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POTENTIAL INEQUALITY REVISITED I: GENERAL CASE

NEVEN ELEZOVIĆ, JOSIP PEČARIĆ AND MARJAN PRALJAK

(Communicated by Ivan Perić)

Abstract. The main subject of this paper is a detailed study of potential inequality, which was
introduced in [5]. Original inequality is extended to the case of general convex and concave func-
tions. Various functionals connected with this inequality are defined and some improvements or
refinements of known inequalities are given. Special attention is given to exponential convexity
of such functionals. The inequalities obtained here are of general nature. They will be speci-
fied and studied in more details with concrete examples of involved kernels in our forthcoming
papers.

1. Introduction

M. Rao and H. Šikić introduced potential inequality in [5] (their formulation of it
is given below) and used it as a powerful tool which generates Hardy’s inequality and
many other inequalities as special cases. This paper will be the main reference in our
work. However, they define convex and concave function in a rather unusual way. For
example, for a convex function ϕ , function −ϕ is not concave in their sense, so the
main theorem cannot be applied directly to concave functions. Their theory applies well
to functions which behave like power functions x �→ xp , and this seems to be sufficient
enough for main applications.

The purpose of this paper is to revisit potential inequality in a more general setting.
We shall derive identities and corresponding inequalities in a general form which can be
applied to convex and concave function defined in the standard way. As a consequence
of this approach, the scale of possible applications is considerably larger and the derived
formulas are much more complete.

For the convenience of the reader, let us briefly describe the Rao-Šikić approach
to potential inequality.

We say that N(x,dy) is a (positive) kernel on X if N : X ×B(X) → [0,+∞] is a
mapping such that, for every x ∈ X , A �→ N(x,A) is a σ -finite measure, and, for every
A ∈ B(X) , x �→ N(x,A) is a measurable function. For a measurable function f , the
potential of f with respect to N at a point x ∈ X is

(N f )(x) =
∫

X
f (y)N(x,dy),
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whenever the integral exists. The class of functions that have the potential at every point
is denoted by POT (N) .

For a measure μ on (X ,B(X)) and a measurable set C ∈ B(X) we will denote
by N̂Cμ the measure defined by

(N̂Cμ)(dy) =
∫
C

N(x,dy)μ(dx).

If C = X we will omit the subscript, i. e. N̂μ will denote the measure N̂X μ .

DEFINITION 1. ([5]) Let N be a positive kernel on X and R ⊂ POT (N) . We
say that N satisfies the strong maximum principle on R (with constant M � 1) if

(N f )(x) � Mu+N[ f +1{(N f )�u}](x)

holds for every x ∈ X , f ∈ R and u � 0.

The main result in [5] which we want to generalize is stated for convex and con-
cave functions, but the definition given there of these classes of functions is not the
standard one. In order to understand the frame, we will restate the definitions from [5]
and call these functions RS-convex and RS-concave.

DEFINITION 2. ([5]) Function Φ : [0,+∞) → [0,+∞) is an RS-convex function
if there exists a (positive) Borel σ -finite measure η on [0,+∞) such that

Φ(τ) =
∫ τ

0
ϕ(t)dt, for every τ ∈ [0,+∞),

where
ϕ(t) = η([0,t]), for every t ∈ [0,+∞).

DEFINITION 3. Function Φ : [0,+∞) → [0,+∞) is an RS-concave function if
there exists a (positive) Borel measure η on [0,+∞) such that

η([a,b]) is finite, for every 0 < a � b < +∞

and

Φ(τ) =
∫ τ

0
ϕ(t)dt, for every τ ∈ [0,+∞),

where ϕ satisfies the following properties:

0 � ϕ(t) < +∞, for every t > 0, lim
t→0+

tϕ(t) = 0,

and
ϕ(t)−ϕ(s) = −η((s,t]), for every 0 < s < t < +∞.
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Therefore, RS-convex function is convex in the usual sense and has additional
properties - it is increasing and satisfies Φ(0) = 0. Similarly, RS-concave function is
concave in the usual sense, increasing and satisfies Φ(0) = 0. Prototypes for both of
the classes and main examples used in applications are the power functions Φ(t) = t p ,
0 < p < ∞ .

THEOREM 1. (The potential inequality for convex functions, [5]) Let Φ be an
RS-convex function. Let N(x,dy) be a kernel on X which satisfies the strong maximum
principle on R ⊂ POT (N) , with constant M . Then, for every f ∈ R ,

Φ
[ s
M

]
� 1

M
N
[
f +ϕ(s)

]
,

where s = (N f )+ .

COROLLARY 2. Let Φ and N(x,dy) be as in Theorem 1. Then for each σ -finite
measure μ on (X ,B(X)) , and for every f ∈ R ,∫

X
Φ
( s

M

)
dμ � 1

M

∫
X

f +ϕ(s)d(N̂μ).

where s = (N f )+ . In particular, if Φ(τ) = τ p , p � 1 , then∫
X

spdμ � pMp−1
∫

X
f +sp−1d(N̂μ).

THEOREM 3. (The potential inequality for concave functions, [5]) Let Φ be an
RS-concave function. Let N(x,dy) be a kernel on X which satisfies the maximum
principle on the set of nonnegative functions (i. e. R = X+ ), with constant M . Then,
for every nonnegative f : X → [0,+∞) ,

Φ
[ s
M

]
� 1

M
N
[
fϕ(s)

]
,

where s = (N f )+ = N f .

COROLLARY 4. Let Φ and N(x,dy) be as in Theorem 3. Then for each σ -finite
measure μ on (X ,B(X)) , and for every nonnegative f : X → [0,+∞) ,∫

X
Φ
( s

M

)
dμ � 1

M

∫
X

fϕ(s)d(N̂μ).

where s = (N f )+ . In particular, if Φ(τ) = τ p , 0 < p < 1 , then∫
X

spdμ � pMp−1
∫

X
f sp−1d(N̂μ).
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2. Potential inequality revisited

Our goal is to generalize the results given above to the class of convex and concave
functions defined in the standard way (see [3], Definition 1.1), without any additional
restrictions.

Let Φ be a convex or a concave function and ϕ its right-continuous derivative,
i. e.

ϕ(u) = lim
τ↘u

Φ(τ)−Φ(u)
τ −u

.

The positive measure generated by ϕ is denoted by dϕ(u) . Of course, if Φ is differ-
entiable function, then ϕ is its derivative.

Integration by parts gives

Φ(τ)−Φ(z) =
∫ τ

z
ϕ(u)du

= τϕ(τ)− zϕ(z)−
∫ τ

z
udϕ(u)

=
∫ τ

z
(τ −u)dϕ(u)+ ϕ(z)(τ − z). (1)

THEOREM 5. (The potential inequality for convex functions) Let Φ : (0,+∞) →
R be a convex function and N(x,dy) a positive kernel on X which satisfies the strong
maximum principle on R with constant M . Let f ∈ R , x ∈ X and z > 0 be such that
z � (N f )(x)/M and denote by Bz the set

Bz =
{
y ∈ X : (N f )(y) � z

}
.

Then

Φ
( 1
M

(N f )(x)
)−Φ(z) � 1

M
N[ f +ϕ(N f )1Bz ](x)

+
1
M

ϕ(z)N[ f − f +1Bz](x)− zϕ(z).

Proof. Let τ(x) = 1
M (N f )(x) . Using (1) and the strong maximum principle, since

dϕ(u) is a positive measure, we get

Φ(τ(x))−Φ(z) =
∫ τ(x)

z
(τ(x)−u)dϕ(u)+ ϕ(z)(τ(x)− z)

�
∫ τ(x)

z

1
M

N[ f +1{N f�u}]dϕ(u)+ ϕ(z)(τ(x)− z)

Applying Fubini and the fact that f +1{N f�u} is a nonnegative function, we further get∫ τ(x)

z
N[ f +1{N f�u}]dϕ(u)

=
∫ τ(x)

z

∫
X

f +(y)1{(N f )�u}(y)N(x,dy)dϕ(u)
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=
∫

X
N(x,dy) f +(y)

∫ τ(x)

z
1{(N f )�u}(y)dϕ(u)

�
∫

X
N(x,dy) f +(y)

∫ +∞

z
1{(N f )�u}(y)dϕ(u)

=
∫

X
f +(y)[ϕ((N f )(y))−ϕ(z)]1Bz(y)N(x,dy)

= N[ f +ϕ(N f )1Bz ](x)−ϕ(z)N[ f +1Bz ](x).

Finally, the two inequalities above, together with linearity of the potential, give the
claim of the theorem. �

Let us further denote the set

B =
⋃
z>0

Bz =
{
x ∈ X : (N f )(x) > 0

}
.

By integrating the potential inequality with respect to the variable x we can get
the following, integral version of the potential inequality

COROLLARY 6. Let the assumptions of Theorem 5 hold for a function z : B →
(0,+∞) , i. e. z(x) � (N f )(x)/M for x ∈ B. Then, for C ⊂ B, C ∈ B(X) , and a finite
measure μ on (X ,B(X)) , the following inequality holds

∫
C

(
Φ
( 1
M

(N f )(x)
)−Φ(z(x))

)
μ(dx)

� 1
M

∫
C

∫
Bz(x)

f +(y)ϕ((N f )(y))N(x,dy)μ(dx)

− 1
M

∫
C

ϕ(z(x))N[ f +1Bz(x) − f ](x)μ(dx)−
∫
C

z(x)ϕ(z(x))μ(dx).

In particular, for C = Bz and z(x) ≡ z, we get

∫
Bz

Φ
( 1
M

(N f )(x)
)

μ(dx)−Φ(z)μ(Bz)

� 1
M

∫
Bz

f +(x)ϕ((N f )(x))(N̂Bz μ)(dx)

+
1
M

ϕ(z)
∫

Bz

N[ f − f +1Bz ](x)μ(dx)− zϕ(z)μ(Bz).

Proof. Integrating the potential inequality with respect to the measure μ we get∫
C

(
Φ
( 1
M

(N f )(x)
)−Φ(z(x))

)
μ(dx) � 1

M

∫
C

N[ f +ϕ(N f )1Bz(x) ]μ(dx)

+
1
M

∫
C

ϕ(z(x))N[ f − f +1Bz(x) ](x)μ(dx)−
∫
C

z(x)ϕ(z(x))μ(dx),
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which is the first inequality.
The second inequality follows by taking C = Bz and z(x) ≡ z and by applying

Fubini’s theorem on the first integral of the right-hand side. �

REMARK 7. The first inequality in Corollary 6 is valid for a σ -finite measure μ
as long as the integrals on the right-hand side are finite.

Let us denote by Φp the following class of functions

Φp(τ) =

⎧⎨⎩
τ p

p(p−1) , p �= 0,1,

− logτ, p = 0,
τ logτ, p = 1.

(2)

COROLLARY 8. Under the assumptions of Corollary 6, for p ∈ R\{0,1} the fol-
lowing inequality holds

1
p(p−1)

∫
Bz

(N f )p(x)μ(dx) � Mp−1

(p−1)

∫
Bz

f +(x)(N f )p−1(x)(N̂Bz μ)(dx)

+
(zM)p−1

(p−1)

∫
Bz

N[ f − f +1Bz ](x)μ(dx)− (zM)pμ(Bz)
p

.

Furthermore, for q = p/(p−1) the following inequality holds

1
p(p−1)

∫
Bz

(N f )pdμ � Mp−1

(p−1)

[∫
Bz

( f +)pd(N̂Bz μ)

] 1
p
[∫

Bz

(N f )pd(N̂Bz μ)

] 1
q

+
(zM)p−1

(p−1)

∫
Bz

N[ f − f +1Bz ](x)μ(dx)− (zM)pμ(Bz)
p

.

Proof. Applying the second inequality from Corollary 6 for convex functions Φp ,
p∈R\{0,1} , and rearranging we get the first inequality. The second inequality follows
from the first by applying Hölder’s inequality on the first integral of the right-hand
side. �

COROLLARY 9. Under the assumptions of Theorem 5, if

(i) f is nonnegative and ϕ(z) � 0

or

(ii) Bz = X and ϕ(z) � 0 ,

then for every x ∈ Bz the following inequality holds

Φ(
1
M

(N f )(x))−Φ(z) � 1
M

N[ f +ϕ(N f )1Bz ](x)− zϕ(z). (3)
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Furthermore, for a finite measure μ on (X ,B(X)) , the following inequality holds

∫
Bz

Φ(
1
M

(N f )(x))μ(dx)−Φ(z)μ(Bz)

� 1
M

∫
Bz

f +(x)ϕ((N f )(x))(N̂Bz μ)(dx)− zϕ(z)μ(Bz). (4)

Proof. Under the assumptions of part (i) , for nonnegative f we have

ϕ(z)N[ f − f +1Bz] = ϕ(z)N[ f1Bc
z
] � 0.

Under the assumptions of part (ii) we have

ϕ(z)N[ f − f +1Bz ] = −ϕ(z)N[ f−1Bc
z
] � 0.

Hence, in either case inequality (3) follows by potential inequality of Theorem 5.
Inequality (4) follows by integrating inequality (3) with respect to the measure μ

over the set Bz and applying Fubini’s theorem on the right hand side integral. �

COROLLARY 10. Under the assumptions of Corollary 9(i) , for p < 1 , p �= 0 , the
following inequality holds

1
p(p−1)

∫
Bz

(N f )p(x)μ(dx)

� Mp−1

(p−1)

∫
Bz

f (x)(N f )p−1(x)(N̂Bz μ)(dx)− (zM)pμ(Bz)
p

. (5)

Furthermore, for q = p/(p−1) the following inequality holds

1
p(p−1)

∫
Bz

(N f )p(x)μ(dx)

� Mp−1

(p−1)

[∫
Bz

f pd(N̂Bz μ)

] 1
p
[∫

Bz

(N f )pd(N̂Bz μ)

] 1
q

− (zM)pμ(Bz)
p

. (6)

Under the assumptions of Corollary 9 (ii) , the above inequalities are valid, with
f replaced by f+ , for p > 1 .

Proof. Applying Corollary 9 for convex functions Φp , p ∈ R\{0,1} , and rear-
ranging we get the first inequality. The second inequality follows from the first by
applying Hölder’s inequality on the right-hand side integral. �
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3. Limiting cases of potential inequality

In this section we will give various forms of potential inequality based on the
limiting behaviour of ϕ at zero. If Theorem 5 or Corollary 9(ii) hold for z > 0, then
they hold for every z′ , 0 < z′ � z . Letting z′ → 0 we can get further inequalities.

In the following corollaries we will assume that either ϕ is nonnegative, or that
for every x ∈ B there exists a function gx ∈ L1(N(x, ·)) such that | f +ϕ(N f )| � gx . In
either case, by the monotone convergence theorem in the former and by the dominated
convergence theorem in the latter, we have

lim
z↘0

N[ f +ϕ(N f )1Bz ] = N[ f +ϕ(N f )1B]

since f +ϕ(N f )1Bz → f +ϕ(N f )1B pointwise, when z → 0.

THEOREM 11. Under the assumptions of Theorem 5, if ϕ(0+) is finite, then for
every x ∈ B we have

Φ(
1
M

(N f )(x))−Φ(0+) � 1
M

N[ f +ϕ(N f )1B](x)

+
1
M

ϕ(0+)N[ f − f +1B](x).

Furthermore, if μ is a finite measure on (X ,B(X)) , then the following inequality
holds ∫

B
Φ(

1
M

(N f )(x))μ(dx)−Φ(0+)μ(B)

� 1
M

∫
B

f +(x)ϕ((N f )(x))(N̂Bμ)(dx)

+
1
M

ϕ(0+)
∫

B
N[ f − f +1B](x)μ(dx).

Proof. Since ϕ(0+) is finite and limz′→0 z′ϕ(z′) = 0, the first inequality follows
from Theorem 5.

The second inequality follows by integrating the first with respect to the measure
μ over the set B and applying Fubini’s theorem on the first integral of the righ-hand
side. �

COROLLARY 12. Let the assumptions of Theorem 5 hold and let ϕ(0+) be finite.
Then

(i) for every x ∈ B

Φ(
1
M

(N f )(x))−Φ(0+) � 1
M

N[ f +ϕ((N f )+)](x)− 1
M

ϕ(0+)(N f−)(x).



POTENTIAL INEQUALITY REVISITED 795

(ii) if f is nonnegative, then for every x ∈ X we have

Φ(
1
M

(N f )(x))−Φ(0+) � 1
M

N[ fϕ(N f )](x).

(iii) if f is nonnegative, Φ(0+) = 0 and μ is a σ -finite measure on (X ,B(X)) , the
following inequality holds∫

X
Φ(

1
M

(N f )(x))μ(dx) � 1
M

∫
X

f (x)ϕ((N f )(x))(N̂μ)(dx).

Proof. (i) For x∈B , the last term on the right hand side of the potential inequality
from Theorem 5 disappears because limz→0 zϕ(z) = 0. Furthermore, since ϕ(0+) is
finite and Bc = {(N f )+ = 0} , we have

N[ f +ϕ((N f )+)1Bc ] = ϕ(0+)N[ f +1Bc].

Finally, adding and subtracting the term 1
M ϕ(0+)N[ f +1Bc](x) on the right hand side

of the potential inequality and rearranging, we get the inequality in part (i) .
(ii) For x ∈ B the inequality follows from part (i) . On the other hand, since f

is nonnegative, (N f )(x) = 0 iff f ≡ 0 N(x,dy)-a.e. Therefore, for x ∈ X\B , we also
have N[ fϕ(N f )](x) = 0, i. e. the inequality holds trivially, with zero on both sides.

(iii) The inequality follows by integrating the inequality from part (ii) with re-
spect to the measure μ and applying Fubini’s theorem on the integral from the right
hand side. �

COROLLARY 13. Under the assumptions of Theorem 11, for p > 1 the following
inequality holds∫

B
(N f )p(x)μ(dx) � pMp−1

∫
B

f +(x)(N f )p−1(x)(N̂Bμ)(dx).

Furthermore, for q = p/(p−1) the following inequality holds

∫
B
(N f )p(x)μ(dx) � pMp−1

[∫
B
( f +)pd(N̂Bμ)

] 1
p
[∫

B
(N f )pd(N̂Bμ)

] 1
q

.

Proof. The first inequality holds since convex functions Φp , p > 1, satisfy the as-
sumptions of Theorem 11 with Φp(0+) = ϕp(0+) = 0. The second inequality follows
from the first by applying Hölder’s inequality on the right-hand side integral. �

REMARK 14. By Corollary 12, we see that Corollary 13 remains true if we re-
place B with X .
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THEOREM 15. Under the assumptions of Theorem 5, if f is nonnegative and
limz→0 zϕ(z) = 0 , then

Φ(
1
M

(N f )(x))−Φ(0+) � 1
M

N[ fϕ(N f )1B](x).

Furthermore, for a finite measure μ on (X ,B(X)) , the following inequality holds∫
B

Φ(
1
M

(N f )(x))μ(dx)−Φ(0+)μ(B) � 1
M

∫
B

f (x)ϕ((N f )(x))(N̂B μ)(dx).

Proof. By the maximum principle

N[ f1{N f<z}]+N[ f1{N f�z}] = N( f ) � Mz+N[ f1{N f�z}],

i. e.
1
M

N[ f1Bc
z
] � z.

Therefore, ∣∣∣ lim
z→0

1
M

ϕ(z)N[ f − f1Bz ]
∣∣∣= ∣∣∣ lim

z→0

1
M

ϕ(z)N[ f1Bc
z
]
∣∣∣

� lim
z→0

|zϕ(z)| = 0.

Hence, the first inequality follows from Theorem 5. The second inequality follows
by integrating the first with respect to the measure μ over the set B and applying
Fubini’s theorem on the right hand side integral. �

COROLLARY 16. Under the assumptions of Theorem 15, for p > 0 , p �= 1 , the
following inequality holds

1
p(p−1)

∫
B
(N f )p(x)μ(dx) � Mp−1

(p−1)

∫
B

f (x)(N f )p−1(x)(N̂Bμ)(dx).

Furthermore, for q = p/(p−1) the following inequality holds

1
p(p−1)

∫
B
(N f )p(x)μ(dx) � Mp−1

(p−1)

[∫
B

f pd(N̂Bμ)

] 1
p
[∫

B
(N f )pd(N̂Bμ)

] 1
q

(7)

Proof. The first inequality holds since convex functions Φp , p > 0, satisfy the
assumptions of Theorem 15 with Φp(0+) = 0. The second inequality follows from the
first by applying Hölder’s inequality on the right-hand side integral. �

Notice that p and q = p/(p−1) satisfy

p > 1 ⇐⇒ q > 1
0 < p < 1 ⇐⇒ q < 0

p < 0 ⇐⇒ 0 < q < 1
(8)
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When one or both of the measures μ and N̂Cμ is bounded by the other up to
a multiplicative constant, then we can state further inequalities. Let K1 and K2 be
positive constants, if they exist, such that

K1μ � N̂Cμ (9)

and
N̂Cμ � K2μ . (10)

COROLLARY 17. Let the assumptions of Corollary 8 hold. If N and μ satisfy
(10) with C = Bz , then for p > 1

∫
Bz

(N f )pdμ � pK2M
p−1

[∫
Bz

( f +)pdμ

] 1
p
[∫

Bz

(N f )pdμ

] 1
q

+ p(zM)p−1
∫

Bz

N[ f − f +1Bz ](x)μ(dx)− (p−1)(zM)pμ(Bz).

When N and μ satisfy both (9) and (10) with C = Bz , then for 0 < p < 1

∫
Bz

(N f )pdμ � pK1/p
1 K1/q

2 Mp−1

[∫
Bz

( f +)pdμ

] 1
p
[∫

Bz

(N f )pdμ

] 1
q

+ p(zM)p−1
∫

Bz

N[ f − f +1Bz ](x)μ(dx)− (p−1)(zM)pμ(Bz),

while for p < 0

∫
Bz

(N f )pdμ � pK1/q
1 K1/p

2 Mp−1

[∫
Bz

( f +)pdμ

] 1
p
[∫

Bz

(N f )pdμ

] 1
q

+ p(zM)p−1
∫

Bz

N[ f − f +1Bz ](x)μ(dx)− (p−1)(zM)pμ(Bz).

Proof. The inequalities follow directly from (9), (10) and Corollary 8, taking into
account properties (8). �

COROLLARY 18. Let the assumptions of Corollary 13 hold. If N and μ satisfy
(10) with C = B, then for p > 1[∫

B
(N f )pdμ

] 1
p

� pK2M
p−1

[∫
B
( f +)pdμ

] 1
p

.

Proof. The inequality follows directly from (10) and Corollary 13, taking into
account properties (8). �
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COROLLARY 19. Let the assumptions of Corollary 16 hold. If N and μ satisfy
(10) with C = B, then for p > 1[∫

B
(N f )pdμ

] 1
p

� pK2M
p−1

[∫
B

f pdμ

] 1
p

If N and μ satisfy (9) and (10) with C = B, then for 0 < p < 1[∫
B
(N f )pdμ

] 1
p

� pK1/p
1 K1/q

2 Mp−1

[∫
B

f pdμ

] 1
p

Proof. The inequalities follow directly from (9), (10) and Corollary 16, taking into
account properties (8). �

COROLLARY 20. Let the assumptions of Corollary 16 hold. If N and μ satisfy
(10) with C = B, then for p > 0 , p �= 1 ,

1
p(p−1)

[∫
B
(N f )pdμ

] 1
p

� K1/q
2 Mp−1

p−1

[∫
B

f pd(N̂Bμ)

] 1
p

Proof. The inequality follows directly from (10) and Corollary 16, taking into
account properties (8). �

REMARK 21. Concave case. When Φ is concave, dϕ(u) is a negative measure
and the inequalities in Theorem 5, Corollary 6, Theorem 11 and Theorem 15 are re-
versed. The reversed inequality in Corollary 9 (i) holds if ϕ(z) � 0 and in Corollary
9(ii) if ϕ(z) � 0.

4. Exponential Convexity

In this section, the well-known results on exponential convexity will be applied
to functionals derived from the potential inequality. Let us recall briefly definition and
main properties of exponential convexity.

DEFINITION 4. A function ψ : I → R is exponentially convex on an interval I if
it is continuous and

n

∑
i, j=1

ξiξ jψ(xi + x j) � 0

for all n ∈ N , all choices ξi ∈ R and xi + x j ∈ I , 1 � i, j � n .

From the definition, one can easily see that an exponentially convex function ψ is
nonnegative. Moreover, if there exists x ∈ I such that ψ(x) = 0, then ψ is identically
equal to zero.
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PROPOSITION 22. For a ψ : I → R , the following statements are equivalent

(i) ψ is exponentially convex,

(ii) ψ is continuous and
n

∑
i, j=1

ξiξ jψ
(xi + x j

2

)
� 0

for all n ∈ N , all choices ξi ∈ R and xi ∈ I , 1 � i � n.

COROLLARY 23. If ψ : I → R is exponentially convex, then

(i) the matrix [ψ( xi+x j
2 )]ni, j=1 is positive semidefinite, so

det
[
ψ
(xi + x j

2

)]n
i, j=1

� 0

for all n ∈ N and xi ∈ I , 1 � i � n.

(ii) ψ is a log-convex function, i. e.

ψ(λx+(1−λ )y) � ψλ (x)ψ1−λ (y), for all x,y ∈ I,λ ∈ [0,1].

COROLLARY 24. Function ψ is log-convex on an interval I if and only if for all
a,b,c ∈ I , a < b < c, the following inequality holds[

ψ(b)
]c−a �

[
ψ(a)

]c−b[ψ(c)
]b−a

.

COROLLARY 25. If ψ is a positive log-convex function on an interval I , and
p,q,r,s ∈ I are such that p � r , q � s, p �= q and r �= s, then(

ψ(p)
ψ(q)

) 1
p−q

�
(

ψ(r)
ψ(s)

) 1
r−s

.

Let us define linear functionals A1 = A1; f ,N,z,x and A2 = A2; f ,N,z,μ with

A1(Φ) =
1
M

N[ f +ϕ(N f )1Bz ](x)+
1
M

ϕ(z)N[ f − f +1Bz ](x)

−Φ(
1
M

(N f )(x))+ Φ(z)− zϕ(z)

A2(Φ) =
1
M

∫
Bz

f +(x)ϕ((N f )(x))(N̂Bz μ)(dx)

+
1
M

ϕ(z)
∫

Bz

N[ f − f +1Bz](x)μ(dx)

−
∫

Bz

Φ(
1
M

(N f )(x))μ(dx)+ Φ(z)μ(Bz)− zϕ(z)μ(Bz).
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Linear functionals Ak , k = 1,2, depend on the choices of function f , kernel N
and points x and z , but if these choices are clear from context, we will omit them from
the notation.

Similarly, we define linear functionals Ak = Ak; f ,N,x,μ , k = 3,4,5,6, with

A3(Φ) =
1
M

N[ f +ϕ(N f )1B](x)+
1
M

ϕ(0+)N[ f − f +1B](x)

−Φ(
1
M

(N f )(x))+ Φ(0+),

A4(Φ) =
1
M

∫
B

f +(x)ϕ((N f )(x))(N̂B μ)(dx)

+
1
M

ϕ(0+)
∫

B
N[ f − f +1B](x)μ(dx)

−
∫

B
Φ(

1
M

(N f )(x))μ(dx)+ Φ(0+)μ(B),

A5(Φ) =
1
M

N[ fϕ(N f )1B](x)−Φ(
1
M

(N f )(x))+ Φ(0+),

A6(Φ) =
1
M

∫
B

f (x)ϕ((N f )(x))(N̂B μ)(dx)

−
∫

B
Φ(

1
M

(N f )(x))μ(dx)+ Φ(0+)μ(B),

We also define functions ψk : Ik → R+ by

ψk(p) = Ak(Φp) (11)

with I1 = I2 = R , I3 = I4 = (1,+∞) and I5 = I6 = (0,∞) . By Corollaries 8, 13 and 16,
functions ψk , k = 1, ...,6, are, indeed, well-defined and nonnegative. It is straightfor-
ward to check that all of the functions ψk are continuous.

LEMMA 26. For each k ∈ {1,2, ...,6} , the function ψk is exponentially convex.

Proof. Let n ∈ N , ξi ∈ R and pi ∈ Ik , 1 � i � n , be arbitrary. Define the function
Φ by

Φ(τ) =
n

∑
i, j=1

ξiξ jΦ pi+p j
2

(τ).

Since

Φ′′(τ) =
n

∑
i, j=1

ξiξ jτ
pi+p j

2 −2 =
( n

∑
i=1

ξiτ
pi
2 −1
)2

� 0,

the function Φ is convex.
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Furthermore, if k = 3 or 4, we have

ϕ(0+) =
∣∣∣ n

∑
i, j=1

ξiξ jϕ pi+p j
2

(0+)
∣∣∣< +∞,

so Φ satisfies the assumptions of Corollary 13. Similarly, if k = 5 or 6, the function
Φ satisfies the assumptions of Corollary 16 since

lim
z→0

zϕ(z) = lim
z→0

n

∑
i, j=1

zϕ pi+p j
2

(z) = 0.

Hence, by Corollaries 8, 13 and 16 and by continuity of ψk , we have, for each k ,

0 � Ak(Φ) =
n

∑
i, j=1

ξiξ jAk

(
Φ pi+p j

2

)
=

n

∑
i, j=1

ξiξ jψk

( pi + p j

2

)
,

i. e., ψk is exponentially convex. �

COROLLARY 27. For ψk , k = 1, ...,6 , defined by (11) the following statements
hold

(i) For all n ∈ N and pi ∈ Ik , 1 � i � n the matrix [ψk(
pi+p j

2 )]ni, j=1 is positive
semidefinite, so

det
[
ψk

( pi + p j

2

)]n
i, j=1

� 0.

(ii) For p,s, t ∈ Ik we have

ψk(p) �
[
ψk(s)

] t−p
t−s
[
ψk(t)

] p−s
t−s if p < s < t or s < t < p

ψk(p) �
[
ψk(s)

] t−p
t−s
[
ψk(t)

] p−s
t−s if s < p < t

Proof. Since the functions ψk are exponentially convex by Lemma 26, the in-
equalities in (i) follow from Corollary 23(i) , while inequalities in (ii) follow from
Corollary 24. �

Notice that the first set of inequalities in Corollary 27(ii) are refinements of the
first inequalities in Corollaries 8, 13 and 16. Indeed, the latter inequalities, in the nota-
tion introduced in this section, are

0 � ψk(p), k = 2,4,6, p ∈ Ik\{0,1},

while the right-hand sides of inequalities in Corollary 27(ii) are nonnegative. The same
results from Corollary 27 can be used to refine the second inequalities in Corollaries 8,
13 and 16 as well.
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COROLLARY 28.

(i) Let the assumptions of Corollary 8 hold. For p,s,t ∈ R , p < s < t or s < t < p,
p �= 0,1 and q = p/(p−1) we have

[
ψ2(s)

] t−p
t−s
[
ψ2(t)

] p−s
t−s � 1

(p−1)M

[∫
Bz

( f +)pd(N̂Bz μ)

] 1
p
[∫

Bz

(N f )pd(N̂Bz μ)

] 1
q

+
zp−1

(p−1)M

∫
Bz

N[ f − f +1Bz](x)dμ

− zpμ(Bz)
p

− 1
p(p−1)Mp

∫
Bz

(N f )pdμ .

(ii) Let the assumptions of Corollary 13 hold. For p,s, t ∈ (1,+∞) , p < s < t or
s < t < p, and q = p/(p−1) we have

[
ψ4(s)

] t−p
t−s
[
ψ4(t)

] p−s
t−s � 1

(p−1)M

[∫
B
( f +)pd(N̂Bμ)

] 1
p
[∫

B
(N f )pd(N̂Bμ)

] 1
q

− 1
p(p−1)Mp

∫
B
(N f )p(x)μ(dx).

(iii) Let the assumptions of Corollary 16 hold. For p,s, t ∈ (0,+∞) , p < s < t or
s < t < p, p �= 1 and q = p/(p−1) we have

[
ψ6(s)

] t−p
t−s
[
ψ6(t)

] p−s
t−s � 1

(p−1)M

[∫
B

f pd(N̂Bμ)

] 1
p
[∫

B
(N f )pd(N̂Bμ)

] 1
q

− 1
p(p−1)Mp

∫
B
(N f )p(x)μ(dx).

Proof. We have shown in Corollary 27(ii) that the left-hand sides of the inequal-
ities are less than or equal to ψk(p) , k = 2,4,6.

On the other hand, in the proof of Corollaries 8, 13 and 16 we have shown that
the right-hand sides of the inequalities are greater than or equal to Ak(Φp) = ψk(p) ,
k = 2,4,6, which finishes the proof. �

Similarly, by using the inequalities from Corollary 27(ii) we can refine inequali-
ties from Corollaries 17-20.

COROLLARY 29. Let the assumptions of Corollary 17 hold and let p,s, t ∈ R ,
p < s < t or s < t < p, p �= 0,1 , q = p/(p−1) . If the kernel N and measure μ satisfy
(10) with C = Bz , then for p > 1
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[
ψ2(s)

] t−p
t−s
[
ψ2(t)

] p−s
t−s � K2

(p−1)M

[∫
Bz

( f +)pdμ

] 1
p
[∫

Bz

(N f )pdμ

] 1
q

+
zp−1

(p−1)M

∫
Bz

N[ f − f +1Bz ](x)μ(dx)− zpμ(Bz)
p

− 1
p(p−1)Mp

∫
Bz

(N f )pdμ .

When N and μ satisfy both (9) and (10) with C = Bz , then for 0 < p < 1

[
ψ2(s)

] t−p
t−s
[
ψ2(t)

] p−s
t−s � K1/p

1 K1/q
2

(p−1)M

[∫
Bz

( f +)pdμ

] 1
p
[∫

Bz

(N f )pdμ

] 1
q

+
zp−1

(p−1)M

∫
Bz

N[ f − f +1Bz ](x)μ(dx)− zpμ(Bz)
p

− 1
p(p−1)Mp

∫
Bz

(N f )pdμ ,

while for p < 0

[
ψ2(s)

] t−p
t−s
[
ψ2(t)

] p−s
t−s � K1/q

1 K1/p
2

(p−1)M

[∫
Bz

( f +)pdμ

] 1
p
[∫

Bz

(N f )pdμ

] 1
q

+
zp−1

(p−1)M

∫
Bz

N[ f − f +1Bz ](x)μ(dx)− zpμ(Bz)
p

− 1
p(p−1)Mp

∫
Bz

(N f )pdμ .

Proof. From the proof of Corollary 17 we can see that the right hand sides of the
above inequalities are greater than or equal to the right hand side of the inequality from
Corollary 28(i) , hence the claim follows. �

COROLLARY 30. Let the assumptions of Corollary 18 hold and let p,s, t ∈ (1,+∞) ,
p < s < t or s < t < p, q = p/(p− 1) . If the kernel N and measure μ satisfy (10)
with C = B, then

[
ψ4(s)

] t−p
t−s
[
ψ4(t)

] p−s
t−s

[∫
B
(N f )pdμ

]− 1
q

� K2

(p−1)M

[∫
B
( f +)pdμ

] 1
p

− 1
p(p−1)Mp

[∫
B
(N f )pdμ

] 1
p

.
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Proof. By multiplying both sides of the inequality with [
∫
B(N f )pdμ ]−1/q , from

the proof of Corollary 18 we can see that the right hand sides of the above inequality
is greater than or equal to the right-hand side of the inequality from Corollary 28(ii) ,
hence the claim follows. �

COROLLARY 31. Let the assumptions of Corollary 19 hold and let p,s, t ∈ (0,+∞) ,
p < s < t or s < t < p, p �= 1 , q = p/(p−1) . If the kernel N and measure μ satisfy
(10) with C = B, then for p > 1

[
ψ6(s)

] t−p
t−s
[
ψ6(t)

] p−s
t−s

[∫
B
(N f )pdμ

]− 1
q

� K2

(p−1)M

[∫
B

f pdμ

] 1
p

− 1
p(p−1)Mp

[∫
B
(N f )pdμ

] 1
p

.

If N and μ satisfy (9) and (10) with C = B, then for 0 < p < 1

[
ψ6(s)

] t−p
t−s
[
ψ6(t)

] p−s
t−s

[∫
B
(N f )pdμ

]− 1
q

� K1/p
1 K1/q

2

(p−1)M

[∫
B

f pdμ

] 1
p

− 1
p(p−1)Mp

[∫
B
(N f )pdμ

] 1
p

.

Proof. By multiplying both sides of the inequalities with [
∫
B(N f )pdμ ]−1/q , from

the proof of Corollary 19 we can see that the right-hand sides of the above inequalities
are greater than or equal to the right-hand side of the inequality from Corollary 28(iii) ,
hence the claim follows. �

COROLLARY 32. Let the assumptions of Corollary 20 hold and let p,s, t ∈ (0,+∞) ,
p < s < t or s < t < p, p �= 1 , q = p/(p−1) . If the kernel N and measure μ satisfy
(10) with C = B, then

[
ψ6(s)

] t−p
t−s
[
ψ6(t)

] p−s
t−s

[∫
B
(N f )pdμ

]− 1
q

� K1/q
2

(p−1)M

[∫
B

f pd(N̂Bμ)

] 1
p

− 1
p(p−1)Mp

[∫
B
(N f )pdμ

] 1
p

.

Proof. By multiplying both sides of the inequality with [
∫
B(N f )pdμ ]−1/q , from

the proof of Corollary 20 we can see that the right-hand sides of the above inequality
is greater than or equal to the right-hand side of the inequality from Corollary 28(iii) ,
hence the claim follows. �
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5. Lagrange and Cauchy type mean value theorems

In the final section of this paper we shall derive some mean value type theorems
for the functionals defined above.

THEOREM 33. Let k ∈ {1, ...,6} and let the potential N f be uniformly bounded,
i. e. let there be a constant K ∈ R such that (N f )(x) � K for every x ∈ X . If Ψ ∈
C2(0,K] with Ak(Ψ) finite, Ak(Φ2) �= 0 and the function Ψ satisfies the same limiting
conditions at zero as the function Φ in Theorem 11 (for k = 3 or 4 ) or Theorem 15 (for
k = 5 or 6 ), then there exists ξk ∈ [0,K] (assuming that Ψ′′(0) = limz→0 Ψ′′(z) exists
when ξk = 0 ) such that

Ak(Ψ) = Ψ′′(ξk)Ak(Φ2).

Proof. Since Φ2 is a convex function and Ak(Φ2) �= 0, Theorems 5, 11, 15 and
Corollary 6 imply that Ak(Φ2) > 0, k = 1, ...,6. Let

l = inf
τ∈(0,K]

Ψ′′(τ) and L = sup
τ∈(0,+K]

Ψ′′(τ).

If L < +∞ , then the function LΦ2 −Ψ is convex since

d2

dτ2

(
L

τ2

2
−Ψ(τ)

)
= L−Ψ′′(τ) � 0.

Since the potential N f is uniformly bounded by K , potential inequalities of Theorems
5, 11, 15 and Corollary 6 are meaningful for functions defined on the interval (0,K] .
Since, by the assumptions of the lemma, the convex function LΦ2 −Ψ satisfies the
assumptions of Theorems 5 (for k = 1), 11 (for k = 3 or 4), 15 (for k = 5 or 6) and
Corollary 6 (for k = 2), we have

0 � Ak

(
LΦ2 −Ψ

)
, k = 1, ...,6,

i. e.
Ak(Ψ) � LAk(Φ2), k = 1, ...,6. (12)

If L = +∞ , then inequality (12) holds trivially. Similarly, for a finite l the inequality

lAk(Φ2) � Ak(Ψ), k = 1, ...,6 (13)

holds since Ψ− lΦ2 is convex, while for l = −∞ inequality (13) holds trivially.
Finally, the existence of ξk , k = 1, ...,6, follows from (12) and (13) and continuity

of Ψ′′ . �

THEOREM 34. Let k ∈ {1, ...6} and let there exist K ∈ R such that (N f )(x) � K
for every x ∈ X . If Ψ and Ψ̃ satisfy the assumptions of Theorem 33 and if Ak(Φ2) �= 0
and Ak(Ψ̃) �= 0 , then there exists ξk ∈ [0,K] such that

Ψ′′(ξk)

Ψ̃′′(ξk)
=

Ak(Ψ)

Ak(Ψ̃)
. (14)
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Proof. Let us define the function φ by

φ(τ) = Ψ(τ)Ak(Ψ̃)− Ψ̃(τ)Ak(Ψ).

The function φ also satisfies the assumptions of Theorem 33 and, hence, there ex-
ists ξk ∈ [0,K] such that Ak(φ) = φ ′′(ξk)Ak(Φ2) . Since Ak(φ) = 0 and φ ′′(ξk) =
Ψ′′(ξk)Ak(Ψ̃)− Ψ̃′′(ξk)Ak(Ψ) , equality (14) follows. �

Relation (14) allows us to define various means, because when Ψ′′/Ψ̃′′ is an in-
vertible function we have

ξk =
(Ψ′′

Ψ̃′′

)−1
(

Ak(Ψ)

Ak(Ψ̃)

)
.

Specially, for Ψ = Φp and Ψ̃ = Φq , recalling the definitions (2) and (11) of functions
Φp and ψk , respectively, we can define means Ek

p,q by

Ek
p,q =

(
Ak(Φp)
Ak(Φq)

) 1
p−q

=

(
ψk(p)
ψk(q)

) 1
p−q

for p,q ∈ Ik , p �= q . Moreover, we can continuously extend these means to cover the
case p = q as well by calculating the limits limp→q Ek

p,q . For k = 1 or 2 we get

Ek
p,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ak(Φp)
Ak(Φq)

) 1
p−q

, p �= q

exp
{

1−2p
p(p−1) −

Ak(Φ0Φp)
Ak(Φp)

}
, p = q �= 0,1

exp
{
−1− Ak(Φ0Φ1)

2Ak(Φ1)

}
, p = q = 1

exp
{

1− Ak(Φ2
0)

2Ak(Φ0)

}
, p = q = 0

(15)

The means Ek
p,q , k = 3, ...,6, have the same form, but are defined only for p > 1

and q > 1 when k = 3 or 4, and for p > 0 and q > 0 when k = 5 or 6.

COROLLARY 35. Let 1 � k � 6 and p,q,r,s ∈ Ik be such that p � r and q � s.
Then

Ek
p,q � Ek

r,s.

Proof. Due to log-convexity of the functions ψk (Lemma 26 and Corollary 23(ii))
and continuity of the means Ek , the claim follows from Corollary 25. �

By using our approach, we can get Hardy-type inequalities for gradients and use
these to obtain Fridriech-type inequalities. More formally, let Ω be a bounded, open
and connected set in R

n and let Ω be its closure. Let f ∈ C1(Ω) with supp( f ) ⊂ Ω
and define g by

g(x) =
1

ωn

∫
Ω

‖∇ f (y)‖
‖x− y‖n−1 dy, (16)
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where ωn is the area of the surface of the unit hypersphere Sn−1 in R
n . Function g is

equal to N(‖∇ f‖) , where N is the kernel with density

G(x,y) =
1

ωn‖x− y‖n−1 . (17)

The kernel N on R
n satisfies the maximum principle on the set of nonnegative func-

tions with constant M = 1 for n � 3 (see [4] and Remark 1 in [5]) and with constant
M = 6 for n = 2 (see Proposition 13 in [5]). Hence, the restriction of N on Ω also
satisfies the maximum principle, since a nonnegative function on Ω can be extended
with zero outside of Ω .

Finally, define a linear functional A = A6;‖∇ f‖,N,μ for the nonnegative function
‖∇ f‖ and measure μ(dx) = dx by

A(Φ) =
1

ωnM

∫
Ω

∫
Ω

‖∇ f (x)‖ϕ(g(x))
‖y− x‖n−1 dydx−

∫
Ω

Φ
( 1
M

g(x)
)
dx. (18)

THEOREM 36. Let Ω be a bounded, open and connected set in R
n , let f ∈C1(Ω)

be such that supp( f ) ⊂ Ω , let g be defined by (16) and the kernel N on X = Ω by its
density (17). Then, for p,s,t ∈ (0,+∞) , p �= 1 , p < s < t or s < t < p and q =
p/(p−1) we have

[
ψ(s)

] t−p
t−s
[
ψ(t)

] p−s
t−s

� 1
ωnM(p−1)

∫
Ω

∫
Ω

‖∇ f (x)‖gp−1(x)
‖y− x‖n−1 dydx− 1

p(p−1)Mp

∫
Ω

gp(x)dx,

where, for r �= 1 ,

ψ(r) =
1

ωnM(r−1)

∫
Ω

∫
Ω

‖∇ f (x)‖gr−1(x)
‖y− x‖n−1 dydx− 1

r(r−1)Mp

∫
Ω

gr(x)dx,

ψ(1) =
1

ωnM

∫
Ω

∫
Ω

‖∇ f (x)‖(1+ logg(x)
)

‖y− x‖n−1 dydx− 1
M

∫
Ω

g(x)(log
g(x)
M

)dx,

with M = 1 for n � 3 and M = 6 for n = 2 .

Proof. For a constant function f , we have ∇ f ≡ 0, so the inequality is trivially
satisfied. For a non-constant f , the set B = {N(‖∇ f‖) > 0} is equal to Ω , so

d(N̂Bμ)(x) = d(N̂μ)(x) =
1

ωn

∫
Ω

dy
‖y− x‖n−1 . (19)

Therefore, the linear functional A defined by (18) satisfies

A(Φ) =
1
M

∫
Ω
‖∇ f (x)‖ϕ(g(x))(N̂μ)(dx)−

∫
Ω

Φ
( 1
M

g(x)
)
dx.
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Taking into account Remark 7, we see that the linear functional A , restricted to
the set of functions Φ for which Φ(0+) = 0, satisfies the assumptions of Corollary
27 for k = 6, with B = Ω and f replaced with the nonnegative function ‖∇ f‖ . Since
ψ(r) = A(Φr) is equal to the ψ6(r) from Corollary (27), by part (ii) of that corollary
we have[

ψ(s)
] t−p

t−s
[
ψ(t)

] p−s
t−s

� 1
M(p−1)

∫
Ω
‖∇ f (x)‖gp−1(x)(N̂μ)(dx)− 1

p(p−1)Mp

∫
Ω

gp(x)dx.

Taking into account (19), we see that this is exactly the inequality stated in the theo-
rem. �

Since
1

ωn

∫
Ω

dy
‖y− x‖n−1 � diam(Ω)

2
, (20)

we see that the kernel N and measure μ satisfy the condition (10) with constant K2 =
diam(Ω)/2. Using this, we can further restate the inequality from the last theorem for
p > 1.

COROLLARY 37. Let Ω , f , g , N , ψ and M be as in Theorem 36. Then, for
p,s,t ∈ (1,+∞) , p < s < t or s < t < p and q = p/(p−1) we have

p(p−1)Mp[ψ(s)
] t−p

t−s
[
ψ(t)

] p−s
t−s

[∫
Ω

gp(x)dx

]− 1
q

� dpMp−1

2

[∫
Ω
‖∇ f (x)‖pdx

] 1
p

−
[∫

Ω
gp(x)dx

] 1
p

,

where d = diam(Ω) .

Proof. Applying inequality (20) on the first integral of the inequality from Theo-
rem 36 for p > 1 we get

[
ψ(s)

] t−p
t−s
[
ψ(t)

] p−s
t−s

� d
2M(p−1)

∫
Ω
‖∇ f‖(x)gp−1(x)(dx)− 1

p(p−1)Mp

∫
Ω

gp(x)dx.

Finally, applying Hölder’s inequality on the first integral from the right hand side and

multiplying by p(p−1)Mp
[∫

Ω gp(x)dx
]−1/q

we get the claim of the corollary. �
When the support of f is contained in Ω , then the well-known formula

f (x) =
1

ωn

∫
Ω

∇ f (y) · (x− y)
‖x− y‖n dy (21)
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holds. Using (21) and Corollary 37 we can prove the following, Friedrichs’ type in-
equality

COROLLARY 38. Let Ω be a bounded, open and connected set in R
n , d = diam(Ω)

and let f ∈C1(Ω) be such that supp( f ) ⊂ Ω . Then, for p > 1

‖ f‖Lp(Ω) � C‖∇ f‖Lp(Ω),

where C = dp/2 for n � 3 and C = dp6p−1/2 for n = 2 .

Proof. The inequality follows from Corollary 37 since the left hand side of the
inequality from Corollary 37 is nonnegative and from (21) we have that

| f |p � gp. �

COROLLARY 39. Let Ω , f , g , N and ψ be as in Theorem 36. Then ψ is expo-
nentially convex and

(i) For all n ∈ N and pi > 0 , 1 � i � n the matrix [ψ( pi+p j
2 )]ni, j=1 is positive

semidefinite, so

det
[
ψ
( pi + p j

2

)]n
i, j=1

� 0.

(ii) For p,s, t ∈ (0,+∞) we have

ψ(p) �
[
ψ(s)

] t−p
t−s
[
ψ(t)

] p−s
t−s if p < s < t or s < t < p

ψ(p) �
[
ψ(s)

] t−p
t−s
[
ψ(t)

] p−s
t−s if s < p < t

Proof. Linear functional A defined by (18) and restricted to the set of functions
Φ for which Φ(0+) = 0 satisfies the assumptions of Lemma 26 with k = 6 (with
A6 = A and f replaced by ‖∇ f‖ ). From the proof of Theorem 36, one can see that
ψ(p) = A(Φp) , so ψ is equal to ψ6 from Lemma 26. Therefore, ψ is exponentially
convex and the inequalities in parts (i) and (ii) follow from Corollary 27. �

COROLLARY 40. Let the assumptions of Corollary 39 hold, let the linear func-
tional A be defined by (18) and let Ψ ∈ C2(0,+∞) be a convex function for which
limz→0 zΨ′(z) = 0 and Ψ(0+) = 0 . Then

(i) there exists ξ ∈ [0,+∞) (assuming that Ψ′′(0) = limz→0 Ψ′′(z) exists when ξ =
0 ) such that A(Ψ) = Ψ′′(ξ )A(Φ2) .

(ii) if Ψ̃ satisfies the same assumptions as Ψ and A(Φ2) �= 0 , then there exist ξ ∈
[0,+∞) such that

Ψ′′(ξ )

Ψ̃′′(ξ )
=

A(Ψ)

A(Ψ̃)
.
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Proof. Since f ∈ C1(Ω) with supp( f ) ⊂ Ω , the norm of the gradient ‖∇ f‖ is
uniformly bounded and, by (16) and (20), the potential N(‖∇ f‖) is also uniformly
bounded. Hence, A , Ψ and Ψ̃ satisfy the assumptions of Theorems 33 and 34 with
k = 6 and the claims follow.

Using the last corollary with Ψ = Φp and Ψ̃ = Φq , we can define means Ep,q

for p,q ∈ (0,+∞) , p �= q . We can extend these means continuously to cover the cases
p = q as well, getting the same expression as in (15) for p,q ∈ (0,+∞) , with Ek

p,q
replaced by Ep,q and Ak by A .

COROLLARY 41. Let the means E be defined as above. Then, for p1, p2, p3, p4 ∈
(0,+∞) such that p1 � p3 and p2 � p4 , we have

Ep1,p2 � Ep3,p4 .

Proof. The function ψ(p) = A(Φp) is exponentially convex by Corollary 39.
Hence, the claim follows by Corollary 25 and continuity of the means E . �
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