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THE CONVEXITY AND THE CONCAVITY
DERIVED FROM NEWTON’S INEQUALITY

XUN-TUAN SU AND WEI-WEI ZHANG

(Communicated by J. Pecaric)

Abstract. By Newton’s inequality, a sequence {a;}!_, of nonnegative real numbers is unimodal
if its generating function " ja;x' has only real zeros. This paper is devoted to show that there
exist two indices s and ¢ with s <, such that ag,ay,...,a;—1,a; and a;,a;41,...,a, are convex,
while a;_1,ds,...,a;,a;+1 is concave.

1. Introduction

Let ap,a;,as, ... be a sequence of nonnegative real numbers. It is called unimodal
ifay<ay < <ay-1 <ay > apye = -+ for certain m, where the index m is called
mode. The sequence {a;};>¢ is called log-concave if for all i > 1, a;_1a;+1 < a? and
called strictly log-concave if for all i > 1, a;_1a;41 < al-z ([6]). It is easy to verify that
if a sequence of positive numbers is strictly log-concave, then it is unimodal and has
at most two consecutive modes. A sequence {a;};>o of nonnegative real numbers is
called concave(resp. convex) if for i > 1, a;—1 + aj+1 < 2a;(resp. aj—1+ air1 = 2a;).
By the arithmetic-geometric mean inequality, the concavity implies the log-concavity.
Unimodality problems often arise in many branches of mathematics. See articles [2, 3,
7] and references therein.

A well-known result of Newton states the following (see, e.g., [4]):

NEWTON’S INEQUALITY. [f all the zeros of a polynomial f(x) =Y qaix' are
real, then the coefficients of the polynomial f(x) satisfy

1 1
aiz}ai_la,url <l—|—?> (1—|——>, 1<i<n—1.

n—i

It should be mentioned that the coefficients of f(x) need not to be nonnegative.
By Newton’s inequality, a sequence {;}}_, of nonnegative real numbers is strictly log-
concave and is therefore unimodal with at most two modes if its generating function
S ,aix' has only real zeros. That is, the coefficients of a polynomial with only non-
positive zeros form a bell-shaped sequence. This paper is devoted to study the convexity
and the concavity derived from Newton’s inequality, which is a further description of
the previous bell-shaped sequence. Our main result is as follows.
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THEOREM 1. Let ag,ay,...,a, be a sequence of nonnegative real numbers. Sup-
pose that its generating function Y ja;x' has only real zeros. Then there exist two
indices s and t with s <t, such that ag,ay,...,as_1,as and a;,a;11,...,a, are convex,
while as_1,as,...,a:,a;+1 is concave.

The proof of Theorem 1| will be given in Section 2, where we see that every mode of
the sequence {a;}" lies between s and 7. Section 3 gives some remarks.

2. Proof of Theorem 1

Assume first that the sequence {;}?_, has only one mode m. Clearly, ap < a; <
v <l <y > Ay > > ay and a1 + a1 < 2a,,. For i # m, any three
adjacent terms a;_1,a;,a;+ satisfy either a;—; +a;+1 < 2a; or a;—1 +a;j+1 = 2a;. Now
we will show that the sequence {a;}_, changes the convexity/concavity at most once
on each monotonicity interval.
The increasing segment: Suppose that a;_» < a;—| < a; < a;+ and a;+a;—» < 2a;_1,
where 2 <i<m— 1. Now define g(x) = f(x)(1—x), i.e.,

g(x) = ap+ (a; —ap)x+ (ay — a)X* + -+ (an — ap_1)¥" — ax" 1.
Using Newton’s inequality, we have
(i1 —ai—2)(aiy1 —ai) < (a; —ai71)2 (1
since g(x) has only real zeros. For a;_» < a;—; < a; < a;41 and a;+a;—» < 2a,_1, we
have by (1)

i1 =i _ di—di-1
~

)

ai—ai—1  aji—1 —ai-2
which implies a;_| + a;+1 < 2a;. Therefore the subsequence a,_1,ds,...,dn,dnt1 1S
concave, where

s=min{i:a;_1+ai+1 <2a and 1 <i<m}.
On the other hand, for j=s—1, a; 1+a;.1 > 2a;. Then by (1),

< ajr1 —daj < aj—daj—1
~

b
aj—daj—1 aj—1 —daj-2

which implies a; > +a; >2a; |. Repeating the previous process, we get a; | +a; 1 =
2a; for 1 <i<s—1,i.e., ag,ai,...,as_1,as is convex. So there exists an index s such
that ag,ay,...,as—1,as is convex and a;_1,ds, . ..,am,dn+1 1S CONCave.

The decreasing segment: Suppose that a;_» > a;—1 > a; > a;+1 and a;—»+a; > 2a;_1,
where m+2 <i<n— 1. Define h(x) = f(x)(x— 1). It follows that

h(x) = —aop+ (ap — ay)x+ (a; —ag)x2 + -4 (an_1 — ap) X" + apX"

and
(ai—a —ai—1)(ai —ai+1) < (aji—1 — a,-)z. 2)
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Since a;_» > a;—| > a; > aj+1 and a;_» +a; > 2a;_1, we have by (2)

ai—n —aj_ ai—1 —aj
1< i—2 i 1< i—1 1,
ai—1—a; a;—ajy]
which implies a;_1 + a;+1 > 2a;. Hence the subsequence a,_1,a;,...,a,—1,a, is con-
vex, where
t=min{i:a; 1 +aj;; >2a; and m+1<i<n—1}.

On the other hand, for j=t—1, a;_| +aj;1 <2a;. Then by (2),

aj-2—dj—1 < aj—1—daj < 1,
aj,l—aj aj—ajH
which implies a; > +a; <2a; ;. Repeating the previous process, we get a; | +a; 1 <
2a; form<i<t—1,ie., ay_1,am,...,a;,_1,a; is concave. Thus a,,_1,ay,,...,a;_1,a;
is concave and a;_1,qy,...,a, is convex.
In summary, there exist two indices s,¢ such that ag,ay,...,as,as+1 and a;—1,ay,
.,a, are convex, while ag,as+1,...,am—1,am,an+1,...,4;—1,0d 1S concave.

For the case that the sequence {a;}?_, has two modes m and m+ 1, we have
am—1+am+1 < 2ay and a,;+apio < 2a,,41 . Then using Newton’s inequality similarly,
we find two indices s* and #* such that: ag,ay,...,a¢_1,a¢ and a;_1,as+,...,a, are
convex, while ag«_1,as,...,am,am+1,---,a+—1,as 1S concave, where

a; and 1 <i<m},
a; and m+2<i<n—1}.

“=min{i:ai_; + a1 <2
" =min{i:a_| +ai =2

3. Concluding remarks

We have shown that the nonnegative sequences whose generating functions have
only real zeros can change their convexity/concavity at most once on each mono-
tonicity interval. For example, the sequences: {1,3,1} is only concave, {1,10,20}
is only convex, and {6,41,89,60} is first concave and then convex. A further ex-
ample is the binomial sequence {(})}?" . Its generating function ¥ (7)x' = (1 +

x)". Then by Theorem 1, the subsequences (f)), (1), ... (Ln,fmj) (L”’V’%JH) and
(["Nz'%%l)’ ((”ZmW)’ ,(,")), (%) are convex, while the subsequence ([,142,%}_1)7

(["Jml)""’ (L”&lmj)’ (L"”"TZHI) is concave. Here the “inflection points” about
—7 2 2.
convexity/concavity (i.e., the indices in Theorem 1) are obtained by noting that

2(’2)- (if1>_ (iL) = (’:—z+1) (42 +dni—n*+n+2)

and the function H (i) = —4i> +4ni —n®+n+2 has two zeros “~4*2 and "2
Now let {a,(i)}!_, be a triangular array of nonnegative numbers, n = 1,2,....
Denote by X,, a random variable which is defined as

PG =)= ) = s
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and denote g, (x) =", pu(i)x'. Let X, = (X, — E(X»))/+/Var(X,), where E(X,) and
Var(X,) represent the mean and the variance of a random variable X, respectively. A
well-known result due to Bender [1] states that if g,(x) has only real zeros for all n,
and /Var(X,) — o as n tends to infinity, then X, — .4#°(0,1). For example, the rows
of the triangular array of the Stirling numbers of the second kind is asymptotically
normal([5]). Note that the standard normal distribution .4"(0,1) has the probability

density function f(x) = ﬁe’% . It is easy to see that the second derivative function
f"(x) <0on (—e,—1) and (1,+ee), while /”(x) >0 on (—1,1). Hence the inflection
points about convexity/concavity of .#(0,1) is —1 and 1. This implies that as n tends
to infinity, the inflection points of the rows of a triangular array satisfying Bender’s
assumption is asymptotically fixed. An exercise left to the readers is to consider the
inflection points of the binomial distribution {(}) p'(1—p)* "}1_ (0 < p < 1).

At the end, we point out that Theorem 1 does not hold in general if the sequence
{a;}}_, is strictly log-concave only. For example, the strictly log-concave sequence
{1,3,7,10, 14}, whose generating function does not have real zeros only, is first convex,

then concave and finally convex on its increasing interval.
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