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Abstract. In this paper, we investigate some common characterizations and various individual
properties of the star ordering, the left star ordering, the right star ordering and the minus partial
ordering of bounded operators on a Hilbert space. Some generalizations of results known in the
literature and a number of new results for bounded operators are derived.

1. Introduction

Let H and K be Hilbert spaces over the same field. We denote the set of
all bounded linear operators from H into K by B(H ,K ) and by B(H ) when
H = K . For A ∈ B(H ,K ) , let A∗ , R(A) and K (A) be the adjoint, the range and
the null space of A , respectively. An operator P ∈ B(H ) is said to be idempotent if
P2 = P . An idempotent P is called an orthogonal projection if P2 = P = P∗. The or-
thogonal projection onto closed subspace M ⊆ H is denoted by PM . Let PM ,N de-
note the idempotent with R(PM ,N )=M and K (PM ,N ) =N . For closed subspaces
M and N , the direct sum and the orthogonal direct sum are denoted by M ⊕N
and M ⊕⊥ N , respectively. It is clear R(PM )+K (PM ) = M ⊕⊥ M⊥ = H and
R(PM ,N )+K (PM ,N ) = M ⊕N = H .

For A,B ∈ B(H ) , we omit the trivial cases A = 0 and A = B. The star ordering

A
∗
� B , the left star ordering A ∗� B and the right star ordering A �∗B are defined,

respectively, by
A∗A = A∗B and AA∗ = BA∗,
A∗A = A∗B and R(A) ⊆ R(B),
AA∗ = BA∗ and R(A∗) ⊆ R(B∗).

(1.1)

The first ordering was introduced by Drazin [13] and Mitra [22]. The last two orderings
were defined and characterized by Baksalary [1] (see also [1]–[4], [13]–[16], [18]–[24]
for more details). And the minus partial ordering on Cn introduced by Hartwig [18] is
defined by

A
−
� B ⇐⇒ rank(B−A) = rank(B)− rank(A).

Mathematics subject classification (2010): 15A09, 47A05.
Keywords and phrases: Linear operator, partial ordering, Moore-Penrose inverse, group inverse.
Supported by the Basic and Advanced Research Program of Henan Science Committee (No. 102300410145) and the

research award for teachers in Nanyang Normal University (nynu200749).

c© � � , Zagreb
Paper MIA-15-54

619

http://dx.doi.org/10.7153/mia-15-54


620 C. DENG AND S. WANG

Recently, Peter Šemrl [23, Definition 1] generalized this definition to bounded linear
operators acting on an infinite-dimensional Hilbert space. For A,B ∈ B(H ) , the minus

partial ordering on B(H ) is defined by A
−
� B if and only if there exist idempotent

operators P,Q ∈ B(H ) such that

R(P) = R(A), K (Q) = K (A), PA = PB and AQ = BQ.

The relation A
−
� B is indeed a partial ordering and A

−
� B ⇐⇒ A∗ −

� B∗ (see [23,
Corollary 3]).

The Moore-Penrose inverse (for short, MP inverse) of T is denoted by T+ , and it
is the unique solution to the following four operator equations ([5, 6, 7]),

TXT = T, XTX = X , TX = (TX)∗, XT = (XT )∗.

Recall that any matrix is MP invertible. For an arbitrary Hilbert space, it is not true that
every element in B(H ) is MP invertible. But, if R(T ) is closed, T has MP inverse
and the MP inverse is unique with (T ∗)+ = (T+)∗ , TT+ = PR(T ) and T+T = PR(T∗) .
And T , as an operator from R(T ∗)⊕⊥ K (T ) onto R(T )⊕⊥ K (T ∗) , can be written

as T =
(

T1 0
0 0

)
, where T1 is invertible. So T+ =

(
T−1
1 0
0 0

)
= T ∗(TT ∗ +PK (T ∗))−1 (see

[5, 7]). An element B ∈ B(H ) is the Drazin inverse of A ∈ B(H ) provided that

Ak+1B = Ak, BAB = B and AB = BA

hold for some nonnegative integer k . The smallest k in the previous definition is called
the Drazin index of A , and will be denoted by ind(A) . If A has the Drazin inverse with
ind(A)= k , then R(Ak) is closed and the Drazin inverse AD is unique. It is well-known
that, if A ∈ B(H ) has the Drazin inverse, then 0 is not the accumulation point of the
spectrum σ(A) (see [5, 7]). In the case where ind(A) � 1, AD is called the group
inverse of A and denoted by A# . In particular, if A is group invertible and R(A) =
R(A∗) , then A is called an EP operator. If A is Drazin invertible, then the spectral
idempotent Aπ of A corresponding to {0} is given by Aπ = I −AAD. The operator
matrix form of A with respect to the space decomposition H = K (Aπ)⊕R(Aπ) is

characterized by A =
(

A1 0
0 A2

)
, where A1 is invertible and A2 is nilpotent (see [8]–[10],

[17]).
The purpose of this paper is to investigate some common characterizations and

various individual properties of the star ordering, the left star ordering, the right star or-
dering and the minus partial ordering of bounded operators on a Hilbert space. Section
2 is concerned with the problem of establishing matrix expressions and obtaining some
relationships among these orderings, with the problem of MP invertibility and detailed
formulae of MP inverses. Sections 3 deals with group inverses of these orderings. Since
many of the usual techniques used in finite dimensional spaces (as pseudoinverses or
singular value decompositions) are no longer available for general Hilbert spaces, we
introduce new techniques which allow us to show that some known properties which
hold for matrices can be generalized to operators acting on a Hilbert space, and to ob-
tain simpler proofs. On the other hand, several generalizations of the results known in
the literature and a number of new results are derived.
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2. Characterizations referring to operator partial orderings

The relations and the representations of four operator partial orderings in B(H )
will be investigated in the present section. First, we state the well known criterium due
to Douglas [12] (see also Lance [19, Theorem 3.1]) about ranges and factorizations of
operators. For the sake of convenience, we state it without the proof.

LEMMA 2.1. Let A,B,C ∈ B(H ) . Then
(i) R(A) ⊆ R

[
(A,C)

]
= R(A)+R(C); R(A) ⊆ R(B) if and only if A = BD for

some D ∈ B(H ) . If E and F are invertible such that EAF = B, then R(A) is closed
if and only if R(B) is closed.

(ii) The closeness of any one of the following sets implies the closeness of the
remaining three sets: R(A), R(A∗), R(AA∗) and R(A∗A). If R(A) is closed, then
R(A) = R(AA∗) .

THEOREM 2.1. Let A,B ∈ B(H ). Then A as an operator from H = R(A∗)⊕⊥
K (A) into H = R(A)⊕⊥ K (A∗) has the 2× 2 operator matrix form A =

(A1 0
0 0

)
,

where A1 is injective and:

(i) A
∗
� B if and only if B =

(
A1 0
0 B2

)
;

(ii) A ∗� B if and only if B =
(

A1 0
B2S B2

)
;

(iii) A �∗B if and only if B =
(

A1 DB2
0 B2

)
;

(iv) A
−
� B if and only if B =

(
A1+DB2S DB2

B2S B2

)
,

where B2 ∈B
(
K (A),K (A∗)

)
, D∈B

(
K (A∗),R(A)

)
and S∈B

(
R(A∗),K (A)

)
.

Proof. Let A∈B(H ) . Then A can be written as A =
(

A1 0
0 0

)
:
(

R(A∗)
K (A)

)
→
(

R(A)
K (A∗)

)
,

where A1 is injective. Partition B conformably with A as

B =
(

B1 B3
B4 B2

)
:
(

R(A∗)
K (A)

)
→
(

R(A)
K (A∗)

)
. Thus B−A =

(
B1−A1 B3

B4 B2

)
.

(i) See the proof in [11, Lemma 3].
(ii) If A ∗� B , then A∗(B−A) = 0 and R(A) ⊆ R(B) . From A∗(B−A) = 0 we

derive that B1 = A1 and B3 = 0. Since R(A) ⊆ R(B) , by Lemma 2.1,

(
A1 0
0 0

)
= A = BC =

(
A1 0
B4 B2

)(
C1 C3
−S C2

)
=
(

A1C1 A1C3
B4C1−B2S B4C3+B2C2

)

for some C =
(

C1 C3
−S C2

)
:
(

R(A∗)
K (A)

)
→
(

R(A∗)
K (A)

)
. Comparing the two sides of the above

equation, we get C1 = I and B4 = B2S . Hence, there exist B2 ∈ B
(
K (A),K (A∗)

)
,

and S ∈ B
(
R(A∗),K (A)

)
such that B =

(
A1 0
B2S B2

)
.

(iii) Similar to (ii), the details are omitted.
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(iv) If A
−
� B , then there exist idempotents P,Q such that R(P) = R(A) and

K (Q) = K (A) . Thus P and Q can be written as

P =
(

I −D
0 0

)
:
(

R(A)
K (A∗)

)
→
(

R(A)
K (A∗)

)
and Q =

(
I 0
−S 0

)
:
(

R(A∗)
K (A)

)
→
(

R(A∗)
K (A)

)
,

where D ∈ B
(
K (A∗),R(A)

)
and S ∈ B

(
R(A∗),K (A)

)
. The condition PA = PB im-

plies that
(

A1 0
0 0

)
=
(B1−DB4 B3−DB2

0 0

)
. We get B1 = A1 +DB4 and B3 = DB2. Similarly,

AQ = BQ implies that B4 = B2S . Hence B can be represented as B =
(

A1+DB2S DB2
B2S B2

)
.

�

Theorem 2.1 is supplemented with a number of observations (see [1]–[4], [18]–
[22] for the matrix case), which provide further evidence of the usefulness of the matrix

representations. The first of them is that A
∗
� B implies

A∗ ∗
� B∗, AA∗ ∗

� BB∗, A∗A
∗
� B∗B, |A| ∗

� |B| and (B−A)
∗
� B,

where |A| = (A∗A)
1
2 is the modulus of A . The next three illustrations are:

(i) A
∗
� B =⇒ R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗);

(ii) A
∗
� B ⇐⇒ A = PR(A)B = BPR(A∗);

(iii) If A is normal, A
∗
� B =⇒ AB∗ = B∗A.

Hence, if B2 = B and A
∗
� B , then

A2 = PR(A)BBPR(A∗) = PR(A)BPR(A∗) = PR(A)A = A.

This fact was noted by Hartwig and Styan [16, Theorem 3.1]. Let us now turn our
attention to the relationship between the minus partial ordering and the star ordering as
well as the left and the right star ordering. The more refined results are given in the
following theorem.

THEOREM 2.2. Let A,B ∈ B(H ). Then there exist invertible operators E,F ∈
B(H ) such that

(i) A
−
� B ⇐⇒ EAF

∗
� EBF ;

(ii) A ∗� B ⇐⇒ EAF �∗EBF.

Proof. Let E =
(

I −D
0 I

)
and F =

(
I 0
−S I

)
. By Theorem 2.1,

A
−
� B ⇐⇒ EAF =

(
A1 0
0 0

)
and EBF =

(
A1 0
0 B2

)
⇐⇒ EAF

∗
� EBF.

Similarly, we have A ∗� B ⇐⇒ EAF �∗EBF. �
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Šemrl in [23, Theorem 2] characterized structures of B ∈ B(H ) such that A
−
�

B . The theorem below provides an analogous characterization when A,B have the
representations as in Theorem 2.1.

THEOREM 2.3. [23, Theorem 2] Let A,B ∈ B(H ). Then

A
−
� B ⇐⇒ R(B) = R(A)⊕⊥ R(B−A) and R(B∗) = R(A∗)⊕⊥ R(B∗ −A∗).

Proof. See the proof in [23, Theorem 2]. �

Under the assumption that A,B ∈ Cn,n , Baksalary and Mitra [1] (also see Image-
Serving the International Linear Algebra Community, The bulletin of the International
Linear Algebra Society, 31(2003), 30-32.) have got that

A
∗
� B =⇒ A ∗� B =⇒ A

−
� B. (2.2)

From Theorem 2.1, we observe that (2.2) still holds under the case that A,B ∈ B(H ) .
The converse does not hold even assuming that A and B are selfadjoint. For example,
let A,B as operators on H ⊕H have the forms as

A =
(

I 0
0 0

)
and B =

(
2I I
I I

)
.

Then A,B are selfadjoint and A
−
� B . But A ∗� B does not hold since A∗A 
= A∗B . The

next results deal with situations in which A,B are idempotents or normal operators. We
have the following results.

THEOREM 2.4. Let A,B ∈ B(H ).

(i) If AB = BA, then A
∗
� B =⇒ Ak

∗
� Bk for an arbitrary integer k � 2;

(ii) If A,B are idempotent operators, then

A
∗
� B ⇐⇒ A ∗� B ⇐⇒ A �∗B ⇐⇒ A

−
� B;

(iii) If A,B are normal operators, then A ∗� B ⇐⇒ A
∗
� B and

A ∗� B =⇒ Ak ∗� Bk for an arbitrary integer k � 2.

Proof. (i) By the definition (1.1), A
∗
� B ⇐⇒ A∗(B−A) = 0 and (B−A)A∗ = 0.

For an arbitrary integer k � 2, if AB = BA , then

(Ak)∗(Bk −Ak) = (Ak−1)∗A∗(B−A)
[
Bk−1 +Bk−2A+ · · ·+BAk−2 +Ak−1

]
= 0

and

(Bk −Ak)(Ak)∗ =
[
Bk−1 +Bk−2A+ · · ·+BAk−2 +Ak−1

]
(B−A)A∗(Ak−1)∗ = 0.
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Thus, Ak
∗
� Bk , as desired.

(ii) It is clear we only need to show that A
−
� B =⇒ A

∗
� B and A ∗� B =⇒ A

∗
� B .

Since A is an idempotent, A has a simple form as A =
(

I 0
0 0

)
with respect to the

space decomposition H = R(A)⊕K (A). If A
−
� B , then there exist idempotents P,Q

such that R(P) = R(A) and K (Q) = K (A) . Let P =
(

I −D
0 0

)
and Q =

(
I 0
−S 0

)
.

Similar to the proof in Theorem 2.1, we derive that B =
(

I+DB2S DB2
B2S B2

)
. Note that

PAB =
(

I+DB2S DB2
0 0

)
and PB2 = PB =

(
I 0
0 0

)
. Since A

−
� B and B2 = B , we deduce that

PAB = PBB = PB and therefore DB2 = 0. In the same way we get that B2S = 0 and

B =
( I 0

0 B2

)
. Hence A

∗
� B . Similarly, if A ∗� B , then B can be written as B =

( I 0
B2S B2

)
.

Since
B2 =

(
I 0

B2S+B2
2S B2

2

)
=
( I 0

B2S B2

)
= B,

we know that B2
2 = B2 and B2S = 0. Hence A

∗
� B .

(iii) Since A is normal, R(A) = R(AA∗) = R(A∗A) = R(A∗) . If A ∗� B , by
Theorem 2.1 (ii), Ak exists and A1A∗

1 = A∗
1A1 ,

BB∗ =
(

A1A
∗
1 A1(B2S)∗

B2SA∗
1 B2S(B2S)∗+B2B

∗
2

)
and B∗B =

(
A∗

1A1+(B2S)∗B2S (B2S)∗B2
B∗

2B2S B∗
2B2

)
.

Since BB∗ = B∗B , we obtain (B2S)∗B2S = 0, which implies that B2S = 0 and B =(
A1 0
0 B2

)
. Hence, A

∗
� B and Ak ∗� Bk . �

Let A
∗
� B and A,B have the corresponding representations as in Theorem 2.1. In

general, AB 
= BA since A2
1 is not defined. In [21, Corollary 2.2 and Theorem 3.1],

Merikoski and Liu proved that, if A,B are normal finite matrices and A
∗
� B , then

AB = BA and A2
∗
� B2 . Theorem 2.4 generalizes the results to the case that A ∗� B .

Moreover, if A,B are positive, then A ∗� B ⇐⇒ Ak ∗� Bk and A �∗B ⇐⇒ Ak �∗Bk .
As we know, an operator is MP invertible if and only if its range is closed. Using

the results in Theorems 2.1 and 2.4, some MP inverse results can be obtained easily.

THEOREM 2.5. Let A,B ∈ B(H ) such that A is MP invertible. If B satisfies any

ordering relation among A
∗
� B, A ∗� B, A �∗B and A

−
� B, then B is MP invertible

if and only if Γ =: (I −AA+)B(I −A+A) (i.e., B2 in Theorem 2.1) is MP invertible.
Moreover, we have the following detailed statements:

(i) If A
∗
� B, then B is MP invertible if and only if Γ = B−A is MP invertible. The

detailed relations are B+−A+ = Γ+ and

(A∗A)+ = (A∗B)+ = (B∗A)+ = A+(A+)∗ = B+(A+)∗ = A+(B+)∗.

(ii) If A ∗� B, then B is MP invertible if and only if Γ = B(I−A+A) is MP invertible.
The detailed relation is

B+−A+ = Γ+ −Γ+BA+.
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In addition, if A and B are normal, then

B# −A# = (B−A)#, (A2)# = (AB)# = B#A# = A#B#.

(iii) If A
−
� B, then B is MP invertible if and only if Γ = (I −AA+)B(I −A+A) is MP

invertible. The detailed relations are

B+−A+ = Γ+−Γ+BA+−A+BΓ+ + Γ+BA+BΓ+.

Proof. By Theorem 2.1, if A is MP invertible, then A1 is invertible with A+ =(
A−1

1 0
0 0

)
. In the following, we always suppose that B has the corresponding matrix

form as given in Theorem 2.1.

(i) The condition A
∗
� B implies that A+(B−A) = 0 and (B−A)A+ = 0. Note that

A =
(

A1 0
0 0

)
and A+ =

(
A−1

1 0
0 0

)
. Let B have the corresponding matrix representation as

B =
(

B1 B3
B4 B2

)
. Then A+(B−A)= 0 implies that B1 =A1 and B3 = 0. And (B−A)A+ =

0 implies that B4 = 0. So B is MP invertible if and only if Γ = (I−AA+)B(I−A+A) =

(B−A)(I−A+A) = B−A =
(0 0

0 B2

)
is MP invertible with B+ =

(
A−1

1 0

0 B+
2

)
= A++(B−

A)+ = A+ + Γ+ . The results follow immediately.

(ii) By Theorem 2.1, item (ii), if A ∗� B , then B =
(

A1 0
B2S B2

)
and A+(B−A) = 0.

Note that, by Lemma 2.1

R
[(

A1 0
B2S B2

)]
= R

[(
A1 0
B2S B2

)(
I 0
−S I

)]
= R

[(
A1 0
0 B2

)]
= R(A)⊕⊥R(B2)

is closed if and only if R(B2) is closed. We get B is MP invertible if and only if
Γ = (I −AA+)B(I −A+A) = B(I −A+A) =

( 0 0
0 B2

)
is MP invertible. Now, B2 and S

can be written as B2 =
(

B22 0
0 0

)
and S =

(
S1
S2

)
, where B22 is invertible. Then B has the

form (
A1 0
B2S B2

)
=
(

A1 0 0
B22S1 B22 0

0 0 0

)
:

(
R(A∗)
R(B∗

2)
K (B2)

)
→
(

R(A)
R(B2)
K (B∗

2)

)
,

where
(

A1 0
B22S1 B22

)
is invertible and

(
A1 0

B22S1 B22

)−1
=
(

A−1
1 0

−S1A
−1
1 B−1

22

)
. So we get

B+ =
(

A1 0
B2S B2

)+
=
(

A−1
1 0

−S1A
−1
1 B−1

22

)
⊕0 =

(
A−1

1 0

−B+
2 B2SA−1

1 B+
2

)
= A+ + Γ+−Γ+BA+.

In addition, if A is normal, R(A) = R(AA∗) = R(A∗A) = R(A∗) . So A is an EP

operator, i.e., A+ = A#. Since B is normal, B =
(

A1 0
0 B2

)
by Theorem 2.4. Thus B is

also an EP operator with B+ = B# and the results follow directly by item (i).

(iii) If A
−
� B , then there exist invertible operators E =

(
I −D
0 I

)
and F =

(
I 0
−S I

)
such that EBF =

(
A1 0
0 B2

)
. Thus B is MP invertible if and only if Γ = (I−AA+)B(I−
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A+A) =
(0 0

0 B2

)
is MP invertible by Lemma 2.1. Let D = (D1,D2 ) , B2 =

(
B22 0
0 0

)
and

S =
(

S1
S2

)
. Then B has the form

(
A1+DB2S DB2

B2S B2

)
=
(

A1+D1B22S1 D1B22 0
B22S1 B22 0

0 0 0

)
:

(
R(A∗)
R(B∗

2)
K (B2)

)
→
(

R(A)
R(B2)
K (B∗

2)

)
.

Since B22 is invertible and the Schur complement

SSchur = (A1 +D1B22S1)−D1B22B
−1
22 B22S1 = A1

is invertible, we may conclude that
(

A1+D1B22S1 D1B22
B22S1 B22

)
is invertible and

B+ =
(

A1+DB2S DB2
B2S B2

)+
=
((

A1+D1B22S1 D1B22
B22S1 B22

)−1
0

0 0

)

=

(
A−1

1 −A−1
1 D1 0

−S1A
−1
1 B−1

22 +S1A
−1
1 D1 0

0 0 0

)

= A+ + Γ+−Γ+BA+−A+BΓ+ + Γ+BA+BΓ+. �

3. The group inverse

The representations in Theorem 2.1, on the one hand, have their obvious advan-
tages for convenient MP inverse calculations. On the other hand, their weaknesses lie
in the impossibility of having A2

1 and B2
2 unless R(A) = R(A∗) . Let us now consider

the case of A being an EP operator. A further observation is that, if A is an EP opera-
tor, R(A) = R(A∗) is closed and R(A)⊥ = R(A∗)⊥ = K (A) . Hilbert space H has
direct sum decomposition H = R(A)⊕K (A) . So, we can modify the representations
in Theorem 2.1 such that A2

1 and B2
2 exist.

THEOREM 3.1. Let A,B ∈ B(H ) such that A is an EP operator. If A has 2×2
operator matrix form A =

(
A1 0
0 0

)
with respect to space decomposition H = R(A)⊕

K (A) , where A1 ∈ B
(
R(A)

)
is invertible. Then

(i) B =
(

A1 0
0 B2

)
if and only if A

∗
� B;

(ii) B =
(

A1 0
B2S B2

)
if and only if A ∗� B;

(iii) B =
(

A1 DB2
0 B2

)
if and only if A �∗B;

(iv) B =
(

A1+DB2S DB2
B2S B2

)
if and only if A

−
� B,

where B2 ∈ B
(
K (A)

)
, D ∈ B

(
K (A),R(A)

)
and S ∈ B

(
R(A),K (A)

)
.
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Proof. Similar to the proof of Theorem 2.1, the details are omitted. �

If A is an EP operator and A
∗
� B , it follows immediately from Theorem 3.1 that

Ak
∗
� Bk for any integer k � 2 and AB = BA = A2. From Theorems 2.1 and 3.1, we

observe that the left star and right star orderings are located between the star and minus
orderings in the sense that

A
∗
� B ⇐⇒ A ∗� B and A �∗B,

A ∗� B =⇒ A
−
� B and A �∗B =⇒ A

−
� B.

The above properties have been given by J. K. Baksalary and S.K. Mitra [1, Theorem
2.1] when A and B are finite matrices.

THEOREM 3.2. Let A,B ∈ B(H ) such that A is an EP operator.

(i) If AB = BA, then A
∗
� B ⇐⇒ A ∗� B ⇐⇒ A �∗B ⇐⇒ A

−
� B.

(ii) A ∗� B ⇐⇒ A2 = AB and R(A) ⊆ R(B) .

(iii) A �∗B ⇐⇒ A2 = BA and R(A∗) ⊆ R(B∗) .

Proof. (i) We only prove that A
−
� B =⇒A

∗
� B. The remaining parts can be proved

in the same way. If A is an EP operator such that A
−
� B , by Theorem 3.1, A =

(
A1 0
0 0

)
and B =

(
A1+DB2S DB2

B2S B2

)
. Since A1 is invertible and AB = BA , we have DB2 = 0 and

B2S = 0. So B =
(

A1 0
0 B2

)
and A

∗
� B .

(ii) If A is an EP operator and A ∗� B , by item (ii) of Theorem 3.1, it is clear that
A2 = AB and R(A) ⊆ R(B) . On the other hand, let A =

(
A1 0
0 0

)
. If A2 = AB , then B

has the form as
(

A1 0
B4 B2

)
. Similar to the proof in Theorem 2.1 (ii), if R(A) ⊆ R(B) ,

then there exists a linear bounded operator S ∈ B
(
R(A),K (A)

)
such that B4 = B2S .

Hence B =
(

A1 0
B2S B2

)
, i.e., A ∗� B .

(iii) Similar to (ii), the details are omitted. �

For a triangular matrix, the following result, which is proved in [17] for matrices,
has been extended to a bounded linear operator [10] and to arbitrary elements in a
Banach algebra [8].

LEMMA 3.1. ([10, Theorem 5.1]) If A ∈ B(H ) and D ∈ B(K ) are Drazin in-
vertible with ind(A) = l and ind(D) = s, C ∈ B(H ,K ) , then M =

(
A 0
C D

)
is Drazin

invertible and
MD =

(
AD 0
X DD

)
,

where X =
l−1
∑

n=0
(DD)n+2CAnAπ +Dπ

s−1
∑

n=0
DnC(AD)n+2 −DDCAD .
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THEOREM 3.3. Let A,B ∈ B(H ) such that A is an EP operator. If Γ =: AπBAπ

(i.e., B2 in Theorem 3.1) is group invertible and B satisfies any ordering relation among

A
∗
� B, A ∗� B, A �∗B and A

−
� B, then B is group invertible. Moreover, we have the

following detailed statements:

(i) If A
∗
� B, then B is group invertible if and only if Γ = B−A is group invertible. The

detailed relations are B#−A# = Γ# and

(A2)# = (AB)# = (BA)# = B#A# = A#B#.

(ii) If A ∗� B, then B is Drazin invertible if and only if Γ = BAπ is Drazin invertible
and

BD −A# = ΓD −ΓDBA# + Γπ
l−1

∑
n=0

BnAπB(A#)n+2,

where l = ind(Γ). In particular, if ind(Γ) = 1 , then B#−A# = Γ#−Γ#BA#.

(iii) If A
−
� B and Γ = AπBAπ is group invertible, then B is group invertible and

B#−A# = Γ#−Γ#BA#−A#BΓ# + Γ#BA#BΓ#.

Proof. (i) By Theorem 3.1, if A is an EP operator and A
∗
� B , then A1 is invertible

with A# =
(

A−1
1 0
0 0

)
, Aπ =

(
0 0
0 I

)
and B =

(
A1 0
0 B2

)
. The results follow immediately.

(ii) By Theorem 3.1, item (ii), if A ∗� B , then B =
(

A1 0
B2S B2

)
. Since A1 is invert-

ible, B is Drazin invertible if and only if B2 is Drazin invertible, i,e, Γ = AπBAπ =
BAπ =

( 0 0
0 B2

)
is Drazin invertible. If ind(Γ) = l, by Lemma 3.1, we get

BD =
(

A1 0
B2S B2

)D
=

(
A−1

1 0

(I−B2B
D
2 )

l−1
∑

n=0
Bn

2B2SA
−(n+2)
1 −BD

2 B2SA−1
1 BD

2

)

= A# + ΓD−ΓDBA# + Γπ
l−1
∑

n=0
BnAπB(A#)n+2.

If B is group invertible, then BBDB = B . It implies that B2BD
2 B2 = B2 and (I −

B2BD
2 )

l−1
∑

n=0
Bn

2B2SA−(n+2)
1 = 0. Hence, Γ is group invertible and

B# =
(

A−1
1 0

−B#
2B2SA−1

1 B#
2

)
= A# + Γ#−Γ#BA#.

(iii) If A
−
� B and Γ = AπBAπ =

(0 0
0 B2

)
is group invertible, then

B =
(

A1+DB2S DB2
B2S B2

)
=
(

I 0
−B#

2B2S I

)(
A1 DB2

B#
2B2SA1 B2+B#

2B2SDB2

)(
I 0

B#
2B2S I

)
.

The group invertibility of B2 implies that B2 can be written as B2 =
(

B22 0
0 0

)
with

respect to the space decomposition H = K (Bπ
2 )⊕R(Bπ

2 ) , where B22 is invertible.

Let D = (D1,D2 ) and S =
(

S1
S2

)
. Then
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(
A1 DB2

B#
2B2SA1 B2+B#

2B2SDB2

)
=
(

A1 D1B22 0
S1A1 B22+S1D1B22 0

0 0 0

)
:

(
R(A)

K (Bπ
2 )

R(Bπ
2 )

)
→
(

R(A)
K (Bπ

2 )
R(Bπ

2 )

)
.

Since B22 is invertible and the Schur complement

SSchur = (B22 +S1D1B22)−S1A1A
−1
1 D1B22 = B22

is invertible,
(

A1 D1B22
S1A1 B22+S1D1B22

)
is invertible and

BD =
(

I 0
−B#

2B2S I

)(
A1 DB2

B#
2B2SA1 B2+B#

2B2SDB2

)D( I 0
B#

2B2S I

)
=
(

I 0
−B#

2B2S I

)(( A1 D1B22
S1A1 B22+S1D1B22

)−1
0

0 0

)(
I 0

B#
2B2S I

)

=
(

I 0
−B#

2B2S I

)(A−1
1 +A−1

1 D1S1 −A−1
1 D1 0

−B−1
22 S1 B−1

22 0
0 0 0

)(
I 0

B#
2B2S I

)

=
(

I 0
−B#

2B2S I

)(
A−1

1 +A−1
1 DB#

2B2S −A−1
1 DB#

2B2

−B#
2S B#

2

)(
I 0

B#
2B2S I

)

=
(

A−1
1 −A−1

1 DB2B
#
2

−B#
2B2SA−1

1 B#
2+B#

2B2SA−1
1 DB2B

#
2

)
.

We get BBD = BDB =
(

I 0
0 B#

2B2

)
and BBDB = B. So BD = B# is the group inverse of

B . Since A# =
(

A−1
1 0
0 0

)
and Γ# =

(
0 0
0 B#

2

)
, we get

B# =
(

A−1
1 −A−1

1 DB2B
#
2

−B#
2B2SA−1

1 B#
2+B#

2B2SA−1
1 DB2B

#
2

)
= A# + Γ#−Γ#BA#−A#BΓ# + Γ#BA#BΓ#. �
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