for any real number
1 < g < ∞ (

∑ j
i=1 sg

i

j

) 1
g

+

(
∑ j

i=1 rg
i

j

) 1
g

�
(

n−1
k−1

)
,

where 1 � j < n. In particular,

(
∑n

i=1 sg
i

n

) 1
g

+
(

∑n
i=1 rg

i

n

) 1
g

�
(

n−1
k−1

)
,

with equality if and only if the hypertournament is regular. Furthermore, for any posi-
tive integer 1 � j < n

j

∏
i=1

s
1
j
i +

j

∏
i=1

r
1
j
i �

(
n−1
k−1

)
.
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In particular, for j = n
n

∏
i=1

s
1
n
i +

n

∏
i=1

r
1
n
i �

(
n−1
k−1

)
,

with equality if and only if the hypertournament is regular.

Proof. Since the score sequence is arranged in non-increasing order, therefore for
any 1 � i � n , (

n−1
k−1

)
= si + ri. (3)

So for 1 � j � n and any g > 1 , we have

j

(
n−1
k−1

)g

=
j

∑
i=1

(si + ri)g .

Applying Minkowski’s inequality

j
1
g

(
n−1
k−1

)
=

(
j

∑
i=1

(si + ri)
g

) 1
g

�
(

j

∑
i=1

sg
i

) 1
g

+

(
j

∑
i=1

rg
i

) 1
g

,

or (
n−1
k−1

)
�
(

∑ j
i=1 sg

i

j

) 1
g

+

(
∑ j

i=1 rg
i

j

) 1
g

.

For j = n , we have

(
n−1
k−1

)
�
(

∑n
i=1 sg

i

n

) 1
g

+
(

∑n
i=1 rg

i

n

) 1
g

. (4)

Equality holds in (4) if and only if for all 1 � i � n , we have si = cri for some fixed
real number c (by the condition of equality in Minkowski’s inequality). Substituting in
(3) and summing upto n

n

(
n−1
k−1

)
=

n

∑
i=1

(si + ri) = (c+1)
n

∑
i=1

ri = (c+1)
(

n
k

)
(by Proposition 1.2) ,

which holds if and only if c = k− 1 or equivalently if ri = 1
k

(n−1
k−1

)
or equivalently if

the hypertournament is regular.
Again from (3), for any 1 � j � n

(
n−1
k−1

)
=

j

∏
i=1

(si + ri)
1
j �

j

∏
i=1

s
1
j
i +

j

∏
i=1

r
1
j
i (by Mahler’s inequality) .

Again arguing as above, equality holds for j = n if and only if the hypertournament is
regular. �
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The power mean with exponent g of non-negative real numbers x1,x2, . . . ,x j is
defined as

Mg (x1, . . . ,x j) =

(
∑ j

i=1 xg
i

j

) 1
g

.

Theorem 2.2 states that for any exponent 1 < g < ∞ the sum of power means
of first j terms of the score sequence and the losing score sequence of an n vertex
k -hypertournament is never less than

(n−1
k−1

)
. That is

Mg (s1, . . . ,s j)+Mg (r1, . . . ,r j) �
(

n−1
k−1

)
, (5)

where 1 � j � n .
Since S = [si]

n

1
is arranged in non-increasing order and R = [ri]

n

1
is in non-decreasing

order, conditions (5) hold for any j terms (not necessarily the first j terms) of S and
R .

The geometric mean of non-negative real numbers x1,x2, . . . ,x j is defined as

GM (x1, . . . ,x j) =
j

∏
i=1

x
1
j
i .

Theorem 2.2 also implies that the sum of geometric means of first j terms of the
score sequence and the losing score sequence of an n vertex k -hypertournament cannot
exceed

(n−1
k−1

)
. That is

GM (s1, . . . ,s j)+GM (r1, . . . ,r j) �
(

n−1
k−1

)
. (6)

Let ℜn denote the n -dimensional Euclidean space. The inner product of two
vectors A = (a1, . . . ,an) and B = (b1, . . . ,bn) in ℜn is defined as

〈A,B〉 =
n

∑
i=1

aibi.

The next theorem gives an upper bound for the inner product of score and losing
score vectors in ℜn . The bound given in Theorem 2.3 is best possible in the sense that
it is realized by regular hypertournaments. It should also be noted that Theorem 2.3
does not depend on the order of si and ri and holds for any arbitrary ordering of scores
and losing scores.

THEOREM 2.3. Let n and k be two non-negative integers with n � k > 1 . If
S = [si]

n

1
and R = [ri]

n

1
are respectively the score sequence and losing score sequence

of a k -hypertournament, then

〈S,R〉 � k−1
k

(
n
k

)(
n−1
k−1

)
, (7)

with equality if and only if the hypertournament is regular.
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Proof. By the linearity of inner product, we have

〈S+R,R〉= 〈S,R〉+ 〈R,R〉 ,(
n−1
k−1

) n

∑
i=1

ri =
n

∑
i=1

siri +
n

∑
i=1

r2
i .

From Proposition 1.2 (
n−1
k−1

)(
n
k

)
=

n

∑
i=1

siri +
n

∑
i=1

r2
i .

The arithmetic mean of n non-negative real numbers never exceeds their root mean
square. So √

∑n
i=1 r2

i

n
� ∑n

i=1 ri

n
,

with equality if and only if r1 = r2 = · · · = rn .

Or
n

∑
i=1

r2
i � (∑n

i=1 ri)2

n
.

Thus

(
n−1
k−1

)(
n
k

)
�

n

∑
i=1

siri +
(∑n

i=1 ri)
2

n
=

n

∑
i=1

siri +

(n
k

)2
n

. (by Proposition 1.2)

Rearranging

n

∑
i=1

siri �
(

n−1
k−1

)(
n
k

)
−
(n
k

)2
n

=
k−1

k

(
n
k

)(
n−1
k−1

)
.

The equality holds if and only if r1 = r2 = · · ·= rn , that is, if and only if the hypertour-
nament is regular. �

3. Some applications to hypertournaments

The results obtained in the previous section provide much insight into the structure
of hypertournaments. First we give a short proof of Theorem 1.1 based on Theorem 2.1.

Proof of Theorem 1.1. If there exists a regular k -hypertournament with losing
score sequence [ri]

n

i=1 then by inequalities (2),

n

∑
i=1

r2 =
n
k2

(
n−1
k−1

)2

, (case of equality with g = 2)
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where r1 = r2 = · · · = rn = r . Thus r2 = 1
k2

(n−1
k−1

)2
and so k divides

(n−1
k−1

)
. Now

(n
k)
n = (n−1

k−1)
k which implies that n divides

(n
k

)
.

Conversely, assume that n divides
(n
k

)
. Then k divides

(n−1
k−1

)
. For 1 � i � n , set

ri = 1
k

(n−1
k−1

)
. Then for 1 � j � n

j

∑
i=1

ri =
j
k

(
n−1
k−1

)
=

j(n−1)!
(n− k)!k!

� j!
( j− k)!k!

,

with equality when j = n . Thus by Proposition 1.2, [ri = r]
n

i=1 is the losing score
sequence of a regular k -hypertournament. �

Note that Theorem 1.1 can also be proved by using Theorem 2.3 together with the
argument as seen above.

An (x,y)-path [18] in a k -hypertournament H is a sequence

(x =)v1e1v2e2v3 · · ·vt−1et−1vt(= y)

of distinct vertices v1,v2, . . . ,vt , t � 1 and distinct arcs e1,e2, . . . ,et−1 such that for
1 � i � t − 1, vertex vi+1 occurs as the last element in ei . A little consideration re-
veals that the inner product of score and losing score vectors is actually equal to the
number of directed paths of length two in a k -hypertournament. So the upper bound
derived in Theorem 2.3 actually bounds the number of paths of length two in a k -
hypertournament.

THEOREM 3.1. The number of directed paths of length two in a k -hypertournament
never exceeds k−1

k

(n
k

)(n−1
k−1

)
. The bound is achieved if and only if the hypertournament

is regular.

Proof. For 1 � i � n , the quantity risi counts the number of distinct directed paths
of length two of the form xviy . Thus ∑n

i=1 risi is the total number of distinct directed
paths of length two in the hypertournament. By (7) this quantity is bounded above by
k−1
k

(n
k

)(n−1
k−1

)
with equality if and only if the hypertournament is regular. �

The case k = 2 leads to the corresponding bound for tournaments.

COROLLARY 3.2. The number of directed paths of length two in a tournament

never exceeds n(n−1)2
4 . The bound is achieved if and only if the tournament is regular.
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