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ON SOME HERMITE-HADAMARD-FEJER
INEQUALITIES FOR (k,7)-CONVEX FUNCTIONS

BARTOSZ MICHERDA AND TERESA RAJBA

(Communicated by S. Varosanec)

Abstract. We introduce the class of (k,h)-convex functions defined on k-convex domains, and
we prove some new inequalities of Hermite-Hadamard and Fejér type for such mappings. This
generalizes results given for i-convex functions in [1, 17], and for s-Orlicz convex mappings in

[41.

1. Introduction

Let f:I — R be a convex function defined on a real interval / and fix a,b €1
with a < b. The following double inequality

b
)ity [rome

is known in the literature as the Hermite-Hadamard inequality for convex functions (see
[12] for the historical background). In [8] Fejér gave the important generalization of
the inequality (1):

f(anrb) -/uhg(x)dx< Lbf(X)g(X)dX< w'/ahg(x)dx’ *

which holds if f is convex, and g is nonnegative and symmetric with respect to the
point (a+b)/2. For various modifications of (1) and (2), see e.g. [5] and the references
given there.

In the paper [18] by VaroSanec, the so called /-convex functions were introduced
with the following definition.

DEFINITION 1.1. Let I be a real interval and let & : (0,1) — R be a nonnegative
function, h # 0. A nonnegative function f : I — R is then called A-convex if, for all
x,yel and t € (0,1), we have

e+ (1=0)y) A f () +h(1=0)f (v). 3)
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It is evident that this notion generalizes the concepts of classical convexity (for
h(t) =1, see e.g. [9, 14]), s-Breckner convexity (for h(r) =¢* with some s € (0,1),
see [2, 7]), P-functions (for h(r) = 1, see [13]) and Godunova-Levin functions (for
h(t) =171, see [6]).

In the recent paper [1] by Bombardelli and VaroSanec, the following Hermite-
Hadamard-Fejér inequalities for i-convex functions were obtained (the existence of
integrals is assumed in both formulas).

PROPOSITION 1.2. Let f: [a,b] — R be h-convex and let g: [a,b] = R, g=>0
be symmetric with respect to (a+b)/2. Then

bia-/bf(t)g(t)dt / nt)-g(ta+ (1-0)b)dr. (&)

PROPOSITION 1.3. Let h be defined on [0,max{1,b—a}] and let f: [a,b] — R
be h-convex. Moreover, assume that g : [a,b] — R, g >0 is symmetric with respect to
(a+b)/2 and [P g(t)dt > 0. Then

<a+b) C/f 5)

2h(1/2)
2 g(e)dr

In [17] Sarikaya, Set and Ozdemir proved another version of the Fejér inequality
for h-convex functions.

where C =

PROPOSITION 1.4. Let f: [a,b] — R be h-convex and integrable, h(1/2) > 0,
and assume that g : [a,b] — R is nonnegative, integrable and symmetric with respect
to (a+b)/2. Then

i/ (77) [ swars [ sstoas

< w.[lq(zﬂ-h(l —t)]~/ahg(x)dx

(6)

S

forall t € (0,1).

In the most recent paper [10], Maksa and Palés introduced even more general no-
tion of convexity. More precisely, (a, B,a,b)-convex functions are defined as solutions
f of the functional inequality

fla(t)x+B(1)y) <alt)f(x) +b() (), (7)

where 0 # T C [0,1] and o, ,a,b: T — R are given functions.
In our note we define and study the basic properties of (k, /) -convex functions with
k-convex domains (see Definitions 2.1 and 2.4). Such mappings satisfy the inequality
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(7ywith T = (0,1) and a(r) =k(t), B(t) = k(1 —1), a(t) = h(t), b(t) =h(1—1). In
particular, we will see that (k,h)-convexity is a generalization of s-Orlicz convexity
(see [3, 7]), subadditivity (see e.g. [11, 16]) and &h-convexity.

Moreover, as our main results, we prove two inequalities of Hermite-Hadamard-
Fejér type for (k,h)-convex functions (Theorems 3.1 and 3.5), and we apply them to
various classes of mappings.

2. Preliminaries

Here we define the classes of k-convex sets and (k,/)-convex functions, and we
discuss some properties of these concepts.

DEFINITION 2.1. Let k: (0,1) — R be a given function. Then a subset D of a
real linear space X will be called k-convex if k(t)x+ k(1 —¢)y € D forall x,y € D and
1€ (0,1).

Let us point out that the definition given above, for conveniently chosen functions
k, produces various families of well-known sets. This is shown, in part, by

EXAMPLE 2.2. 1. Our definition agrees with the one of classical convexity for
k(t)=t.

2. If k(t) =¢'/7 with p € (0,1), then D is k-convex if and only if it is p-convex
(seee.g. [15]).

3. For s > 0 and k(r) = ¢'/%, the family of k-convex sets is equal to the class of
s-Orlicz convex sets, as defined by Dragomir and Fitzpatrick in [3].

4.1If k() = 1 for all 7, then D is k-convex if and only if (D,+) is a semigroup.

5. For k(t) = 1/2, our definition generates the family of all midconvex subsets of
X.

6. Let k be defined by the formula

k(t):{2t forr < 1/2 8)

0 forr>1/2.

Then D is a k-convex set if and only if it is starshaped with respect to 0, i.e. tx € D for
all 7 € [0,1] and x € D. The proof of this fact is contained in Example 2.5.5.

Next, we present some basic facts on k-convex subsets of linear spaces.

REMARK 2.3. 1. Every linear subspace Y of X is k-convex in X. An affine
subspace, however, may not be a k-convex set.

2. If k(r) > 0 for all ¢, then every pointed convex cone K C X, i.e. a set which is
closed under linear combinations with nonnegative coefficients, is k-convex.

3. For any pair of k-convex sets C,D C X and for every o € R, the sets C+ D
and oD are also k-convex.
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4.1f {Dg }oea is a family of k-convex sets, then their intersection () Dy, is also
ocA
k-convex.

5. If all sets D; C D, C D3 C ... are k-convex, then their union |J Dy, is also
neN
k-convex.
6. Assume that X is a metric linear space and D C X is a k-convex set. Then its
closure cl D is also k-convex.

Now we are ready to give a definition of (k,)-convexity, which will be essential
in the next section.

DEFINITION 2.4. Let k,h: (0,1) — R be two given functions and suppose that
D C X is a k-convex set. Then a function f: D — R is (k,h)-convex if, for all x,y € D
and 7 € (0,1),

F(k()x+k(1—1)y) <h(t)f(x)+h(1—1)f(y). )

If (9) can be replaced with the corresponding equality, f will be called (k,/)-affine
(more general functions of this type are subject of the paper [10]).

Again, this definition coincides with the previously introduced terminology in
many important cases, some of which are listed below.

EXAMPLE 2.5. 1. For k(¢) =1, the notion of (k, k) -convexity agrees with the one
of h-convexity, given by (3) (without the additional assumption of nonnegativity).

In particular, for suitable functions #, the condition (9) produces the families
of convex functions, s-Breckner convex functions, P-functions and Godunova-Levin
functions.

2. If s >0, k(1) =¢'/* and h(r) =1, then f is (k,h)-convex if and only if it is
s-Orlicz convex.

3. For k(¢t) = h(t) = 1, the class of (k,h)-convex functions consists of all map-
pings which are subadditive.

4. If k(t) = h(t) = 1/2 for all ¢, then (9) produces the family of Jensen-convex
functions.

5. Let k be given by (8). Then f is a (k,k)-convex function if and only if it is
starshaped, i.e. f(rx) <tf(x) forall z € [0,1] and x € D.

To see this, fix x,y € D and choose 7 € (0,1). Then, assuming that f is (k,k)-
convex, we get

f(ex) = f (k(t/2)x+ k(1 —1/2)x) <k(1/2) f(x) + k(1 —1/2)f (x) = 1f (x)

and

F(0) = £ (k(1/2)x+k(1/2)x) < k(1/2)f(x) +k(1/2)f(x) = .
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On the other hand, if f is starshaped, we obtain

fQ2r-x) <2 f(x) for 1 €(0,1/2),
f(k(@)x+k(1—1)y) =< £(0) <0 for t =1/2,
f((2=20)y)<(2-21)-f(y) for r€(1/2,1),

and so (9) holds for all ¢, with h = k.

Many of the well-known properties of convex functions may be similarly applied
to (k,h)-convex mappings. In particular, we have

REMARK 2.6. 1. If f,g: D — R are (k,h)-convex functions and ¢ > 0, then
f+g, cf are also (k,h)-convex.

2. Suppose that & > 0 and let {f;}ic; be a family of (k,h)-convex functions

defined on D. Then it is easy to check that the function f = sup f; also satisfies (9) for
il
all x,y and 7.

3. Let f be a (k,h)-convex function with h(#) =, and define the sublevel set
fe={xeD: f(x) <c}.Then f is a k-convex set for every ¢ € R.
Indeed, for x,y € /¢ and 7 € (0,1) we get

Fk(@O)x+k(1—1)y) <t-f(x)+(1—1)- f(y)<tc+(1—t)c=c.

4. If f is a (k,k)-convex function with k > 0, then the epigraph of f, i.e. the set
epif = {(x,y) EXxR:x€D,y> f(x)},is k-convex.
This follows from the inequality

S (k(0)xy + k(1 —1)x2) k(1) f(xr) + k(1 —1)- fx2) <k(t)y1 +k(1—1)y2,

valid for (x1,y1),(x2,y2) €epif and r € (0,1).

5. Suppose that the epigraph of f is k-convex. Then f is a (k,k)-convex function.
Indeed, since P, = (x, f(x)) and P, = (y, f(y)) are elements of the epigraph, we
have k(t)- Py +k(1 —1)- P, € epi f, which gives

fk(O)x+k(1—=1)y) <k@)f(x) +k(1=1)f ().

6. If D is a k-convex subset of X and f: D — R is a (k,h)-affine function, then
an easy verification shows that the image f(D) of f is h-convex in R.

7. Assume that f; : D1 — R is (k,h)-convex, f> : D, — R is (h,h)-convex and
nondecreasing, and f1(D1) C D,. Then f = f>o0 fi is a (k,h)-convex function.

Finally, let us observe that every nonnegative and (k, % )-convex function is also
(k,hy)-convex for all hy > hy .
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3. Main Results

In this section we prove some new inequalities of Hermite-Hadamard and Fejér
types for (k,h)-convex functions. From now on, we suppose that D is a k-convex
subset of R and that all integrals considered below exist.

THEOREM 3.1. (The first Fejér inequality for (k,h)-convex functions) Let f :
D — R be a (k,h)-convex function with h(1/2) > 0, fix a < b such that [a,b] C D
and let g : [a,b] — R be a nonnegative function which is symmetric with respect to
(a+b)/2. Then

1/2) - (a+b))
I (Z/h 1/6;r /g dx</f (10)

Proof. Writing (9) with t =1/2, x=wa+ (1 —w)b and y = (1 —w)a+wb, we
get

f(k(1/2)(a+b)) = f(k(1/2)x+k(1/2)y)
<h(1/2)- [f(wa+ (1—w)b)+ f((1 —w)a+wb)]. (11)

We may now multiply both sides of (11) by g(x) = g(v), and then integrate it with
respect to w, getting

P/t 5)- [ glvart (1-wp)aw
h(1/2)- [/Olf(wcH- (1—w)b) - g(wa+ (1 —w)b)dw
+ Olf((l —w)a+wb)-g((1 —w)a—f—wb)dw] :
This implies

Pk 0) o [aar<nyz) 2 [

and (10) follows. [

If we assume that g(z) =1 forall 7 € (0, 1), from (10) we obtain the first inequality
of Hermite-Hadamard type for (k,h)-convex functions.

COROLLARY 3.2. Let f:D — R be a (k,h)-convex function with h(1/2) >0
and choose a < b such that [a,b) C D. Then

f(k(1/2)-(a+Db)) 1 b
a2 S b—a'/a Jx)dx. (12)

Moreover, writing (10) with k(r) = ¢'/* and h(r) =1, we get
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COROLLARY 3.3. Suppose that f: D — R is an s-Orlicz convex function and
that a,b, g satisfy the assumptions of Theorem 3.1. Then

("be) /g dx</f (13)

REMARK 3.4. 1. If we apply (10) to an h-convex function f, we obtain (5),
which is also the left-hand side of (6).

2. The condition (13) for g =1 gives the inequality
a+b 1 b
< — .

3. By Theorem 3.1, for every subadditive function f the following inequality of

Fejér type is valid:
a+b) [t b
HOD) [ gy [ pwysoya

In particular, for g = 1 we get the Hermite-Hadamard inequality

b
f(a;—b) gbia_/u or

which was proved in [4].

4. For Jensen-convex functions, from (10) and (12) we recover the left-hand sides
of the classical inequalities (2) and (1), respectively.

THEOREM 3.5. (The second Fejér inequality for (k,/)-convex functions) Assume
that f : D — R is a (k,h)-convex function with h(1/2) >0, a,b € D, a < b and
g la,b] — R is a nonnegative function, symmetric with respect to (a+b)/2. Then

m'/olf(k(l/z)'[k(t)—i—k(l _Z)]'(a"‘b))'g(m-i-(l—t)b)dt

< /Olf(k(t)a—i—k(l —1)b)-g(ta+ (1 —1)b)dt
/h g(ta+ (1—1)b)dr. (14)

Proof. By (9) with x = k(w)a+ k(L —w)b, y=k(1l —w)a+k(w)b and t = 1/2,
we have
F(k(1/2) - k(W) +k(1—w)]- (a+b)) = f(k(1/2)x+k(1/2)y)
<h(1/2) - [f(k(w)a+ k(1 —w)b) + f(k(1 —w)a+k(w)b)] . (15)
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As in the proof of the previous theorem, we multiply both sides of (15) by g(wa +(1-
w)b) = g((1 —w)a-+wb), and we integrate the new inequality over (0, 1), getting

/Olf(k(l/2) k(W) + k(1 =w)] - (a+b))-g(wa+ (1 —w)b)dw
h(1/2)- U()lf(k(w)a+k(1 —w)b) - g(wa+ (1 —w)b)dw
+/ w)a+k(w)b) - g((1 —w)a+wb)dw

2(1/2)- /O Fk()a+k(1—1)b) - g(ta+ (1 —1)b)d.

From this we obtain the first desired inequality.
To prove the second one, we need to use the definition of (k,%)-convexity with
x =a and y = b. Namely, we have

f(k(t)a+k(1=1)b) < h(t)f(a) +h(1 —1)f(b),

which, by symmetry of g, implies

/()lf(k(t)a+k(l —1)b) - g(ta+ (1 —1)b)dt
/h g(ta+ (1—1)b)dt + f(b) /hl—t) g((1—1)a+1b)dr
/h g(ta+(1—1)b)dt,

and the proof is complete. [J
As a corollary, we obtain the second Hermite-Hadamard inequality for (k,h)-

convex functions.

COROLLARY 3.6. Let f:D — R be a (k,h)-convex function, h(1/2) >0 and
choose a,b € D such that a <b. Then

1
2h(1/2)

1 1
< [ FkOark( =) dr < [f@+f®))- [ noar o)

-/Olf(k(l/Z) [k(t) + k(1 —1)]- (a+b))dt

We also get the following version of the Fejér inequality for s-Orlicz convex func-
tions.

COROLLARY 3.7. Suppose that f: D — R is an s-Orlicz-convex function and
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that a,b, g satisfy the assumptions of Theorem 3.5. Then

/Olf<#-[tl/‘+(l—t)l/“] (a+b)> g(ra+(1—1)b)dr
1 /Sa /s a _
</O F(Sa+(1=1)"/b) - g(ta+ (1—1)b)dt

<[f(a)+f(b)]~/01t-g(ta+(1—t)b)dt. (17)

REMARK 3.8. 1. Applying (14) to an h-convex function f, we obtain the in-

equalities (4) and (5).

2. If f is an s-Orlicz convex function and g = 1, then (17) becomes

/01f<#- [t1/5 4+ (1—1)1/"] ~(a+b)) dt

</lf(t1/sa+(1—t)l/sb)dl< f(a)+f(b)
0

2 b

and thus we recover another result from [4].

3. If f is starshaped and a,b # 0, then the right-hand side of (16) has the form

L i b [ i< L0,

which can also be derived from [5, Theorem 196] with m = 0.

4. For convex functions, from (16) and (14) we get the classical inequalities (1)

and (2), respectively.

[1]
[2]
[3]
[4]
[5]

[6]

[7]
[8]

REFERENCES

M. BOMBARDELLI AND S. VAROSANEC, Properties of h-convex functions related to the Hermite-
Hadamard-Fejér inequalities, Comput. Math. Appl. 58, 9 (2009), 1869-1877.

W. W. BRECKNER, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter konvexer Funktionen in
topologischen linearen Réumen, Publ. Inst. Math. (Beograd) 23(37) (1978), 13-20.

S. S. DRAGOMIR AND S. FITZPATRICK, s-Orlicz convex functions in linear spaces and Jensen’s
discrete inequality, J. Math. Anal. Appl. 210, 2 (1997), 419—439.

S. S. DRAGOMIR AND S. FITZPATRICK, Hadamard’s inequality for s-convex functions in the first
sense and applications, Demonstratio Math. 31, 3 (1998), 633-642.

S. S. DRAGOMIR AND C. E. M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and
Applications, RGMIA Monographs, Victoria University, 2000.

(Online: http://rgmia.vu.edu.au/monographs/)

E. K. GODUNOVA AND V. I. LEVIN, Neravenstwa dlja funkcii sirokogo klassa, soderzascego vy-
puklye, monotonnye i nekotorye drugie vidy funkcii, in: Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc.
Trudov, MGPI, Moskva, 1985, 138-142.

H. HUDZIK AND L. MALIGRANDA, Some remarks on s-convex functions, Aequationes Math. 48, 1
(1994), 100-111.

L. FEIER, Uber die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24 (1906), 369-390.



940

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

B. MICHERDA AND T. RAJBA

M. KuCzMA, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s
Equation and Jensen's Inequality. Second edition, Birkhduser Verlag, Basel, 2009.

G. MAKSA, ZS. PALES, The equality case in some recent convexity inequalities, Opuscula Math. 31,
2 (2011), 269-277.

J. MATKOWSKI AND T. SWIATKOWSKI, On subadditive functions, Proc. Amer. Math. Soc. 119
(1993), 187-197.

D. S. MITRINOVIC AND 1. B. LACKOVIC, Hermite and convexity, Aequationes Math. 28, 3 (1985),
229-232.

C. E. M. PEARCE AND A. M. RUBINOV, P-functions, quasi-convex functions and Hadamard-type
inequalities, J. Math. Anal. Appl. 240, 1 (1999), 92-104.

A. W. ROBERTS AND D. E. VARBERG, Convex Functions, Pure and Applied Mathematics, vol. 57,
Academic Press, New York—-London, 1973.

S. ROLEWICZ, Metric Linear Spaces. Second edition, PWN, Warszawa, 1984.

R. A. ROSENBAUM, Sub-additive functions, Duke Math J. 17 (1950), 227-247.

M. Z. SARIKAYA, E. SET AND M. E. OZDEMIR, On some new inequalities of Hadamard type in-
volving h-convex functions, Acta Math. Univ. Comenian. 79, 2 (2010), 265-272.

S. VAROSANEC, On h-convexity, J. Math. Anal. Appl. 326, 1 (2007), 303-311.

(Received July 25, 2011) Bartosz Micherda

Department of Mathematics and Computer Science
University of Bielsko-Biata

ul. Willowa 2

43-309 Bielsko-Biata, Poland

e-mail: bmicherda@ath.bielsko.pl

Teresa Rajba

Department of Mathematics and Computer Science
University of Bielsko-Biata

ul. Willowa 2

43-309 Bielsko-Biata, Poland

e-mail: trajba@ath.bielsko.pl

Mathematical Inequalities & Applications

v.ele-math.com

mia@ele-math.com



