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ON SOME HERMITE–HADAMARD–FEJÉR

INEQUALITIES FOR (k,h)–CONVEX FUNCTIONS

BARTOSZ MICHERDA AND TERESA RAJBA

(Communicated by S. Varošanec)

Abstract. We introduce the class of (k,h) -convex functions defined on k -convex domains, and
we prove some new inequalities of Hermite-Hadamard and Fejér type for such mappings. This
generalizes results given for h -convex functions in [1, 17], and for s -Orlicz convex mappings in
[4].

1. Introduction

Let f : I → R be a convex function defined on a real interval I and fix a,b ∈ I
with a < b . The following double inequality

f

(
a+b

2

)
� 1

b−a
·
∫ b

a
f (x)dx � f (a)+ f (b)

2
(1)

is known in the literature as the Hermite-Hadamard inequality for convex functions (see
[12] for the historical background). In [8] Fejér gave the important generalization of
the inequality (1):

f

(
a+b

2

)
·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2
·
∫ b

a
g(x)dx, (2)

which holds if f is convex, and g is nonnegative and symmetric with respect to the
point (a+b)/2. For various modifications of (1) and (2), see e.g. [5] and the references
given there.

In the paper [18] by Varošanec, the so called h -convex functions were introduced
with the following definition.

DEFINITION 1.1. Let I be a real interval and let h : (0,1) → R be a nonnegative
function, h �= 0. A nonnegative function f : I → R is then called h -convex if, for all
x,y ∈ I and t ∈ (0,1) , we have

f
(
tx+(1− t)y

)
� h(t) f (x)+h(1− t) f (y). (3)
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It is evident that this notion generalizes the concepts of classical convexity (for
h(t) = t , see e.g. [9, 14]), s-Breckner convexity (for h(t) = ts with some s ∈ (0,1) ,
see [2, 7]), P-functions (for h(t) = 1, see [13]) and Godunova-Levin functions (for
h(t) = t−1 , see [6]).

In the recent paper [1] by Bombardelli and Varošanec, the following Hermite-
Hadamard-Fejér inequalities for h -convex functions were obtained (the existence of
integrals is assumed in both formulas).

PROPOSITION 1.2. Let f : [a,b] → R be h-convex and let g : [a,b] → R , g � 0
be symmetric with respect to (a+b)/2 . Then

1
b−a

·
∫ b

a
f (t)g(t)dt � [ f (a)+ f (b)] ·

∫ 1

0
h(t) ·g(

ta+(1− t)b
)
dt. (4)

PROPOSITION 1.3. Let h be defined on [0,max{1,b−a}] and let f : [a,b] → R

be h-convex. Moreover, assume that g : [a,b] → R , g � 0 is symmetric with respect to
(a+b)/2 and

∫ b
a g(t)dt > 0 . Then

f

(
a+b

2

)
� C

∫ b

a
f (t)g(t)dt, (5)

where C =
2h(1/2)∫ b
a g(t)dt

.

In [17] Sarikaya, Set and Özdemir proved another version of the Fejér inequality
for h -convex functions.

PROPOSITION 1.4. Let f : [a,b] → R be h-convex and integrable, h(1/2) > 0 ,
and assume that g : [a,b] → R is nonnegative, integrable and symmetric with respect
to (a+b)/2 . Then

1
2h(1/2)

· f

(
a+b

2

)
·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx

� f (a)+ f (b)
2

· [h(t)+h(1− t)] ·
∫ b

a
g(x)dx (6)

for all t ∈ (0,1) .

In the most recent paper [10], Maksa and Palés introduced even more general no-
tion of convexity. More precisely, (α,β ,a,b)-convex functions are defined as solutions
f of the functional inequality

f
(
α(t)x+ β (t)y

)
� a(t) f (x)+b(t) f (y), (7)

where /0 �= T ⊂ [0,1] and α,β ,a,b : T → R are given functions.
In our note we define and study the basic properties of (k,h)-convex functionswith

k -convex domains (see Definitions 2.1 and 2.4). Such mappings satisfy the inequality
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(7) with T = (0,1) and α(t) = k(t) , β (t) = k(1− t) , a(t) = h(t) , b(t) = h(1− t) . In
particular, we will see that (k,h)-convexity is a generalization of s-Orlicz convexity
(see [3, 7]), subadditivity (see e.g. [11, 16]) and h -convexity.

Moreover, as our main results, we prove two inequalities of Hermite-Hadamard-
Fejér type for (k,h)-convex functions (Theorems 3.1 and 3.5), and we apply them to
various classes of mappings.

2. Preliminaries

Here we define the classes of k -convex sets and (k,h )-convex functions, and we
discuss some properties of these concepts.

DEFINITION 2.1. Let k : (0,1) → R be a given function. Then a subset D of a
real linear space X will be called k -convex if k(t)x+k(1− t)y∈ D for all x,y ∈ D and
t ∈ (0,1) .

Let us point out that the definition given above, for conveniently chosen functions
k , produces various families of well-known sets. This is shown, in part, by

EXAMPLE 2.2. 1. Our definition agrees with the one of classical convexity for
k(t) = t .

2. If k(t) = t1/p with p ∈ (0,1) , then D is k -convex if and only if it is p -convex
(see e.g. [15]).

3. For s > 0 and k(t) = t1/s , the family of k -convex sets is equal to the class of
s-Orlicz convex sets, as defined by Dragomir and Fitzpatrick in [3].

4. If k(t) = 1 for all t , then D is k -convex if and only if (D,+) is a semigroup.

5. For k(t) = 1/2, our definition generates the family of all midconvex subsets of
X .

6. Let k be defined by the formula

k(t) =

{
2t for t < 1/2

0 for t � 1/2.
(8)

Then D is a k -convex set if and only if it is starshaped with respect to 0, i.e. tx∈ D for
all t ∈ [0,1] and x ∈ D . The proof of this fact is contained in Example 2.5.5.

Next, we present some basic facts on k -convex subsets of linear spaces.

REMARK 2.3. 1. Every linear subspace Y of X is k -convex in X . An affine
subspace, however, may not be a k -convex set.

2. If k(t) � 0 for all t , then every pointed convex cone K ⊂ X , i.e. a set which is
closed under linear combinations with nonnegative coefficients, is k -convex.

3. For any pair of k -convex sets C,D ⊂ X and for every α ∈ R , the sets C +D
and αD are also k -convex.
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4. If {Dα}α∈A is a family of k -convex sets, then their intersection
⋂

α∈A
Dα is also

k -convex.

5. If all sets D1 ⊂ D2 ⊂ D3 ⊂ . . . are k -convex, then their union
⋃

n∈N

Dα is also

k -convex.

6. Assume that X is a metric linear space and D ⊂ X is a k -convex set. Then its
closure cl D is also k -convex.

Now we are ready to give a definition of (k,h)-convexity, which will be essential
in the next section.

DEFINITION 2.4. Let k,h : (0,1) → R be two given functions and suppose that
D⊂ X is a k -convex set. Then a function f : D→R is (k,h)-convex if, for all x,y∈D
and t ∈ (0,1) ,

f
(
k(t)x+ k(1− t)y

)
� h(t) f (x)+h(1− t) f (y). (9)

If (9) can be replaced with the corresponding equality, f will be called (k,h)-affine
(more general functions of this type are subject of the paper [10]).

Again, this definition coincides with the previously introduced terminology in
many important cases, some of which are listed below.

EXAMPLE 2.5. 1. For k(t) = t , the notion of (k,h)-convexity agrees with the one
of h -convexity, given by (3) (without the additional assumption of nonnegativity).

In particular, for suitable functions h , the condition (9) produces the families
of convex functions, s-Breckner convex functions, P-functions and Godunova-Levin
functions.

2. If s > 0, k(t) = t1/s and h(t) = t , then f is (k,h)-convex if and only if it is
s-Orlicz convex.

3. For k(t) = h(t) = 1, the class of (k,h )-convex functions consists of all map-
pings which are subadditive.

4. If k(t) = h(t) = 1/2 for all t , then (9) produces the family of Jensen-convex
functions.

5. Let k be given by (8). Then f is a (k,k)-convex function if and only if it is
starshaped, i.e. f (tx) � t f (x) for all t ∈ [0,1] and x ∈ D .

To see this, fix x,y ∈ D and choose t ∈ (0,1) . Then, assuming that f is (k,k)-
convex, we get

f (tx) = f
(
k(t/2)x+ k(1− t/2)x

)
� k(t/2) f (x)+ k(1− t/2) f (x) = t f (x)

and

f (0) = f
(
k(1/2)x+ k(1/2)x

)
� k(1/2) f (x)+ k(1/2) f (x) = 0.
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On the other hand, if f is starshaped, we obtain

f
(
k(t)x+ k(1− t)y

)
=

⎧⎪⎨
⎪⎩

f (2t · x) � 2t · f (x) for t ∈ (0,1/2),
f (0) � 0 for t = 1/2,

f
(
(2−2t) · y) � (2−2t) · f (y) for t ∈ (1/2,1),

and so (9) holds for all t , with h = k .

Many of the well-known properties of convex functions may be similarly applied
to (k,h)-convex mappings. In particular, we have

REMARK 2.6. 1. If f ,g : D → R are (k,h)-convex functions and c � 0, then
f +g , c f are also (k,h)-convex.

2. Suppose that h � 0 and let { fi}i∈I be a family of (k,h)-convex functions
defined on D . Then it is easy to check that the function f = sup

i∈I
fi also satisfies (9) for

all x,y and t .

3. Let f be a (k,h)-convex function with h(t) = t , and define the sublevel set
f c = {x ∈ D : f (x) � c} . Then f c is a k -convex set for every c ∈ R .

Indeed, for x,y ∈ f c and t ∈ (0,1) we get

f
(
k(t)x+ k(1− t)y

)
� t · f (x)+ (1− t) · f (y) � tc+(1− t)c = c.

4. If f is a (k,k)-convex function with k � 0, then the epigraph of f , i.e. the set
epi f =

{
(x,y) ∈ X ×R : x ∈ D, y � f (x)

}
, is k -convex.

This follows from the inequality

f
(
k(t)x1 + k(1− t)x2

)
� k(t) · f (x1)+ k(1− t) · f (x2) � k(t)y1 + k(1− t)y2,

valid for (x1,y1),(x2,y2) ∈ epi f and t ∈ (0,1) .

5. Suppose that the epigraph of f is k -convex. Then f is a (k,k)-convex function.
Indeed, since P1 = (x, f (x)) and P2 = (y, f (y)) are elements of the epigraph, we

have k(t) ·P1 + k(1− t) ·P2 ∈ epi f , which gives

f
(
k(t)x+ k(1− t)y

)
� k(t) f (x)+ k(1− t) f (y).

6. If D is a k -convex subset of X and f : D → R is a (k,h)-affine function, then
an easy verification shows that the image f (D) of f is h -convex in R .

7. Assume that f1 : D1 → R is (k,h)-convex, f2 : D2 → R is (h,h)-convex and
nondecreasing, and f1(D1) ⊂ D2 . Then f = f2 ◦ f1 is a (k,h)-convex function.

Finally, let us observe that every nonnegative and (k,h1)-convex function is also
(k,h2)-convex for all h2 � h1 .
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3. Main Results

In this section we prove some new inequalities of Hermite-Hadamard and Fejér
types for (k,h)-convex functions. From now on, we suppose that D is a k -convex
subset of R and that all integrals considered below exist.

THEOREM 3.1. (The first Fejér inequality for (k,h)-convex functions) Let f :
D → R be a (k,h)-convex function with h(1/2) > 0 , fix a < b such that [a,b] ⊂ D
and let g : [a,b] → R be a nonnegative function which is symmetric with respect to
(a+b)/2 . Then

f
(
k(1/2) · (a+b)

)
2 ·h(1/2)

·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx. (10)

Proof. Writing (9) with t = 1/2, x = wa+(1−w)b and y = (1−w)a+wb , we
get

f
(
k(1/2) · (a+b)

)
= f

(
k(1/2)x+ k(1/2)y

)
� h(1/2) · [ f

(
wa+(1−w)b

)
+ f

(
(1−w)a+wb

)]
. (11)

We may now multiply both sides of (11) by g(x) = g(y) , and then integrate it with
respect to w , getting

f
(
k(1/2) · (a+b)

) ·∫ 1

0
g
(
wa+(1−w)b

)
dw

� h(1/2) ·
[∫ 1

0
f
(
wa+(1−w)b

) ·g(
wa+(1−w)b

)
dw

+
∫ 1

0
f
(
(1−w)a+wb

) ·g(
(1−w)a+wb

)
dw

]
.

This implies

f
(
k(1/2) · (a+b)

) · 1
b−a

·
∫ b

a
g(x)dx � h(1/2) ·2 · 1

b−a
·
∫ b

a
f (x)g(x)dx,

and (10) follows. �
If we assume that g(t)= 1 for all t ∈ (0,1) , from (10) we obtain the first inequality

of Hermite-Hadamard type for (k,h)-convex functions.

COROLLARY 3.2. Let f : D → R be a (k,h)-convex function with h(1/2) > 0
and choose a < b such that [a,b] ⊂ D. Then

f
(
k(1/2) · (a+b)

)
2 ·h(1/2)

� 1
b−a

·
∫ b

a
f (x)dx. (12)

Moreover, writing (10) with k(t) = t1/s and h(t) = t , we get
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COROLLARY 3.3. Suppose that f : D → R is an s-Orlicz convex function and
that a,b,g satisfy the assumptions of Theorem 3.1. Then

f

(
a+b

21/s

)
·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx. (13)

REMARK 3.4. 1. If we apply (10) to an h -convex function f , we obtain (5),
which is also the left-hand side of (6).

2. The condition (13) for g = 1 gives the inequality

f

(
a+b

21/s

)
� 1

b−a
·
∫ b

a
f (x)dx,

which was proved in [4].

3. By Theorem 3.1, for every subadditive function f the following inequality of
Fejér type is valid:

f (a+b)
2

·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx.

In particular, for g = 1 we get the Hermite-Hadamard inequality

f (a+b)
2

� 1
b−a

·
∫ b

a
f (x)dx.

4. For Jensen-convex functions, from (10) and (12) we recover the left-hand sides
of the classical inequalities (2) and (1), respectively.

THEOREM 3.5. (The second Fejér inequality for (k,h)-convex functions) Assume
that f : D → R is a (k,h)-convex function with h(1/2) > 0 , a,b ∈ D, a < b and
g : [a,b] → R is a nonnegative function, symmetric with respect to (a+b)/2 . Then

1
2h(1/2)

·
∫ 1

0
f
(
k(1/2) · [k(t)+ k(1− t)] · (a+b)

)·g(
ta+(1− t)b

)
dt

�
∫ 1

0
f
(
k(t)a+ k(1− t)b

) ·g(
ta+(1− t)b

)
dt

� [ f (a)+ f (b)] ·
∫ 1

0
h(t) ·g(

ta+(1− t)b
)
dt. (14)

Proof. By (9) with x = k(w)a+ k(1−w)b , y = k(1−w)a+ k(w)b and t = 1/2,
we have

f
(
k(1/2) · [k(w)+ k(1−w)] · (a+b)

)
= f

(
k(1/2)x+ k(1/2)y

)
� h(1/2) · [ f

(
k(w)a+ k(1−w)b

)
+ f

(
k(1−w)a+ k(w)b

)]
. (15)
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As in the proof of the previous theorem, we multiply both sides of (15) by g
(
wa+(1−

w)b
)

= g
(
(1−w)a+wb

)
, and we integrate the new inequality over (0,1) , getting

∫ 1

0
f
(
k(1/2) · [k(w)+ k(1−w)] · (a+b)

) ·g(
wa+(1−w)b

)
dw

� h(1/2) ·
[∫ 1

0
f
(
k(w)a+ k(1−w)b

) ·g(
wa+(1−w)b

)
dw

+
∫ 1

0
f
(
k(1−w)a+ k(w)b

) ·g(
(1−w)a+wb

)
dw

]

= 2h(1/2) ·
∫ 1

0
f
(
k(t)a+ k(1− t)b

) ·g(
ta+(1− t)b

)
dt.

From this we obtain the first desired inequality.
To prove the second one, we need to use the definition of (k,h)-convexity with

x = a and y = b . Namely, we have

f
(
k(t)a+ k(1− t)b

)
� h(t) f (a)+h(1− t) f (b),

which, by symmetry of g , implies

∫ 1

0
f
(
k(t)a+ k(1− t)b

) ·g(
ta+(1− t)b

)
dt

� f (a)
∫ 1

0
h(t) ·g(

ta+(1− t)b
)
dt + f (b)

∫ 1

0
h(1− t) ·g(

(1− t)a+ tb
)
dt

= [ f (a)+ f (b)] ·
∫ 1

0
h(t) ·g(

ta+(1− t)b
)
dt,

and the proof is complete. �

As a corollary, we obtain the second Hermite-Hadamard inequality for (k,h)-
convex functions.

COROLLARY 3.6. Let f : D → R be a (k,h)-convex function, h(1/2) > 0 and
choose a,b ∈ D such that a < b. Then

1
2h(1/2)

·
∫ 1

0
f
(
k(1/2) · [k(t)+ k(1− t)] · (a+b)

)
dt

�
∫ 1

0
f
(
k(t)a+k(1− t)b

)
dt � [ f (a)+ f (b)] ·

∫ 1

0
h(t)dt. (16)

We also get the following version of the Fejér inequality for s-Orlicz convex func-
tions.

COROLLARY 3.7. Suppose that f : D → R is an s-Orlicz-convex function and
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that a,b,g satisfy the assumptions of Theorem 3.5. Then

∫ 1

0
f

(
1

21/s
· [t1/s +(1− t)1/s] · (a+b)

)
·g(

ta+(1− t)b
)
dt

�
∫ 1

0
f
(
t1/sa+(1− t)1/sb

) ·g(
ta+(1− t)b

)
dt

� [ f (a)+ f (b)] ·
∫ 1

0
t ·g(

ta+(1− t)b
)
dt. (17)

REMARK 3.8. 1. Applying (14) to an h -convex function f , we obtain the in-
equalities (4) and (5).

2. If f is an s-Orlicz convex function and g = 1, then (17) becomes

∫ 1

0
f

(
1

21/s
· [t1/s +(1− t)1/s] · (a+b)

)
dt

�
∫ 1

0
f
(
t1/sa+(1− t)1/sb

)
dt � f (a)+ f (b)

2
,

and thus we recover another result from [4].

3. If f is starshaped and a,b �= 0, then the right-hand side of (16) has the form

1
a
·
∫ a

0
f (t)dt +

1
b
·
∫ b

0
f (t)dt � f (a)+ f (b)

2
,

which can also be derived from [5, Theorem 196] with m = 0.

4. For convex functions, from (16) and (14) we get the classical inequalities (1)
and (2), respectively.
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