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A PART-METRIC VARIANT OF NEWTON’S INEQUALITIES

KENNETH S. BERENHAUT AND AUSTIN H. JONES

(Communicated by C. P. Niculescu)

Abstract. This note gives a part-metric variant of Newton’s inequalities. A particular case proved
useful recently in the study of difference equations involving ratios of elementary symmetric
polynomials.

1. Introduction

This short note provides a part-metric variant of Newton’s inequalities. In partic-
ular, for fixed k > 0, consider the elementary symmetric polynomials, {e j’k} in the k
variables X1,X>,...,Xg, i.e., eox(X1,X2,...,X) =1 and

ej,k(XlaX27"'an) = 2 XiIXiZ"'X

ijs
J
1<i1<i2<...<i_,‘<k

1<j<k (1.1)

When the inputs are clear from the context, we may denote e j7k(X1,X2,...,Xk) by
ej(X1,Xa,...,X) orsimply e; for 0 < j < k. Note that every symmetric polynomial
can be written as a polynomial in elementary symmetric polynomials (see for instance
[17] or [20]). For some further discussion on the importance of symmetric polynomials
see for instance [14] and the extensive references in [10].

The well-known Newton’s inequalities for elementary symmetric polynomials are
the following.

THEOREM 1. (Newton’s inequalities) For fixed k > 1 and {S;} defined via
_ e,‘(Xl,Xz, . ,Xk)

S[:Si(XI,XQ,---,Xk) (k) ) (12)
we have for X1,Xa,...,X; > 0 that
&gﬂg...g'g—kq’ (1.3)
S1 S Sk
with equalities in (1.3) ifand only if X1 =X, = --- = X.
In addition, it follows that
D do 8L (1.4)
ey e €k
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See for instance [5], [6], [15], [18], [19] and [22] and the references therein, for
further discussion and generalizations of Theorem 1.

In [3], the following theorem regarding convergence of positive solutions to ratio-
nal difference equations was proven. The case i = k— 1, was proven in [9] (see also
[71, [13], [8] and Section 4.5 in [11]).

THEOREM 2. Suppose 0 <i<k—1 and {y,} satisfies

eik
Yn= ( ) n—tysYn—tos+-+Yn—1), (1.5)

€itlk

where 1; > 1 for 1 <1<k, ged(ty,t0,...,1,) =1 and y_g,y_s41,...,y—1 ERT, with
s:max{tl,tz,...,tk}. (1.6)

If at least one 1) is even, then {y,} converges to the unique equilibrium

i+1 k
e\t -

Otherwise, {y,} is asymptotically periodic with (not necessarily prime) period
two.

Instrumental in the proof of Theorem 2 in [3] was the following variant of Theo-
rem 1.

THEOREM 3. For X > 0, define the transformed value X* via

X ¢
X" = —, = 1.8
e "
where c is as defined in (1.7), and suppose that X1,X3,...,X; > 0. Then,

< e,-(Xl,Xz,...,Xk) )* < 61(X1*7X2*7...,XZ)
eir1(X1,X2,...,Xk) k '

(1.9)

The part-metric or Thompson’s metric, p, on (R")" is defined for any X =
(x1,%2,...,%) € (RT) and Y = (y1,y2,...,yr) € (RT)" via

i Xi

p(X,Y):—log2min{)ﬁ7)ﬁ:lgigr}. (1.10)

For some recent work regarding global asymptotic stability which employ part-
metric-type techniques see for instance [1], [2], [4], [12], [16], [23], [24], [25] and
the references therein. From a part-metric perspective, it would have sufficed for the
purposes in [3] to replace the inequality in (1.9) with the weaker

( ei(X17X27 cee an)
eir1(X1, X2, ..., Xg

)) <max{X],X5,...,X{},

but the bound in (1.9) is stronger and somewhat more natural in the given context.
In the present paper, we will prove the following.



A PART-METRIC VARIANT OF NEWTON’S INEQUALITIES 355

THEOREM 4. For X >0 and 0 < i < j < k, define the transformed value X* via

X ¢
X" = — = 1.11
s (2,21, an

c:ci’j:<%>ﬁ

where

1
i(j—1)...(i+1 =T
:< _JUD. (D) ), 7 (1.12)
(k=i)(k—(+1)...(k—j+1)
and suppose that X1,X3,...,X; > 0. Then, for 0 < h < i,
S P o o G
e — (X[ X5 X)) < (X1 X, X, (1.13)
j—i+h €j
with equality if and only if X| =Xy = --- =Xy = ¢ when 0 < h < i, and if and only if
X1,X2,- -+, Xk = ¢ when h=1i. Similarly, for O < h<k—j,
€i Sj*iJrh % yk *
—(X1,X,...,X) < ¢ X7, X5,....X)), (1.14)
€; Sh
with equality if and only if X| =X, = --- =Xy = c when 0 < h < k— j and if and only

if X1,Xp,-, X <c when h=k— j.

Since, by Theorem 1, S;/Suihn < Sut1/Saans1 for (a,h) satisfying a,h > 0 and
a+h+ 1< k, we have the following corollary.

COROLLARY 1. Suppose the hypotheses of Theorem 4 are satisfied, and set

b = g—Z(Xf‘,X;,...,x,j), (1.15)
for 0 < a,b < k. Then,
Dy i <Djj_ iy < <Dj; < % <D ijj SDipipmjn S < Djjp,
(1.16)
In particular, since (see Lemma 1, below),
D; o < (max{X;,X;,....X; })/ ™, (1.17)

(X N\ e X, ¢ )\’
c|{ min ¢ —, — <—<c| max { —, — .
It<k | ¢ X e; 1<k | ¢ 7 Xy

(1.18)
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For inequalities similar in type to that in (1.18), see for instance [24] and the
references therein.

Note that the constant ¢ = ¢; ; as defined in (1.12) is the unique equilibrium for
the equation

€ik
Yn = ( ’ ) Vn—ty>Yn—tzs+--sYn—1,), n=0. (1.19)
€jk

Theorem 4 leads to the following extension of Theorem 3.

THEOREM 5. For X >0 and 0 < i < j < k, define the transformed value X* via
(1.11). Suppose that X,Xz,...,Xx > 0. Then, for 0 < h < min{i,k— j}

<€i(X1,X2,...,Xk)>* < Sj—i+h(X1*7X2*7~~7X]:)
Ej(Xl,XQ,...,Xk) Sh(Xl*,X;,...,X]j) ’

(1.20)
with equality if and only if X1 =X, =--- =X = c.

In the next section, we will prove Theorem 4.

2. Proof of Theorem 4

In this section we will prove Theorem 4. Essential to the proof will be the follow-
ing elementary lemma which follows directly from Theorem 1.

LEMMA 1. The ratio R = R; ; defined via

ei,k(Xh P ,Xk)

——= 0<i<j<k 2.1
ej7k(X1,...,Xk)

RX1, X, .., X0) =

is decreasing in each of its arguments.

Proof. The lemma clearly holds if i = 0. Otherwise, we have
_ Xiei—1h—1(X1,. . Xpm1) +eij—1 (X1, Xk1)
Xiej 1 x-1(X1,- -, Xi1) Feju1(X1,. ., Xk 1)
_ Xiei_1k—1+e€ik—1
Xiej 1 x-1t€jk-1

R(X1,Xa,. .., X0)

(2.2)

dR _ Ci1k—1 (Xkejfl,kfl + €j,k—1) — (Xkeifl,kfl + ei,kfl)ejfl,kfl
. (Xiej—1p—1+€ji—1)*

i1 k—1€jk—1 " €j—1 k—1€ik—1

B (Xiej—1p—1+e€ji—1)?

e; e ej
- <0, (2.3)
(Xiej—1k—1+ejx-1)?
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by (1.4), and since R is symmetric in its arguments, the result follows. [J

We are now in a position to prove Theorem 4.

Proof of Theorem 4. We need to show that for fixed 0 < r < k and all positive
X1,Xa,...,X; satisfying

X1, Xo,.... X > cand Xo1,Xi0, ..., Xe < C, 2.4)
e S'_' X Xr 1 i
o2 (21 A € L) L X Xy X)) 20
Sh c c XrJrl Xk cej
(2.5)
and
def Sj—ivn [ X1 X ¢ c ej
P oirh (2 A S — ) — e (X1, X, ..., Xp) = 0.
0, Sh (C ¢ Xr1 Xi ¢ i(l ? ¥
(2.6)

To prove (2.5), note that by Lemma 1, for O < h < k—j

Si_ivh c c 1e;
>y — =) == (e, e X, X
Ql Sh ( Xr+1 7Xk cej (C € +1 ’ k)
S 1 1 1 1 1 e
= oJitith — e Ty Ty | — — ¢ (NS IR IS, €3
Sh c ¢ Xrt1 Xk et
i [ Sk—(j—it+h I
=/ <ﬁ(ca'“7caxr+l7"'axk)_WZ(C?"ﬂcaXH-IV"an)
- j
S S:
— i (%(c,...,qxrﬂ,...,x,{)—i(c,...,c,xm,...,x,{)) > 0.
- J

2.7)

Similarly, for 0 < h < i

\

0 > jS—H_h (—1,...,—r,1,...,1)—ce—j(Xl,...,Xr,c,...,c)
h

¢/t Y e
1 (Siisn S;
= - (%(Xl,...,th,...,c)—E:(Xl,...,Xr,c7...,c)) > 0.

(2.8)
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The statements regarding equality follow upon noting that, by Lemma 1, the first in-
equality in (2.7) is strict unless X|,X5,...X, = ¢, and by Theorem 1, the final inequal-
ity is strict unless X, 1,..., Xy =c or h =k — j. A similar argument applies to the
inequalities in (2.8), and the theorem follows. [
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