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NEW CONVOLUTIONS AND NORM INEQUALITIES

L. P. CASTRO AND S. SAITOH

(Communicated by S. Varošanec)

Abstract. We introduce new three types of convolutions for which – together with the classical
convolution – we obtain new convolution inequalities. This is done within a framework from
the theory of reproducing kernels which helps us to perform the mentioned inequalities in a very
global way.

1. Introduction

In Fourier analysis and operator theory, the convolution and convolution type op-
erators have been studied for a long time due to their fundamental role in modelling and
solving a wide range of mathematical physics problems. A huge list of examples could
be indicated in this line. Additionally, generalized convolutions for integral transforms
were firstly considered R.V. Churchill [11] (cf. also [4]), and methods for generalized
convolutions of arbitrary integral transforms appeared already in [18]. After this a huge
variety of extensions has appeared in different contexts. In a general perspective, we
should refer to the systematic study of so-called smooth Fourier integral operators ini-
tiated in the classical paper of L. Hörmander [17]. In particular, G. I. Èskin [15] and
L. Hörmander [17] showed the local L2 boundedness of Fourier integral operators with
non-degenerate phase functions. After this several extensions followed for Fourier in-
tegral operators, and in connection with the Hörmander’s local L2 result the works of
R. Beals [1] and A. Greenleaf and G. Uhlmann [16] are relevant. Specific classes of
those have been extensively studied during the last decades. This was the case of the
so-called Wiener-Hopf (or Toeplitz) and Hankel integral operators which – in an iso-
lated way or as algebraic combinations of both types (cf., e.g., [2, 3, 6, 8, 9, 10]) – can
also be recognized in several applications. All this contains formulations which depend
on convolutions. Products of shift operators and convolution type operators [5, 7] are

Mathematics subject classification (2010): Primary 44A35; Secondary 30C40, 42A85, 45E10, 46E22,
47A30, 47B32, 47B38, 47G10.

Keywords and phrases: Integral transform, Hilbert space, linear transform, reproducing kernel, linear
mapping, convolution, Toeplitz kernel, Hankel kernel, norm inequality.

This work was supported in part by FEDER funds through COMPETE–Operational Programme Factors of Compet-
itiveness (“Programa Operacional Factores de Competitividade”) and by Portuguese funds through the Center for Research
and Development in Mathematics and Applications and the Portuguese Foundation for Science and Technology (“FCT–
Fundação para a Ciência e a Tecnologia”), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-
0124-FEDER-022690. S. Saitoh is supported in part by the Grant-in-Aid for Scientific Research (C)(2)(No. 215401111)
from the Japan Society for the Promotion Science.

c© � � , Zagreb
Paper MIA-15-62

707

http://dx.doi.org/10.7153/mia-15-62


708 L. P. CASTRO AND S. SAITOH

also object of past and recent intensive studies – once again in view of their need in the
applications.

Inspired by the Wiener-Hopf plus Hankel integral type operators and shift actions
over them, in this paper we consider convolution type integral equations which combine
the classical convolution with three additional new types of convolution operations.
Taking profit of the reproducing kernels theory, our main goal in here is to derive the
consequent convolution inequalities for the new types of convolutions.

It is worthwhile mention that even for the elementary L2 functions case, we did not
know their convolution properties for a long time and their precise meanings were given
by the theory of reproducing kernels; see the series of papers [22, 23, 24, 26]. However,
when we consider the situation carefully, we realize that we have further three natural
types of convolutions in view of Fourier analysis purposes. Namely, in the present
paper, we will present the related natural function spaces for the new convolution types
holding the related convolution norm inequalities.

In order to state our main theorem, we shall first introduce the relevant function
spaces F (ρ) which are dependent on non-negative and integrable functions ρ on R .
We will say that F ∈ F (ρ) if and only if∫ |F(t)|2

ρ(t)
dt < ∞ on the support of ρ ,

and F = 0 on the outside of the support of ρ .
We will consider the usual convolution in the just presented spaces,

((F1)∗1 (F2))(t) =
∫

R

F1(ξ )F2(t − ξ )dξ ,

and will additionally introduce the following three types:

((F1)∗2 (F2))(t) =
∫

R

F1(ξ )F2(ξ − t)dξ ,

((F1)∗3 (F2))(t) =
∫

R

F1(ξ )F2(ξ + t)dξ ,

((F1)∗4 (F2))(t) =
∫

R

F1(ξ )F2(−ξ − t)dξ .

We have already all the sufficient notation to state the main result of the present
paper.

THEOREM 1.1. Let ρ1 and ρ2 be non-negative and integrable functions on R

which allow us to consider the spaces F (ρ1) and F (ρ2) , respectively. The general-
ized convolution inequality∫

R

|((F1)∗1 (F2)+ (F1)∗2 (F2)+ (F1)∗3 (F2)+ (F1)∗4 (F2))(t)|2
(ρ1 ∗1 ρ2)(t)+ (ρ1 ∗2 ρ2)(t)+ (ρ1 ∗3 ρ2)(t)+ (ρ1 ∗4 ρ2)(t)

dt

� 4
∫

R

|F1(t)|2
ρ1(t)

dt ·
∫

R

|F2(t)|2
ρ2(t)

dt

holds true, for functions Fj ∈ F (ρ j) , j = 1,2 .



NEW CONVOLUTIONS AND NORM INEQUALITIES 709

In some special cases, for these convolution inequalities, we found some important
and fundamental applications to the related integral equations containing corresponding
types of convolutions as integral kernels. Moreover, in some cases, notice that the above
convolution type operators are non-linear. However, even for such cases, we can some-
times “modify” them to linear operators, and with some additional reasoning, we are
therefore able to derive their boundedness from the above convolution type inequalities.

2. Reproducing kernel Hilbert spaces machinery

Following [25, 29], we shall introduce a general theory for linear mappings in the
framework of Hilbert spaces.

Let H be a Hilbert (possibly finite-dimensional) space. Let E be an abstract
set and h be a Hilbert H -valued function on E . Then we shall consider the linear
transform

f (p) = (f,h(p))H , f ∈ H , (2.1)

from H into the linear space F (E) comprising all the complex valued functions on
E . In order to investigate the linear mapping (2.1), we form a positive definite quadratic
form function K(p,q) on E ×E defined by

K(p,q) = (h(q),h(p))H on E×E. (2.2)

Then, we obtain the following:

(I) The range of the linear mapping (2.1) by H is characterized as the reproducing
kernel Hilbert space HK(E) admitting the reproducing kernel K(p,q) whose
characterization is given by the two properties: K(·,q) ∈ HK(E) for any q ∈ E
and, for any f ∈ HK(E) and for any p ∈ E , ( f (·),K(·, p))HK (E) = f (p) .

(II) In general, we have the inequality

‖ f‖HK (E) � ‖f‖H .

Here, for any member f of HK(E) there exists a uniquely determined f∗ ∈ H
satisfying

f (p) = (f∗,h(p))H on E

and
‖ f‖HK (E) = ‖f∗‖H . (2.3)

(III) In general, we have the inversion formula in (2.1) in the form

f �→ f∗ (2.4)

in (II) by using the reproducing kernel Hilbert space HK(E) .
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However, this formula (2.4) is, in general, involved and delicate.
Next, note that in general: For any two positive definite quadratic form functions

K1(p,q) and K2(p,q) on E×E , the usual product K(p,q) = K1(p,q)K2(p,q) is again
a positive definite quadratic form function on E by the Schur’s theorem. Then, the
reproducing kernel Hilbert space HK admitting the kernel K(p,q) is the restriction of
the tensor product HK1(E)⊗HK2(E) to the diagonal set; that is given by

PROPOSITION 2.1. Let { f (1)
j } j and { f (2)

j } j be some complete orthonormal sys-
tems in HK1(E) and HK2(E) , respectively, then the reproducing kernel Hilbert space
HK is comprised of all functions on E which are represented as, in the sense of abso-
lutely convergence on E ,

f (p) = ∑
i, j

αi, j f
(1)
i (p) f (2)

j (p) on E, ∑
i, j
|αi, j|2 < ∞ (2.5)

and its norm in HK is given by

‖ f‖2
HK

= min∑
i, j
|αi, j|2

where {αi, j} are considered satisfying (2.5).
In particular, we obtain the inequality:

‖ f1 f2‖HK1K2 (E) � ‖ f1‖HK1 (E)‖ f2‖HK2 (E).

We note the following sum version.

PROPOSITION 2.2. For two positive definite quadratic form functions K1(p,q)
and K2(p,q) on E , the sum KS(p,q)= K1(p,q)+K2(p,q) is a positive definite quadratic
form function on E . The reproducing kernel Hilbert space HKS admitting the repro-
ducing kernel KS(p,q) on E is composed of all functions

f = f1 + f2 , f j ∈ HKj (E), (2.6)

and the norm in HKS is given by

‖ f‖2
HKS

= min
{
‖ f1‖2

HK1(E)
+‖ f2‖2

HK2(E)

}
,

where the minimum is taken over all the expressions (2.6) for f . In particular, we
obtain the triangle inequality, for f j ∈ KKj (E) , j = 1,2 ,

‖ f1 + f2‖2
HKS

� ‖ f1‖2
HK1

(E) +‖ f2‖2
HK2

(E). (2.7)
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3. New convolutions as integral kernels and norm inequalities

As very general reproducing kernels represented by the Fourier integral containing
the Paley-Wiener spaces, finite and infinite orders Sobolev Hilbert spaces, for any given
non-negative integrable functions ρ1,ρ2 on R that are measurable functions and are not
zero identically, we define the positive definite quadratic form functions Kj by

Kj(x,y) =
1
2π

∫
R

exp(i(x− y) · t)ρ j(t)dt,

for j = 1,2. Then, we consider the induced integral transforms Lj : L2(R;ρ j) → HKj

by

f j(x) = (LjFj)(x) =
1
2π

∫
R

Fj(t)exp(it · x)ρ j(t)dt (3.1)

for the functions Fj satisfying

1
2π

∫
R

|Fj(t)|2ρ j(t)dt < ∞, (3.2)

respectively. Then, for the reproducing kernel Hilbert spaces HKj admitting the kernels
Kj , we have the isometric identities:

‖ f j‖2
HKj

=
1
2π

∫
R

|Fj(t)|2ρ j(t)dt, (3.3)

respectively. Now, we shall consider the non-linear operator ϕ f1, f2 , for f j ∈ HKj ( j =
1,2)

ϕ( f1, f2)(x) = ( f1(x)+ f1(x))( f2(x)+ f2(x))
= f1(x) f2(x)+ f1(x) f2(x)+ f1(x) f2(x)+ f1(x) f2(x). (3.4)

Then, we obtain the identity

ϕ( f1, f2)(x) =
1

(2π)2

∫
R

exp(ix · t)((F1ρ1)∗1 (F2ρ2)+ (F1ρ1)∗2 (F2ρ2)

+(F1ρ1)∗3 (F2ρ2)+ (F1ρ1)∗4 (F2ρ2))(t)dt. (3.5)

Following the operator ϕ( f1, f2) , we shall consider the identity

K(x,y) := K1(x,y)K2(x,y)+K1(x,y)K2(x,y)+K1(x,y)K2(x,y)+K1(x,y)K2(x,y)

=
1

(2π)2

∫
R

exp(i(x− y) · t) ·Ω(t;ρ1,ρ2)dt

for

Ω(t;ρ1,ρ2) = (ρ1 ∗1 ρ2)(t)+ (ρ1 ∗2 ρ2)(t)+ (ρ1 ∗3 ρ2)(t)+ (ρ1 ∗4 ρ2)(t).

Then, by the structure of the reproducing kernel Hilbert spaces of sum and product,
we see that the image of the nonlinear operator ϕ( f1, f2) belongs to the reproducing



712 L. P. CASTRO AND S. SAITOH

kernel Hilbert space HK with the kernel K(x,y) and, furthermore, we obtain the in-
equality

‖ϕ( f1, f2)‖2
HK

� 4‖ f1‖2
HK1

‖ f2‖2
HK2

. (3.6)

Meanwhile, note that the reproducing kernel Hilbert space HK itself is realized
explicitly as we see from the representation of K(x,y) in terms of the Fourier integral:
Any function g ∈ HK is represented by the integral

g(x) =
1

(2π)2

∫
R

G(t)exp(ix · t)Ω(t;ρ1,ρ2)dt (3.7)

for a function G satisfying

1
(2π)2

∫
R

|G(t)|2Ω(t;ρ1,ρ2)dt < ∞, (3.8)

and we obtain the isometric identity

‖g‖2
HK

=
1

(2π)2

∫
R

|G(t)|2Ω(t;ρ1,ρ2)dt. (3.9)

Therefore we obtain in the t space the desired convolution inequality:∫
R

1
Ω(t;ρ1,ρ2)

|((F1ρ1)∗1 (F2ρ2)+ (F1ρ1)∗2 (F2ρ2)

+(F1ρ1)∗3 (F2ρ2)+ (F1ρ1)∗4 (F2ρ2))(t)|2 dt

� 4
∫

R

|F1(t)|2ρ1(t)dt ·
∫

R

|F2(t)|2ρ2(t)dt. (3.10)

This result for the usual convolution was expanded in various directions with ap-
plications to inverse problems and partial differential equations through Lp (p > 1)
versions and converse inequalities. See, for example, [12, 13, 14, 19, 20, 21, 27, 28].

In particular, for each term we obtain the following norm inequalities:

COROLLARY 3.1. For the 4 convolutions ∗ we have the norm inequalities:∫
R

1
(ρ1 ∗ρ2)(t)

{|((F1ρ1)∗ (F2ρ2))(t)|2
}

dt

�
∫

R

|F1(t)|2ρ1(t)dt ·
∫

R

|F2(t)|2ρ2(t)dt.

By a similar method, we can obtain modified versions. For example, by consider-
ing the reproducing kernel

|K1(x,y)+K2(x,y)|2 = K1(x,y)K1(x,y)+K1(x,y)K2(x,y)
+K1(x,y)K2(x,y)+K2(x,y)K2(x,y)

and the related operator

ψ( f1, f2)(x) = | f1(x)+ f2(x)|2
= f1(x) f1(x)+ f1(x) f2(x)+ f1(x) f2(x)+ f2(x) f2(x)

we obtain the following corresponding norm inequalities.
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COROLLARY 3.2. Within the just mentioned framework, we have the norm in-
equalities:

‖| f1 + f2|2‖2
H|K1+K2|2

� (‖ f1‖2
K1

+‖ f2‖2
K2

)2

and

∫
R

|((F1ρ1)∗2 (F1ρ1)+(F1ρ1)∗2 (F2ρ2)+(F2ρ2)∗2 (F1ρ1)+(F2ρ2)∗2 (F2ρ2))(t)|2
(ρ1 ∗2 ρ1+ρ1 ∗2 ρ2+ρ2 ∗2 ρ1+ρ2 ∗2 ρ2)(t)

dt

�
(∫

R

|F1(t)|2ρ1(t)dt +
∫

R

|F2(t)|2ρ2(t)dt

)2

. (3.11)

4. Inequalities and equality problems derived by the
theory of reproducing kernels

We have just derived many and entirely new inequalities by applying the theory of
reproducing kernels. In part, this exemplifies the power of reproducing kernels theory.
Within this scope, for typical examples, we would like to refer to [29]. Furthermore,
complete characterizations of the situations where the corresponding equalities are at-
tained (in the above inequalities) are – in general – very difficult problems. See e.g. the
deep theory of A. Yamada ([33]) in view of this. Despite such difficulties, significant
steps in this way were given in the informal communication and the manuscript [32]
where N.D.V. Nhan and D.T. Duc were able to derive generalizations and many con-
crete applications to the boundedness of various integral transforms and the estimates of
the solutions of integral equations that solved the consequent equality problems within
the Lp framework. However, our results gave basic contributions to their paper already
by creating entirely new type inequalities.

It is also worth mentioning that all the inequalities in the present paper are the best
possible within our framework. This is simply because we can recognize cases where
the equality takes place. For example, in (3.6) and Corollary 3.2, for the related repro-
ducing kernels, the equalities hold, as we see from the theory of reproducing kernels.

5. Basic application of Theorem 1.1

Theorem 1.1 gives the basic fundamental theory for the corresponding induced
convolution integral equations. We would like to show this with the concrete example
results whose proof is not simple.

In order to state the example, we shall first fix some notation. In coherence with
above, for non-negative and integrable functions ρ j on R , j = 1,2,3, we say that
Fj ∈ F (ρ j) if ∫ |Fj(t)|2

ρ j(t)
dt < ∞

on the support of ρ j , and Fj = 0 in the outside of the support of ρ j .
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For the space F (ρ1) , we will impose additional assumptions for the natural re-
quests of our method. We set

Ω(t;ρ) = ρ1 ∗ (2π + ρ2)+
∫

R

ρ1(ξ )ρ3(ξ + t)dξ ,

for the usual convolution ∗ .
We assume that F (ρ1) is the real-valued function space and the support of ρ1 is

[a,b) (−∞ < a < b � +∞) and on this interval, ρ1 is a positive continuous function.
For any fixed Fj ∈F (ρ j) , j = 2,3 (so that F2±F3 are not zero identically), there

exists a uniquely determined solution F1 (satisfying F1 ∈ F (ρ1)) of the equation

2παF1(t)+
∫

R

F1(ξ )F2(t− ξ )dξ +
∫

R

F1(ξ )F3(t + ξ )dξ = G̃(t), (5.1)

for any function G̃ satisfying∫
R

|G̃(τ)|2Ω(τ;ρ)−1dτ < ∞,

in the sense of the Moore-Penrose generalized inverse (cf. [30]).
The first step to deduce this example is to establish some bounded linear operator

from a certain reproducing kernel Hilbert space into some Hilbert space. This is derived
from the related convolution inequality. Theorem 1.1 will give the basic theory in the
related convolution integral equation with the four convolution types.

Meanwhile, when we identify what is possible to obtain with the classical meth-
ods by using Fredholm and Wiener-Hopf techniques, we realize the power of the just
exemplified situation (see, for example, [31]).
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