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UNIFORM BOUNDEDNESS OF CONDITIONAL EXPECTATION
OPERATORS ON A BANACH FUNCTION SPACE

MASATO KIKUCHI

(Communicated by L. Maligranda)

Abstract. Let X be a Banach function space over a nonatomic probability space. The quasi-
Banach space weak—X is defined in a natural way. We give some necessary and sufficient condi-
tions on X for all the conditional expectation operators to be uniformly bounded operators from
X into weak—X .

1. Introduction

Let (Q,XZ, 1) be a nonatomic probability space, that is, a probability space such
that there is no p-atom in X. We let Ly denote the real linear space of all measurable
functions f on Q such that |f| < oo a.e. As usual, we identify two functions in Lg if
they are equal a.e.

Given Banach spaces X and Y, we write X — Y to mean that X is continuously
embedded in Y, thatis, X C Y and the inclusion map is continuous.

DEFINITION 1. A Banach space X of functions in Ly is called a Banach function
space if it satisfies the following conditions:

(B1) Lo —X L.
(B2) If |x| < [|y| a.e.and y € X, then x € X and ||x||y < ||y||x-

(B3) If x, € X forall n € N, 0 < x, Tx ae., and sup,c |[xn|y < oo, then x € X and
[xllx = supyen lIxnllx -

We adopt the convention that if x € Ly \ X, then [x[[y = oo.

From (B2) it follows that x € X if and only if |x| € X, and that the norms of x and
|x| are equal.

For example, Lebesgue spaces, Orlicz spaces, and Lorentz spaces are Banach func-
tion spaces. An important feature of these spaces is that the norm of a function depends
only on the distribution of the function.
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DEFINITION 2. A Banach function space X is said to be rearrangement-invari-
ant if it has the property that whenever x and y have the same distribution and y € X,
then x € X and ||x[|y = |Iyllx -

DEFINITION 3. Let X be a Banach function space. For x € L, let
[x][y.x = sup /1||1{we9:|x(w)\>x}’|x, (1
0<A <o

where 14 denotes the indicator function of A € . The linear space weak—X , which is
denoted by w-X, consists of all x € Ly such that ||x||,, x < ee.

For example, w-L, = L, .. forall p € [1,00] (see [15, Lemma 3.8, p. 191]).
Let X be a Banach function space. It is clear that ||x[|,_y = O if and only if
x=0 a.e., and that ||ax]|,,_y = |ot][|x]|,.x forall x € w-X and all o € R. Moreover,

I+ ¥llx < 2(1xlgox + [¥]lx)

forall x,y € w-X. Thus w-X is a quasi-normed space. In fact, w-X is a maximal quasi-
Banach function space in the sense of [5]. In this paper, however, the structure of w-X
as a quasi-Banach function space will not be discussed. It is clear that X C w-X and

[I¥llwx < Il

for all x € X. It is also clear that

IMallyx = [Mallx

forall A € X.

We let E[x] denote the expectation of x € L; and E[x|.<7] denote the conditional
expectation of x € L; given a sub- o -algebra <7 of Z. It is well known that for every
sub- o -algebra o7, the operator E[- |<7] (restricted to L,) is a linear contraction on
L,. However E[-|.</] is not necessarily a bounded linear operator on a Banach func-
tion space X into itself. In fact, we know that there is a constant C > 0 such that

[E[]«][[, < Cllxllx

for all x € X and all sub- ¢ -algebras <7 if and only if X can be equivalently renormed
so as to be rearrangement-invariant (see [6, Lemma 2] and [9, Proposition 1]). Of
course, if this is the case, then

|EX ]|, < Clixlly (2)
for all x € X and all sub- o -algebras o7 .

The main result of this paper, Theorem 1, gives necessary and sufficient conditions
on X for (2) to hold for all x and all </, and Example 2 shows that a Banach func-
tion space X may not be equivalently renormed so as to be rearrangement-invariant
even if (2) holds for all x and all </. On the other hand, Theorem 2 shows that if X
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is a suitable weighted Orlicz space and if (2) holds for all x and all <7, then X can
be equivalently renormed so as to be rearrangement-invariant. In addition, Theorem 3
shows that (2) holds for all x and all 7 if and only if the inequality

IMfllyx < Cllfllx

holds for all uniformly integrable martingales f = (f,)nez, , Where

Mf = sup |fy| and foo:r}i_rgfn a.e.

n€Zy

2. Preliminaries

Let X be a Banach function space. We denote by By the closed unit ball in X,
and define X’ to be the set of all y € Ly such that

HyHX/ = SUP{EUXyH X E Bx} < oo,

It is easily checked that X’ forms a Banach function space; X’ is called the associate
space of X . For example, (L,)" = L,y for all p € [1,e0], where p’ is the conjugate
exponent of p. Itis clear that if x € X and y € X/, then xy € L; and

E [Jxy[] < Ixllx Iyllx: - 3)

We call this Holder’s inequality. 1f we let X” denote the associate space of X', then
X =X" and |x||y = x| y» forall x € X (see [1, Theorem 2.7, p. 10]). In particular,

11allx = Mallyr = sup{E[[y|14] : y € Bx'} 4)

forall A€ X.
Given x € Ly, we define a function x*: [0, 1] — [0,e0] by

X (1) =inf{A >0: p{we Q: |x(w)| > A} <r}, t€][0,1],

with the convention that inf(® = oo. Then x* is the unique nonincreasing right-continu-
ous function whose distribution (with respect to Lebesgue measure) is the same as that
of |x|; x* is called the nonincreasing rearrangement of x. Thus, nonnegative functions
x and y in Lo have the same distribution if and only if x* =y* on [0,1].

A function @: [0,1] — [0,0) is said to be quasi-concave if it satisfies the follow-
ing conditions:

(i) o(t) =0 ifand onlyif r =0.
(ii) ¢(z) is nondecreasing on [0,1].

(iii) #~'¢(¢) is nonincreasing on (0, 1].
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Given a quasi-concave function ¢, define M(¢) to be the set of all x € Ly such that

o) " .
[|x]| = sup —/x (8)ds < oo,
M(e) re(0,1] T Jo

and define M* (@) to be the set of all x € Ly such that

X[z (p) == sup @(t)x"(2) <o
1€(0,1]
Then M(¢) is a rearrangement-invariant Banach function space, while M*(¢) is a
rearrangement-invariant quasi-Banach function space (see [1, Proposition 5.8, p. 69];

see also [10, p. 114]). Both of these spaces are called Marcinkiewicz spaces. Clearly
M(p) C M*(¢) and

¥l p+ () < 1X[lps(g)  Tor x € M(9).

For example, if 1 < p < oo and @,(t) = ¢!/, then M(¢@,) = M*(¢,) = Ly, and if
@1(t)=t,then M(¢;) =L; and M*(@;) = L; o (see [15, p. 191 and p. 204]; see also
[12, p. 164]). Although Marcinkiewicz spaces are now classical spaces, they are still
investigated as listed in [12, pp. 165-166].

Note that every quasi-concave function on [0, 1] is continuous on (0, 1] (see [10,
p- 49]). From this fact it follows that

llare(g) = sup @(1)x" (1), (5)
1€(0,1]
where x*(1—) = infsc, x*(s).

Suppose that X is a rearrangement-invariant Banach function space. It is clear that
if A,BeX and u(A)=u(B), then ||14]lx = ||15]|x - Since (Q,Z, 1) is nonatomic, the
range of p is equal to [0,1], and hence there is a unique function @y : [0,1] — [0,)
such that

Px (1(A)) = |1l

for all A€ X. We call ¢y the fundamental function of X. Note that ¢y is quasi-
concave (see [, Corollary 5.3, p. 67]). Note also that

w-X=M"(¢y) and |lx]x = [lxllp(q,) for x€w-X, (6)

provided X is a rearrangement-invariant Banach function space (see Lemma 3 below).
It is easy to see that the fundamental function of M(¢, ) is equal to @y . In fact,

M(@y) is the largest rearrangement-invariant Banach function space whose fundamen-

tal function is equal to that of X (see [, Proposition 5.9, p. 70] or [14, Theorem 4]).

3. The main result

Let X be a Banach function space. We begin by defining two functions associated
with X . Let
Yt)={AeX: u(A) =t}
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for each 7 € [0, 1], and define @y : [0,1] — [0,00) and @y : [0,1] — [0,0) by letting

ox(t) =sup{|[lally: A€Z(r)} and @y(r)=inf{|[l4]x: A€ Z(t)}
for each ¢ € [0,1]. Then by Holder’s inequality (3), we have

t < ox(t) oxi(1) @)

for all r € [0,1]. Moreover, if X is rearrangement-invariant, then both ¢, and @y

coincide with @y, and the equality holds in (7) (see [1, Theorem 5.2, p. 66]).
The following lemma shows that we can associate to each Banach function space
X the Marcinkiewicz space M(@y).

LEMMA 1. IfX is a Banach function space, then the function @y is quasi-concave.

Proof. Obviously ¢y is nondecreasing on [0,1], and @y (r) = 0 if and only if
t = 0. We need only show that #~ '@y (¢) is nonincreasing on (0,1]. Since (Q,Z, ) is
nonatomic, we have

/Oty*(s)ds:max{IE“yHA] tAeX(r)} (8)

forall ye L; and all 7 € [0,1] (see [3, (5.8)] or [15, Lemma 3.17, p. 201]). From (4)
and (8), we obtain

Ox (1) =sup{E[|y[la] : y€ By, A€ Z(t) } = Sup{/oty*(S)ds: ye BX’}~ )

Since the function L
0,131+ 7/ y(s)dseR
0

is nonincreasing, it follows from (9) that #~ '@y (¢) is nonincreasing on (0,1]. This
completes the proof. [

Let <7 be a sub- o -algebra of X. If we let Tx = E[x|</] for x € L, then the linear
operator 7T is a contraction on L; and the restriction of 7 to L., is a contraction on
L... We call such a linear operator T an L;—L..-contraction.

THEOREM 1. Let X be a Banach function space. Then the following are equiva-
lent:

(1) There is a constant C > 0 such that for all x € X and all L—L-contractions
T,
ITxlyx < Cllxllx -

(ii) There is a constant C > 0 such that for all x € X and all sub-c -algebras </ of
Z)
B[], < Clixlly - (10)

W-
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(iii) There is a constant C > 0 such that for all t € [0,1],
Oy (1) @y () < Ct. (11)

(V) X — M(gy).

Moreover if X satisfies these equivalent conditions, then w-X = M* (@) and there is
a constant ¢ > 0 such that for all x € w-X,

I*llwx < lellag () < €l¥llvx -

Note that (11) can be rewritten as @, (¢) @y» () < Ct. It follows that (10) holds
for all x € X and all sub- o -algebras o7 if and only if the inequality

[ELd ]| < Cllxllxe

w-X'

holds for all x € X’ and all sub- 0 -algebras <7 .

If X can be equivalently renormed so as to be rearrangement-invariant, then the
equivalent conditions of Theorem 1 hold; see [6, Lemma 2] or [I, Proposition 5.9,
p. 70]. However, as Example 2 in Section 5 shows, the converse is not true in general.

For the proof of Theorem 1, we will need three lemmas.

LEMMA 2. Let X be a Banach function space. Then M*(¢y) C w-X and

Illwx < 1l (5,

forall x e M*(@y).

Proof. Let x € M*(@y) and let A > 0. It suffices to show that
M oca: x@)>231x < ¥l gy -
We may assume {® € Q: [x(®)| > 21} >0. Let
1, =inf{s €[0,1]: x"(s) <A}.

Then #; >0 and [0,7;) = {r € [0,1] ) > A} hence A <x* (t;L—). Since x* and
|x| have the same distribution, we have /.1{(0 €Q:|x(®)| > A} =1,. Therefore

M| Hoea: kw)>2}] ¢ <X*(IA—)5x(%) < Ixllyox »

where we have used (5) with ¢ replaced by @y . Thus the proof is complete. [

LEMMA 3. Let X be a Banach function space. Suppose that (ii) of Theorem 1
holds. Then X satisfies the following conditions:

(i) There is a constant ¢ > 0 such that for all t € [0,1],

Fx 1) < cox ). (12)
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(ii) w-X=M"*('@y) and there is a constant ¢ > 0 such that for all x € w-X,
llwx < Il gy < ellxllx - (13)

Moreover conditions (i) and (ii) are equivalent, and the constants in (i) and (i) can be
chosen to be the same.

Proof. Let C be the constant in (10). We show that if # € (0,1] and A,B € (1),
then

Il < 2C+1)[[1allx,

which implies (i). To this end, let ¥ be the sub- o -algebra generated by the single set
AAB=(A\B)U(B\A). Then we have 1yap = 2E[14p|</] a.e., and hence by (ii) of
Theorem 1,

Ipaly = pallyx < || 1azs|,.x = 2||El 1A\B|@4|| <2C|[1p\8llx -

Therefore

8llx < Mansllx + 1pallx < allx +2C[1a\slx < (142C) [[1allx -

as required.

We now show that (i) and (ii) are equivalent. Suppose first that (i) holds. The
first inequality of (13) has already been established (Lemma 2). To prove the second
inequality of (13), let x € w-X, ¢ € (0,1], and A < x*(r). Then, since x* and |x| have
the same distribution, we have u{w € Q: [x(w)| > A1} > . Hence by (12),

AQy (1) < Aoy (1) < A ||Liweq: xw) =2}y < ¢llxllyx-

Letting A T x*(r), we have x*(t) @y (t) < c||x||,.x - which implies the second inequality
of (13).

Suppose now that (ii) holds. Let 7 € (0, 1] and let € > 0. Then there exists A € X(¢)
such that @ () + € > || 14]| . From (13) it follows that

cpx (1) +ce > clllally = cllallyx = [ally(g,) = @x (0)-

Letting € | 0, we obtain (12). This completes the proof. [

From Lemma 3 we see that if X is a rearrangement-invariant Banach function
space, then (6) holds.

LEMMA 4. If T be an L —Le-contraction, then for all x € Ly and all t € [0,1],

/t(Tx)*(s) ds < /Otx*(s)ds.

0
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Proof. Recall from [1, Theorem 6.2, p. 74] that for all x € L;,
r
| #©)ds =ity + 1l v € L, € Loy x=y 2},

The lemma immediately follows from this formula. [l
We are now ready to prove Theorem 1.

Proof of Theorem 1. Since the operator E[-|.<7] is an L;—Le-contraction, (i) im-
plies (ii).

(if)=-(iii) Let € [0,1], let A € Z(¢), and let </ be the sub- o -algebra generated
by the single set A. Then for all x € Bx , we have E[|x|14] 14 <tE[|x||#] a.e. Hence
by (ii),

E[|x/14] 1allx = [[E[lel14] 1a]], x
t||E[|x||«] < Ct x|l < Ct.

E[1x/14] oy (1)

NN

Ihvex

By the definition of the norm on X', we have ||14]|y/ Px () < Cr, which implies

Py (1) @x (1) < Ct.
From this inequality and (12), we conclude that
Ox (1) @y (1) < cCi,
Thus (iii) holds.
(ili)=-(iv) Let x € X and 7 € (0, 1]. By (8) there exists A € X(z) such that

t
/x*(S)ds:EUx“A]
0
Hence, by Holder's inequality (3) and (ii),
a t t * 6 t a p a ,t
A)Ax@wg f)WﬂxwuggiLLQ|

t t

xllx < Cllxlly -
Since 7 € (0, 1] is arbitrary, it follows that x € M( ¢y ) and

1xllys(g,) < Cllxlly -

Thus X — M( ¢y ), as required.
(iv)=() Let T be an L;—L.-contraction and let x € X . From (iv) and Lemma 4
we see that Tx € M (@, ) and

1Txlpr5,) < I¥llmcg,) < Cllxllx
where C is a constant which is independent of x € X. On the other hand, by Lemma 2,
Tx € w-X and
ITxllyx < NTxlpge5,) < N Txla,) -
Thus ||Tx||,,x < C||x||x, as required.
The last statement of Theorem 1 is an immediate consequence of Lemma 3. Thus
the proof is complete. [J
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4. The case of a weighted Orlicz space

Let @: [0,00) — [0,0] be a Young function, that is, a left-continuous convex func-
tion such that
lim ®(u) =®(0) =0 and lim ®(u) = -oo.
u—0+ U—00
In what follows, we will assume for simplicity that @ is strictly increasing. Note that
@ is strictly increasing if and only if 0 < @(¢) < o for all # € (0,o0). We say that ®
satisfies the A, -condition if there are constants £ > 0 and ug > 0 such that

D(2u) <kD(u) <o forall u € [up,). (14)
Recall that the complementary function ¥: [0,0) — [0,0) is defined by
W(v) =sup{uv—®(u):0<u<oo}, vel0,e).

Let w € Ly be a strictly positive function such that E[w] = 1. We call sucha w a
weight function. We let u,, denote the probability measure defined by

(A) =E[wls], A€

Recall that the weighted Orlicz space Lo, is a Banach space consisting of all x € Lo
such that E[®(A ! |x[)w] < oo for some A > 0. Recall also that the norm of x € Lo,
is given by

%],y = inf{A > 0: E[DA " |x[)w] < 1}.

If w=1 ae., we write Lo for Lo, and |||, for |-, -

Note that Le,,, is a rearrangement-invariant Banach function space over (Q,X, 1,,)
(see [, Definition 8.10, p. 270]). In particular, (B2) and (B3) of Definition 1 hold
with X replaced by Lg, . Moreover L., — Lg,. However Lg, is not necessar-
ily embedded in L;; one can show that if V¥ is the complementary function of ®
and if E[‘P(w_l)w] < oo, then L, — L; and Lg,, is a Banach function space over
(Q,%, ). See [8, Section 4] for details.

Although L ,, may not be a Banach function space over (Q,Z, 1), we can define

the quasi-norm || - ||, by replacing X with Lg,, in (1).

THEOREM 2. Let ® be a strictly increasing Young function, let ¥ be its com-
plementary function, and let w be a weight function. Suppose that @ satisfies the
A -condition. Then the following are equivalent:

(i) There is a constant C > 0 such that for all x € Lo, and all sub-c -algebras </
of Z,

B |.py, < ClxllL,, - (15)

W'L'IDM

(ii) There are constants a and b suchthat 0 <a <w < b a.e.
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(iii) There is a constant C > 0 such that for all u € (0,°0) and all sub- ¢ -algebras </

of %,

and E[\p(%wd])w‘ﬂ} < OW)E[w| ] ae.

(iv) Le, is a Banach function space over (Q,X,u) and can be equivalently re-
normed so as to be rearrangement-invariant.

Moreover, if Lo, satisfies these conditions, then W-Le,, = W-Lo = M* (¢ Lq)) and for
all x € w-Lo ,

min{a, 1} ¥l (g, ) < ¥, < max (8,1} [l g, ) (16)

where a and b are constants in (ii).

For the proof of Theorem 2, we will need a lemma. Before stating it, we note that
if u(A) >0, then p,,(A) >0 and

Al = @ (ua(4)™).
where ®~! denotes the inverse of ® (see [11, p. 58]).

LEMMA 5. Let ® and w be as in Theorem 2. Suppose that ® satisfies the A; -
condition and that (i) of Theorem 2 holds. Then there are constants 6 > 0 and K > 0
such that if 0 < u(A) = u(B) < d, then

1o (B) < Khu(A). (17)

Proof. Let k>0 and ug > 0 be constants which satisfy (14). We choose § >0 so
that if 0 < u(B) < &, then ®(up) < t,,(B)~!. Suppose 0 < p(A) = u(B) < §. Then,
by arguing as in the proof of Lemma 3, we have

118, < (1+2C)[[14llL,,, »

which implies
! (y(4) ) < (1420007 (wu(B) ).
Choose m € N so that (1+2C) < 2™. Then
o (A)~' < q)(2m¢7l(ﬂw(3)7l)) <K' (B)~,

where the second inequality follows from (14) and the fact that

up <@ ' (un(B)).
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Thus (17) holds with K = ¥”. [J

Proof of Theorem 2. (i)=-(ii) Suppose that (i) holds. Let § > 0 and K > 0 be as
in Lemma 5, and let 0 <7 < &. By [3, (5.8)] there exist A and B in X(¢) such that

1, (A) = /1 itw*(s)ds and  [,(B) = /(:w*(s)ds.

From Lemma 5 it follows that

Letting ¢ | 0, we obtain

esssupw < Kessinfw
Q Q

(see [3, (9.6)]). Since E[w] = 1, this implies (ii).

(ii)=>(iv) Suppose that (ii) holds. Then it is clear that L, = L. It suffices to
show that the norms of these spaces are equivalent. To this end, suppose x € Lg . If we
let B = max{b,1} and ¢ = |x[|, , then

E[d)(cfl lx[)w] < E[@(C’il x|) B]
SE[®(cBlx])] =E[@(|lL, 1) <1,
and hence [|x[|,, ~<c= x|, -

Now suppose x € Lo, . If we let o = min{a,1} and ¢ = o ! [l - then

[d)(c*l|x|)oc71w]
[@(c™ ol )w] = E[@(|lxll,,, )w] <1,

and hence x|, <c¢=o""|x|, . Thus

min{a, 1} [lxll, < [lxll,,,, < max{b, 1} x|, (18)

forall x € Ly = Lo, and (iv) holds.
(iv)=> (i) Suppose that (iv) holds. Then by [6, Lemma 2], the inequality

|[Efx| < Clxlg,,

g,

holds for all x € Lg,,, and all sub- o -algebras 7. In particular, (15) holds for all x and
all o7, as required.
(ii)=>(iii) Suppose that (ii) holds and let C = a~'b. Then by [2, Lemma 211,

T(W) < q,(%) < O(u)

Cwu u

'In [2, Lemma 2.1], both & and ¥ are assumed to be N -functions; but this assumption is unnecessary.
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for all u € (0,e0). This implies (iii).
(iii) = (i) Suppose that (iii) holds, and let x € L... Then by [7, Lemma 213,

(¢ 'E[|x||«])Ew]| @] <E[@2Cc ' |x|)w|«] ae.

for any ¢ > 0. Setting ¢ = 2Cl|x||,, =~ and taking the expectation of the both sides, we

have
E[@(c'E[lx||«/])w] <E[@(|x],, M)w] <1,

and therefore

|E[x].«7 < ||E[Ixl] <] < c=2Cx]l,,, -

} HL(DM HL(DM

In particular, we have

|[Efd 1] <2C|xl,, -

W—Lq;, W

It is easy to check that this inequality also holds for x € Lg,, \ Le.. Thus (i) holds.
Finally we prove the last statement. Suppose again that (ii) holds. Then by (18)
we have that
min{a, 1} [x[|,,..,, <[] < max{b, 1} [|x]| (19)

W—Lq;ﬁw W—Lq;

for all x € w-Lp = w-Lo,,. Furthermore, since L is rearrangement-invariant, (6)
holds with X replaced by L¢. This together with (19) implies (16) and completes the
proof. [

5. Examples

Let @, W, and w be as in Theorem 2, and let X = Lg,,. If E[¥(w Hw] < e
and if w is unbounded, then X is a Banach function space over (Q,Z, 1) for which the
equivalent conditions of Theorem 1 do not hold. We first give an example of a Banach
function space X which is not a weighted Orlicz space and for which the equivalent
conditions of Theorem 1 do not hold.

EXAMPLE 1. Let X; and X, be a pair of rearrangement-invariant Banach func-
tion spaces such that

ox, (1) -
A e ) = (20)

For instance, if X; =L,, Xo = Ly, and 1 < p < g < oo, then this condition is satisfied.
Let {Q,Q} C X be a partition of Q such that u(Q) = u(Qy) =2"!. Define
X to be the set of all x € Ly such that

Ielly == [lela [ly, + xlasly, <<

2In [7, Lemma 2], @ is assumed to be an N -function; but this assumption is unnecessary.
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It is easily checked that X forms a Banach function space. We claim that (iv) of Theo-
rem 1 does not hold. To see this, suppose for contradiction that [|x[|,z, ) < C|lx][y for

all x € X, where C is a constant which is independent of x. Given ¢ € (0,27!), choose
A,B€X(t) sothat A C Qq and B C €. Then

@x, (1) = [1Blx < ox (1) = lallig,) <Cllalx = Cox, (1).

Thus @y (1)@, (1)~' <C forall r € (0,27"). This contradicts (20), and thus (iv) of
Theorem 1 does not hold, as claimed.

The next example shows that a Banach function space X may not be equivalently
renormed so as to be rearrangement-invariant even if the equivalent conditions of The-
orem 1 hold.

EXAMPLE 2. Let X; and X; be a pair of rearrangement-invariant Banach func-
tion spaces such that:

(i) X is a proper subset of X .

(ii) There is a constant £ > 1 such that

k_lﬁoxl (1) < @y, (1) < koy, (1)
forall r € [0,1].

For instance, if X; =Ly, Xo =L, 1, and 1 < p < o, then these conditions are satis-
fied.

Let {Q;,Q,} and X be as in Example 1. We claim that the equivalent conditions
of Theorem 1 hold, but that X cannot be equivalently renormed so as to be rearrange-
ment-invariant. To show that X — M (@), it suffices to show that X C M('¢y) (see
[1, Theorem 1.8, p. 7]). Observe that if € [0,1] and A € X(¢), then

K oy, (2711) <llally < (1+K)@y, ().

Since @y is quasi-concave, we have 2~ @y (1) < @y (27'1) and hence

(26) " oy, (1) < Py (1) < (1 +K) oy, (1)

forall 7 € [0,1]. Therefore M(@y) =M(¢y,) D X; D X, as required.

To show that X cannot be equivalently renormed so as to be rearrangement-invar-
iant, it suffices to show that there exist x,y € Ly such that x € X and y ¢ X though
they have the same distribution. Choose z € X; \ X so that z* =0 on [27!,1]. Since
(Q,X%, 1) is nonatomic, there exist x,y € Ly such that

{weQ:x(w)#0}CQ), {weQ:y(w)#0}CQy,
and
x'=y"=7" on|0,1]

(see [3, (5.6)]). Since z € X; \ Xp, it follows that x € X and y ¢ X,. Hence x € X and
y ¢ X though they have the same distribution. This completes the proof of the claim.
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The next example shows that (i) and (ii) of Theorem 2 are not necessarily equiva-
lent when @ does not satisfy the A;-condition.

EXAMPLE 3. Let w be a weight function such that w*(r) = (3/4)-~'/* for all
€ (0,1]. Of course, (ii) of Theorem 2 does not hold. Let @ be the Young function
defined by
Du)=e¢"—u—1, uc0,oo).

We claim that (i) and (iv) of Theorem 2 hold. To see this, it suffices to show that Lg ,,
and Lg coincide and the norms of these spaces are equivalent. To this end, suppose first
that x € Ly Let a = E[w?*] =9/8 and let b = 2a||x||,,, . Then, since ®(u)* < ®(2u)
forall u € [0,),

1/2

E[o(b'+)*]"

VE[0(267 )]
1/2 _ 1/2
PE[®(a |l )]
/2 _ - 1/2
Pa PE[®(|xy 1<)

o (|lx] x) ]2 < 1.

E[ (b |x/)u] <

2

Il
H B # @B #
=
ML L L

It follows that x € Lo, and [[x]|,, ~<b=2allx|/;, . Suppose now that x € Ly, . Let
a=E[w '] =16/15 and let b = 2a||x[|, . Then

E[@(b~" )] <E[w ]2 E[0(6"[x)*w]'"
<E[w '] *E[@(2b " x)w] "
=E[w ] PE[@(a " il d)w]
<SE[w "2 a PE[@(|x7) 1xl)w]'
E[@(x]) [x)w]? < 1.
It follows that x € Lo and |[|x[|,, < b =2a]lx],, . Thus the proof of the claim is
complete.

6. Application to martingale inequalities

In this section we discuss some maximal inequalities for martingales. For basic
results and notions concerning martingales, we refer the reader to [4] or [13].

We denote by M the set of all martingales on  and by M, the set of all uniformly
integrable martingales on Q. For each f = (fu)nez, € M, we let

Mf: sup |fn‘

ne’ly
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Recall that every martingale in M, converges a.e. For each f = (fu)nez, € My, we let
foo=lim f;, a.e.
It is well known (see [13, p. 150] or [4, p. 17]) that if f = (f,) € M, then

M llyz, < sup (Ifallz, = lim [ fallz, = [/, -
neZ, e

The following theorem is a generalization of this result.

THEOREM 3. Let X be a Banach function space. Then the following are equiva-
lent:

(i) There is a constant C > 0 such that for all f = (fy)nez. € My,

IMFllyx < Cllfelly - 1)

(ii) There is a constant C > 0 such that for all f = (fu)nez, €M,

IMfllyx < C lim | fuly - (22)

(iii) There is a constant C >0 such that for all f = (f,)nez, €M,

My < C T 1l -
(iv) The equivalent conditions of Theorem 1 hold.

Proof. (i)=-(ii) Suppose that (i) holds. Let f = (f,) € M and n € Z. . Since the
stopped martingale £ := (funk)kez.. is uniformly integrable, it follows that

Mo fllyx = IMF™ | x < Clifall
where M, f = maxy<, | fi|. This implies (22).
(i) = (iii) Obvious.
(iii) = (iv) Suppose that (iii) holds. Let x € X and let &/ be a sub- ¢ -algebra of
Y. Define f = (f,) € M by

£ = Elx|«/] if n=0,
" by if n>1.
Then by (iii),

[Elx]][] x < IMflly.x < C lim [Ifallx = C ]

W-.

Thus (ii) of Theorem 1 holds.
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(iv)=-(i) Suppose that (ii) of Theorem 1 holds. Let f = (f,) € M, and define a
filtration % = (%#,) by %, = 6{fo,f1,---,Jn}, n € Z4. Given A >0, let T be the
Z -stopping time defined by

7(0) =min{n € Z; : |fy(0)| > 1}
with the convention that min() = . Then
{weQ: Mf)(w) >A}={weQ: 1(0) <}

and
Mipea:Mpy @)1} < [frll{oea: 1(0)<w} < E[fol|-Z2] ae.

Therefore

AMLwea: o>y = A | Hoca:p @23 | yx
<|E[£NZ] [l yx SC el

Thus (21) holds, as required. [J
REMARK 1. In Theorem 3, M and M, can be replaced by the set of all nonnega-

tive submartingales and the set of all uniformly integrable nonnegative submartingales,
respectively.

We conclude with the following theorem.

THEOREM 4. Let @ be a strictly increasing Young function and let w be a weight
function. Suppose that @ satisfies the A, -condition. Then the following are equivalent:

(i) There is a constant C > 0 such that for all f = (fy)nez, € My,
M lltg, <l -
(ii) There is a constant C > 0 such that for all f = (fu)nez, €M,

IMF 1, < € lim [ fullp, -
, f ,

(iii) There is a constant C >0 such that for all f = (f,)nez, €M,
IM£llyry,, < € Jim [l full,, -
(iv) The equivalent conditions of Theorem 2 hold.

Proof. The argument of Theorem 3 applies with X replaced by L. U
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