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UNIFORM BOUNDEDNESS OF CONDITIONAL EXPECTATION

OPERATORS ON A BANACH FUNCTION SPACE

MASATO KIKUCHI

(Communicated by L. Maligranda)

Abstract. Let X be a Banach function space over a nonatomic probability space. The quasi-
Banach space weak–X is defined in a natural way. We give some necessary and sufficient condi-
tions on X for all the conditional expectation operators to be uniformly bounded operators from
X into weak–X .

1. Introduction

Let (Ω,Σ,μ) be a nonatomic probability space, that is, a probability space such
that there is no μ -atom in Σ . We let L0 denote the real linear space of all measurable
functions f on Ω such that | f | < ∞ a.e. As usual, we identify two functions in L0 if
they are equal a.e.

Given Banach spaces X and Y , we write X ↪→ Y to mean that X is continuously
embedded in Y , that is, X ⊂ Y and the inclusion map is continuous.

DEFINITION 1. A Banach space X of functions in L0 is called a Banach function
space if it satisfies the following conditions:

(B1) L∞ ↪→ X ↪→ L1 .

(B2) If |x| � |y| a.e. and y ∈ X , then x ∈ X and ‖x‖X � ‖y‖X .

(B3) If xn ∈ X for all n ∈ N , 0 � xn ↑ x a.e., and supn∈N ‖xn‖X < ∞ , then x ∈ X and
‖x‖X = supn∈N ‖xn‖X .

We adopt the convention that if x ∈ L0 \X , then ‖x‖X = ∞ .

From (B2) it follows that x ∈ X if and only if |x| ∈ X , and that the norms of x and
|x| are equal.

For example, Lebesgue spaces, Orlicz spaces, and Lorentz spaces are Banach func-
tion spaces. An important feature of these spaces is that the norm of a function depends
only on the distribution of the function.
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DEFINITION 2. A Banach function space X is said to be rearrangement-invari-
ant if it has the property that whenever x and y have the same distribution and y ∈ X ,
then x ∈ X and ‖x‖X = ‖y‖X .

DEFINITION 3. Let X be a Banach function space. For x ∈ L0 , let

‖x‖w-X = sup
0<λ<∞

λ
∥∥1{ω∈Ω : |x(ω)|>λ}

∥∥
X

, (1)

where 1A denotes the indicator function of A ∈ Σ . The linear space weak–X , which is
denoted by w-X , consists of all x ∈ L0 such that ‖x‖w-X < ∞ .

For example, w-Lp = Lp,∞ for all p ∈ [1,∞] (see [15, Lemma 3.8, p. 191]).
Let X be a Banach function space. It is clear that ‖x‖w-X = 0 if and only if

x = 0 a.e., and that ‖αx‖w-X = |α|‖x‖w-X for all x ∈ w-X and all α ∈ R . Moreover,

‖x+ y‖w-X � 2
(‖x‖w-X +‖y‖w-X

)

for all x,y∈w-X . Thus w-X is a quasi-normed space. In fact, w-X is a maximal quasi-
Banach function space in the sense of [5]. In this paper, however, the structure of w-X
as a quasi-Banach function space will not be discussed. It is clear that X ⊂ w-X and

‖x‖w-X � ‖x‖X

for all x ∈ X . It is also clear that

‖1A‖w-X = ‖1A‖X

for all A ∈ Σ .
We let E[x] denote the expectation of x ∈ L1 and E[x|A ] denote the conditional

expectation of x ∈ L1 given a sub-σ -algebra A of Σ . It is well known that for every
sub-σ -algebra A , the operator E[ · |A ] (restricted to Lp ) is a linear contraction on
Lp . However E[ · |A ] is not necessarily a bounded linear operator on a Banach func-
tion space X into itself. In fact, we know that there is a constant C > 0 such that

∥∥E[x|A ]
∥∥

X � C‖x‖X

for all x ∈ X and all sub-σ -algebras A if and only if X can be equivalently renormed
so as to be rearrangement-invariant (see [6, Lemma 2] and [9, Proposition 1]). Of
course, if this is the case, then

∥∥E[x|A ]
∥∥

w-X � C‖x‖X , (2)

for all x ∈ X and all sub-σ -algebras A .
The main result of this paper, Theorem 1, gives necessary and sufficient conditions

on X for (2) to hold for all x and all A , and Example 2 shows that a Banach func-
tion space X may not be equivalently renormed so as to be rearrangement-invariant
even if (2) holds for all x and all A . On the other hand, Theorem 2 shows that if X
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is a suitable weighted Orlicz space and if (2) holds for all x and all A , then X can
be equivalently renormed so as to be rearrangement-invariant. In addition, Theorem 3
shows that (2) holds for all x and all A if and only if the inequality

‖M f‖w-X � C‖ f∞‖X

holds for all uniformly integrable martingales f = ( fn)n∈Z+ , where

M f = sup
n∈Z+

| fn| and f∞ = lim
n→∞

fn a.e.

2. Preliminaries

Let X be a Banach function space. We denote by BX the closed unit ball in X ,
and define X ′ to be the set of all y ∈ L0 such that

‖y‖X ′ := sup
{
E
[|xy|] : x ∈ BX

}
< ∞.

It is easily checked that X ′ forms a Banach function space; X ′ is called the associate
space of X . For example, (Lp)′ = Lp′ for all p ∈ [1,∞] , where p′ is the conjugate
exponent of p . It is clear that if x ∈ X and y ∈ X ′ , then xy ∈ L1 and

E
[|xy|] � ‖x‖X ‖y‖X ′ . (3)

We call this Hölder’s inequality. If we let X ′′ denote the associate space of X ′ , then
X = X ′′ and ‖x‖X = ‖x‖X ′′ for all x ∈ X (see [1, Theorem 2.7, p. 10]). In particular,

‖1A‖X = ‖1A‖X ′′ = sup
{
E
[|y|1A

]
: y ∈ BX ′

}
(4)

for all A ∈ Σ .
Given x ∈ L0 , we define a function x∗ : [0,1] → [0,∞] by

x∗(t) = inf
{

λ > 0 : μ{ω ∈ Ω : |x(ω)| > λ} � t
}
, t ∈ [0,1],

with the convention that inf /0 = ∞ . Then x∗ is the unique nonincreasing right-continu-
ous function whose distribution (with respect to Lebesgue measure) is the same as that
of |x| ; x∗ is called the nonincreasing rearrangement of x . Thus, nonnegative functions
x and y in L0 have the same distribution if and only if x∗ = y∗ on [0,1] .

A function ϕ : [0,1] → [0,∞) is said to be quasi-concave if it satisfies the follow-
ing conditions:

(i) ϕ(t) = 0 if and only if t = 0.

(ii) ϕ(t) is nondecreasing on [0,1] .

(iii) t−1ϕ(t) is nonincreasing on (0,1] .
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Given a quasi-concave function ϕ , define M(ϕ) to be the set of all x ∈ L0 such that

‖x‖M(ϕ) := sup
t∈(0,1]

ϕ(t)
t

∫ t

0
x∗(s)ds < ∞,

and define M∗(ϕ) to be the set of all x ∈ L0 such that

‖x‖M∗(ϕ) := sup
t∈(0,1]

ϕ(t)x∗(t) < ∞.

Then M(ϕ) is a rearrangement-invariant Banach function space, while M∗(ϕ) is a
rearrangement-invariant quasi-Banach function space (see [1, Proposition 5.8, p. 69];
see also [10, p. 114]). Both of these spaces are called Marcinkiewicz spaces. Clearly
M(ϕ) ⊂ M∗(ϕ) and

‖x‖M∗(ϕ) � ‖x‖M(ϕ) for x ∈ M(ϕ) .

For example, if 1 < p < ∞ and ϕp(t) = t1/p , then M(ϕp) = M∗(ϕp) = Lp,∞ , and if
ϕ1(t) = t , then M(ϕ1) = L1 and M∗(ϕ1) = L1,∞ (see [15, p. 191 and p. 204]; see also
[12, p. 164]). Although Marcinkiewicz spaces are now classical spaces, they are still
investigated as listed in [12, pp. 165–166].

Note that every quasi-concave function on [0,1] is continuous on (0,1] (see [10,
p. 49]). From this fact it follows that

‖x‖M∗(ϕ) = sup
t∈(0,1]

ϕ(t)x∗(t−), (5)

where x∗(t−) = infs<t x∗(s) .
Suppose that X is a rearrangement-invariantBanach function space. It is clear that

if A,B ∈ Σ and μ(A) = μ(B) , then ‖1A‖X = ‖1B‖X . Since (Ω,Σ,μ) is nonatomic, the
range of μ is equal to [0,1] , and hence there is a unique function ϕX : [0,1] → [0,∞)
such that

ϕX

(
μ(A)

)
= ‖1A‖X

for all A ∈ Σ . We call ϕX the fundamental function of X . Note that ϕX is quasi-
concave (see [1, Corollary 5.3, p. 67]). Note also that

w-X = M∗(ϕX ) and ‖x‖w-X = ‖x‖M∗(ϕX ) for x ∈ w-X , (6)

provided X is a rearrangement-invariant Banach function space (see Lemma 3 below).
It is easy to see that the fundamental function of M(ϕX) is equal to ϕX . In fact,

M(ϕX ) is the largest rearrangement-invariant Banach function space whose fundamen-
tal function is equal to that of X (see [1, Proposition 5.9, p. 70] or [14, Theorem 4]).

3. The main result

Let X be a Banach function space. We begin by defining two functions associated
with X . Let

Σ(t) = {A ∈ Σ : μ(A) = t}
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for each t ∈ [0,1] , and define ϕX : [0,1] → [0,∞) and ϕX : [0,1] → [0,∞) by letting

ϕX (t) = sup
{‖1A‖X : A ∈ Σ(t)

}
and ϕX (t) = inf

{‖1A‖X : A ∈ Σ(t)
}

for each t ∈ [0,1] . Then by Hölder’s inequality (3), we have

t � ϕX(t)ϕX ′(t) (7)

for all t ∈ [0,1] . Moreover, if X is rearrangement-invariant, then both ϕX and ϕX

coincide with ϕX , and the equality holds in (7) (see [1, Theorem 5.2, p. 66]).
The following lemma shows that we can associate to each Banach function space

X the Marcinkiewicz space M(ϕX) .

LEMMA 1. If X is a Banach function space, then the function ϕX is quasi-concave.

Proof. Obviously ϕX is nondecreasing on [0,1] , and ϕX (t) = 0 if and only if
t = 0. We need only show that t−1ϕX(t) is nonincreasing on (0,1] . Since (Ω,Σ,μ) is
nonatomic, we have

∫ t

0
y∗(s)ds = max

{
E
[|y|1A

]
: A ∈ Σ(t)

}
(8)

for all y ∈ L1 and all t ∈ [0,1] (see [3, (5.8)] or [15, Lemma 3.17, p. 201]). From (4)
and (8), we obtain

ϕX (t) = sup
{
E
[|y|1A

]
: y ∈ BX ′ , A ∈ Σ(t)

}
= sup

{∫ t

0
y∗(s)ds : y ∈ BX ′

}
. (9)

Since the function

(0,1] 	 t 
−→ 1
t

∫ t

0
y∗(s)ds ∈ R

is nonincreasing, it follows from (9) that t−1ϕX (t) is nonincreasing on (0,1] . This
completes the proof. �

Let A be a sub-σ -algebra of Σ . If we let Tx = E[x|A ] for x∈ L1 , then the linear
operator T is a contraction on L1 and the restriction of T to L∞ is a contraction on
L∞ . We call such a linear operator T an L1 –L∞ -contraction.

THEOREM 1. Let X be a Banach function space. Then the following are equiva-
lent:

(i) There is a constant C > 0 such that for all x ∈ X and all L1 –L∞ -contractions
T ,

‖Tx‖w-X � C‖x‖X .

(ii) There is a constant C > 0 such that for all x ∈ X and all sub-σ -algebras A of
Σ , ∥∥E[x|A ]

∥∥
w-X � C‖x‖X . (10)
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(iii) There is a constant C > 0 such that for all t ∈ [0,1] ,

ϕX(t)ϕX ′(t) � Ct. (11)

(iv) X ↪→ M(ϕX ) .

Moreover if X satisfies these equivalent conditions, then w-X = M∗(ϕX) and there is
a constant c > 0 such that for all x ∈ w-X ,

‖x‖w-X � ‖x‖M∗(ϕX ) � c‖x‖w-X .

Note that (11) can be rewritten as ϕX ′(t)ϕX ′′(t) � Ct . It follows that (10) holds
for all x ∈ X and all sub-σ -algebras A if and only if the inequality∥∥E[x|A ]

∥∥
w-X′ � C‖x‖X ′

holds for all x ∈ X ′ and all sub-σ -algebras A .
If X can be equivalently renormed so as to be rearrangement-invariant, then the

equivalent conditions of Theorem 1 hold; see [6, Lemma 2] or [1, Proposition 5.9,
p. 70]. However, as Example 2 in Section 5 shows, the converse is not true in general.

For the proof of Theorem 1, we will need three lemmas.

LEMMA 2. Let X be a Banach function space. Then M∗(ϕX) ⊂ w-X and

‖x‖w-X � ‖x‖M∗(ϕX )

for all x ∈ M∗(ϕX ) .

Proof. Let x ∈ M∗(ϕX) and let λ > 0. It suffices to show that

λ
∥∥1{ω∈Ω : |x(ω)|>λ}

∥∥
X

� ‖x‖M∗(ϕX ) .

We may assume μ
{

ω ∈ Ω : |x(ω)| > λ
}

> 0. Let

tλ = inf
{
s ∈ [0,1] : x∗(s) � λ

}
.

Then tλ > 0 and [0, tλ ) =
{
t ∈ [0,1] : x∗(t) > λ

}
; hence λ � x∗(tλ−) . Since x∗ and

|x| have the same distribution, we have μ
{

ω ∈ Ω : |x(ω)| > λ
}

= tλ . Therefore

λ
∥∥1{ω∈Ω : |x(ω)|>λ}

∥∥
X

� x∗(tλ−)ϕX (tλ ) � ‖x‖w-X ,

where we have used (5) with ϕ replaced by ϕX . Thus the proof is complete. �

LEMMA 3. Let X be a Banach function space. Suppose that (ii) of Theorem 1
holds. Then X satisfies the following conditions:

(i) There is a constant c > 0 such that for all t ∈ [0,1] ,

ϕX (t) � cϕX (t). (12)
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(ii) w-X = M∗(ϕX) and there is a constant c > 0 such that for all x ∈ w-X ,

‖x‖w-X � ‖x‖M∗(ϕX ) � c‖x‖w-X . (13)

Moreover conditions (i) and (ii) are equivalent, and the constants in (i) and (ii) can be
chosen to be the same.

Proof. Let C be the constant in (10). We show that if t ∈ (0,1] and A,B ∈ Σ(t) ,
then

‖1B‖X � (2C+1)‖1A‖X ,

which implies (i). To this end, let A be the sub-σ -algebra generated by the single set
A�B = (A\B)∪ (B\A) . Then we have 1A�B = 2E[1A\B|A ] a.e., and hence by (ii) of
Theorem 1,

‖1B\A‖X = ‖1B\A‖w-X �
∥∥1A�B

∥∥
w-X = 2

∥∥E[1A\B|A ]
∥∥

w-X
� 2C‖1A\B‖X .

Therefore

‖1B‖X � ‖1A∩B‖X +‖1B\A‖X � ‖1A‖X +2C‖1A\B‖X � (1+2C)‖1A‖X .

as required.
We now show that (i) and (ii) are equivalent. Suppose first that (i) holds. The

first inequality of (13) has already been established (Lemma 2). To prove the second
inequality of (13), let x ∈ w-X , t ∈ (0,1] , and λ < x∗(t) . Then, since x∗ and |x| have
the same distribution, we have μ{ω ∈ Ω : |x(ω)| > λ} � t . Hence by (12),

λ ϕX(t) � cλ ϕX (t) � cλ
∥∥1{ω∈Ω : |x(ω)|>λ}

∥∥
X

� c‖x‖w-X .

Letting λ ↑ x∗(t) , we have x∗(t)ϕX(t) � c‖x‖w-X , which implies the second inequality
of (13).

Suppose now that (ii) holds. Let t ∈ (0,1] and let ε > 0. Then there exists A∈Σ(t)
such that ϕX (t)+ ε > ‖1A‖X . From (13) it follows that

cϕX (t)+ cε > c‖1A‖X = c‖1A‖w-X � ‖1A‖M∗(ϕX ) = ϕX(t).

Letting ε ↓ 0, we obtain (12). This completes the proof. �

From Lemma 3 we see that if X is a rearrangement-invariant Banach function
space, then (6) holds.

LEMMA 4. If T be an L1 –L∞ -contraction, then for all x ∈ L1 and all t ∈ [0,1] ,

∫ t

0
(Tx)∗(s)ds �

∫ t

0
x∗(s)ds.
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Proof. Recall from [1, Theorem 6.2, p. 74] that for all x ∈ L1 ,∫ t

0
x∗(s)ds = inf

{‖y‖L1
+ t ‖z‖L∞

: y ∈ L1, z ∈ L∞, x = y+ z
}
.

The lemma immediately follows from this formula. �
We are now ready to prove Theorem 1.

Proof of Theorem 1. Since the operator E[ · |A ] is an L1 –L∞ -contraction, (i) im-
plies (ii).

(ii)⇒(iii) Let t ∈ [0,1] , let A ∈ Σ(t) , and let A be the sub-σ -algebra generated
by the single set A . Then for all x ∈ BX , we have E

[|x|1A
]
1A � t E

[|x|∣∣A ]
a.e. Hence

by (ii),

E
[|x|1A

]
ϕX (t) � E

[|x|1A
]‖1A‖X =

∥∥E
[|x|1A

]
1A

∥∥
w-X

� t
∥∥E

[|x|∣∣A ]∥∥
w-X � Ct ‖x‖X � Ct.

By the definition of the norm on X ′ , we have ‖1A‖X ′ ϕX (t) � Ct , which implies

ϕX ′(t)ϕX (t) � Ct.

From this inequality and (12), we conclude that

ϕX(t)ϕX ′(t) � cCt,

Thus (iii) holds.
(iii)⇒(iv) Let x ∈ X and t ∈ (0,1] . By (8) there exists A ∈ Σ(t) such that∫ t

0
x∗(s)ds = E

[|x|1A
]
.

Hence, by Hölder’s inequality (3) and (iii),

ϕX(t)
t

∫ t

0
x∗(s)ds � ϕX (t)

t
‖1A‖X ′ ‖x‖X � ϕX(t)ϕX ′(t)

t
‖x‖X � C‖x‖X .

Since t ∈ (0,1] is arbitrary, it follows that x ∈ M(ϕX ) and

‖x‖M(ϕX ) � C‖x‖X .

Thus X ↪→ M(ϕX ) , as required.
(iv)⇒(i) Let T be an L1 –L∞ -contraction and let x ∈ X . From (iv) and Lemma 4

we see that Tx ∈ M(ϕX) and

‖Tx‖M(ϕX ) � ‖x‖M(ϕX ) � C‖x‖X ,

where C is a constant which is independent of x ∈ X . On the other hand, by Lemma 2,
Tx ∈ w-X and

‖Tx‖w-X � ‖Tx‖M∗(ϕX ) � ‖Tx‖M(ϕX ) .

Thus ‖Tx‖w-X � C‖x‖X , as required.
The last statement of Theorem 1 is an immediate consequence of Lemma 3. Thus

the proof is complete. �
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4. The case of a weighted Orlicz space

Let Φ : [0,∞)→ [0,∞] be a Young function, that is, a left-continuous convex func-
tion such that

lim
u→0+

Φ(u) = Φ(0) = 0 and lim
u→∞

Φ(u) = ∞.

In what follows, we will assume for simplicity that Φ is strictly increasing. Note that
Φ is strictly increasing if and only if 0 < Φ(t) < ∞ for all t ∈ (0,∞) . We say that Φ
satisfies the Δ2 -condition if there are constants k > 0 and u0 � 0 such that

Φ(2u) � kΦ(u) < ∞ for all u ∈ [u0,∞) . (14)

Recall that the complementary function Ψ : [0,∞) → [0,∞) is defined by

Ψ(v) = sup
{
uv−Φ(u) : 0 � u < ∞

}
, v ∈ [0,∞).

Let w ∈ L0 be a strictly positive function such that E[w] = 1. We call such a w a
weight function. We let μw denote the probability measure defined by

μw(A) = E[w1A], A ∈ Σ.

Recall that the weighted Orlicz space LΦ,w is a Banach space consisting of all x ∈ L0

such that E
[
Φ(λ−1|x|)w]

< ∞ for some λ > 0. Recall also that the norm of x ∈ LΦ,w

is given by
‖x‖Φ,w = inf

{
λ > 0 : E

[
Φ(λ−1|x|)w]

� 1
}
.

If w = 1 a.e., we write LΦ for LΦ,w , and ‖·‖LΦ
for ‖·‖LΦ,w

.

Note that LΦ,w is a rearrangement-invariantBanach function space over (Ω,Σ,μw)
(see [1, Definition 8.10, p. 270]). In particular, (B2) and (B3) of Definition 1 hold
with X replaced by LΦ,w . Moreover L∞ ↪→ LΦ,w . However LΦ,w is not necessar-
ily embedded in L1 ; one can show that if Ψ is the complementary function of Φ
and if E

[
Ψ(w−1)w

]
< ∞ , then LΦ,w ↪→ L1 and LΦ,w is a Banach function space over

(Ω,Σ,μ) . See [8, Section 4] for details.
Although LΦ,w may not be a Banach function space over (Ω,Σ,μ) , we can define

the quasi-norm ‖·‖w-LΦ,w
by replacing X with LΦ,w in (1).

THEOREM 2. Let Φ be a strictly increasing Young function, let Ψ be its com-
plementary function, and let w be a weight function. Suppose that Φ satisfies the
Δ2 -condition. Then the following are equivalent:

(i) There is a constant C > 0 such that for all x ∈ LΦ,w and all sub-σ -algebras A
of Σ , ∥∥E[x|A ]

∥∥
w-LΦ,w

� C‖x‖LΦ,w
. (15)

(ii) There are constants a and b such that 0 < a � w � b a.e.
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(iii) There is a constant C > 0 such that for all u∈ (0,∞) and all sub-σ -algebras A
of Σ ,

Ψ
(

Φ(u)E[w|A ]
Cwu

)
w ∈ L1

and

E

[
Ψ

(
Φ(u)E[w|A ]

Cwu

)
w

∣∣∣∣A
]

� Φ(u)E[w|A ] a.e.

(iv) LΦ,w is a Banach function space over (Ω,Σ,μ) and can be equivalently re-
normed so as to be rearrangement-invariant.

Moreover, if LΦ,w satisfies these conditions, then w-LΦ,w = w-LΦ = M∗(ϕLΦ
) and for

all x ∈ w-LΦ,w ,

min{a,1}‖x‖M∗(ϕLΦ
) � ‖x‖w-LΦ,w

� max{b,1}‖x‖M∗(ϕLΦ
) , (16)

where a and b are constants in (ii).

For the proof of Theorem 2, we will need a lemma. Before stating it, we note that
if μ(A) > 0, then μw(A) > 0 and

‖1A‖−1
LΦ,w

= Φ−1(μw(A)−1),
where Φ−1 denotes the inverse of Φ (see [11, p. 58]).

LEMMA 5. Let Φ and w be as in Theorem 2. Suppose that Φ satisfies the Δ2 -
condition and that (i) of Theorem 2 holds. Then there are constants δ > 0 and K > 0
such that if 0 < μ(A) = μ(B) < δ , then

μw(B) � Kμw(A). (17)

Proof. Let k > 0 and u0 � 0 be constants which satisfy (14). We choose δ > 0 so
that if 0 < μ(B) < δ , then Φ(u0) � μw(B)−1 . Suppose 0 < μ(A) = μ(B) < δ . Then,
by arguing as in the proof of Lemma 3, we have

‖1B‖LΦ,w
� (1+2C)‖1A‖LΦ,w

,

which implies
Φ−1(μw(A)−1) � (1+2C)Φ−1(μw(B)−1).

Choose m ∈ N so that (1+2C) � 2m . Then

μw(A)−1 � Φ
(
2mΦ−1(μw(B)−1)) � kmμw(B)−1,

where the second inequality follows from (14) and the fact that

u0 � Φ−1(μw(B)−1).
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Thus (17) holds with K = km . �
Proof of Theorem 2. (i)⇒(ii) Suppose that (i) holds. Let δ > 0 and K > 0 be as

in Lemma 5, and let 0 < t < δ . By [3, (5.8)] there exist A and B in Σ(t) such that

μw(A) =
∫ 1

1−t
w∗(s)ds and μw(B) =

∫ t

0
w∗(s)ds.

From Lemma 5 it follows that

1
t

∫ t

0
w∗(s)ds � K

t

∫ 1

1−t
w∗(s)ds.

Letting t ↓ 0, we obtain
esssup

Ω
w � K ess inf

Ω
w

(see [3, (9.6)]). Since E[w] = 1, this implies (ii).
(ii)⇒(iv) Suppose that (ii) holds. Then it is clear that LΦ,w = LΦ . It suffices to

show that the norms of these spaces are equivalent. To this end, suppose x ∈ LΦ . If we
let β = max{b,1} and c = β ‖x‖LΦ

, then

E
[
Φ

(
c−1|x|)w]

� E
[
Φ

(
c−1|x|)β

]
� E

[
Φ

(
c−1β |x|)] = E

[
Φ

(‖x‖−1
LΦ

|x|)] � 1,

and hence ‖x‖LΦ,w
� c = β ‖x‖LΦ

.

Now suppose x ∈ LΦ,w . If we let α = min{a,1} and c = α−1 ‖x‖LΦ,w
, then

E
[
Φ

(
c−1|x|)] � E

[
Φ

(
c−1|x|)α−1w

]
� E

[
Φ

(
c−1α−1|x|)w]

= E
[
Φ

(‖x‖−1
LΦ,w

|x|)w]
� 1,

and hence ‖x‖LΦ
� c = α−1 ‖x‖LΦ,w

. Thus

min{a,1}‖x‖LΦ
� ‖x‖LΦ,w

� max{b,1}‖x‖LΦ
(18)

for all x ∈ LΦ = LΦ,w , and (iv) holds.
(iv)⇒(i) Suppose that (iv) holds. Then by [6, Lemma 2], the inequality

∥∥E[x|A ]
∥∥

LΦ,w
� C‖x‖LΦ,w

holds for all x ∈ LΦ,w and all sub-σ -algebras A . In particular, (15) holds for all x and
all A , as required.

(ii)⇒(iii) Suppose that (ii) holds and let C = a−1b . Then by [2, Lemma 2.1]1,

Ψ
(

Φ(u)E[w|A ]
Cwu

)
� Ψ

(
Φ(u)

u

)
� Φ(u)

1In [2, Lemma 2.1], both Φ and Ψ are assumed to be N -functions; but this assumption is unnecessary.



494 MASATO KIKUCHI

for all u ∈ (0,∞) . This implies (iii).
(iii)⇒(i) Suppose that (iii) holds, and let x ∈ L∞ . Then by [7, Lemma 2]2,

Φ
(
c−1

E
[|x|∣∣A ])

E[w|A ] � E
[
Φ(2Cc−1|x|)w∣∣A ]

a.e.

for any c > 0. Setting c = 2C‖x‖LΦ,w
and taking the expectation of the both sides, we

have
E
[
Φ

(
c−1

E
[|x|∣∣A ])

w
]
� E

[
Φ

(‖x‖−1
LΦ,w

|x|)w]
� 1,

and therefore
∥∥E[x|A ]

∥∥
LΦ,w

�
∥∥E

[|x|∣∣A ]∥∥
LΦ,w

� c = 2C‖x‖LΦ,w
.

In particular, we have ∥∥E[x|A ]
∥∥

w-LΦ,w
� 2C‖x‖LΦ,w

.

It is easy to check that this inequality also holds for x ∈ LΦ,w \L∞ . Thus (i) holds.
Finally we prove the last statement. Suppose again that (ii) holds. Then by (18)

we have that

min{a,1}‖x‖w-LΦ
� ‖x‖w-LΦ,w

� max{b,1}‖x‖w-LΦ
(19)

for all x ∈ w-LΦ = w-LΦ,w . Furthermore, since LΦ is rearrangement-invariant, (6)
holds with X replaced by LΦ . This together with (19) implies (16) and completes the
proof. �

5. Examples

Let Φ , Ψ , and w be as in Theorem 2, and let X = LΦ,w . If E
[
Ψ(w−1)w

]
< ∞

and if w is unbounded, then X is a Banach function space over (Ω,Σ,μ) for which the
equivalent conditions of Theorem 1 do not hold. We first give an example of a Banach
function space X which is not a weighted Orlicz space and for which the equivalent
conditions of Theorem 1 do not hold.

EXAMPLE 1. Let X1 and X2 be a pair of rearrangement-invariant Banach func-
tion spaces such that

lim
t→0+

ϕX2
(t)

ϕX1
(t)

= ∞. (20)

For instance, if X1 = Lp , X2 = Lq , and 1 � p < q � ∞ , then this condition is satisfied.
Let {Ω1,Ω2} ⊂ Σ be a partition of Ω such that μ(Ω1) = μ(Ω2) = 2−1 . Define

X to be the set of all x ∈ L0 such that

‖x‖X :=
∥∥x1Ω1

∥∥
X1

+
∥∥x1Ω2

∥∥
X2

< ∞.

2In [7, Lemma 2], Φ is assumed to be an N -function; but this assumption is unnecessary.



UNIFORM BOUNDEDNESS OF CONDITIONAL EXPECTATION OPERATORS 495

It is easily checked that X forms a Banach function space. We claim that (iv) of Theo-
rem 1 does not hold. To see this, suppose for contradiction that ‖x‖M(ϕX ) �C‖x‖X for

all x ∈ X , where C is a constant which is independent of x . Given t ∈ (0,2−1) , choose
A,B ∈ Σ(t) so that A ⊂ Ω1 and B ⊂ Ω2 . Then

ϕX2
(t) = ‖1B‖X � ϕX (t) = ‖1A‖M(ϕX ) � C‖1A‖X = CϕX1

(t).

Thus ϕX2
(t)ϕX1

(t)−1 � C for all t ∈ (0,2−1) . This contradicts (20), and thus (iv) of
Theorem 1 does not hold, as claimed.

The next example shows that a Banach function space X may not be equivalently
renormed so as to be rearrangement-invariant even if the equivalent conditions of The-
orem 1 hold.

EXAMPLE 2. Let X1 and X2 be a pair of rearrangement-invariant Banach func-
tion spaces such that:

(i) X2 is a proper subset of X1 .

(ii) There is a constant k � 1 such that

k−1ϕX1
(t) � ϕX2

(t) � kϕX1
(t)

for all t ∈ [0,1] .

For instance, if X1 = Lp,∞ , X2 = Lp,1 , and 1 < p < ∞ , then these conditions are satis-
fied.

Let {Ω1,Ω2} and X be as in Example 1. We claim that the equivalent conditions
of Theorem 1 hold, but that X cannot be equivalently renormed so as to be rearrange-
ment-invariant. To show that X ↪→ M(ϕX) , it suffices to show that X ⊂ M(ϕX) (see
[1, Theorem 1.8, p. 7]). Observe that if t ∈ [0,1] and A ∈ Σ(t) , then

k−1ϕX1
(2−1t) � ‖1A‖X � (1+ k)ϕX1

(t).

Since ϕX1
is quasi-concave, we have 2−1ϕX1

(t) � ϕX1
(2−1t) and hence

(2k)−1ϕX1
(t) � ϕX(t) � (1+ k)ϕX1

(t)

for all t ∈ [0,1] . Therefore M(ϕX ) = M(ϕX1
) ⊃ X1 ⊃ X , as required.

To show that X cannot be equivalently renormed so as to be rearrangement-invar-
iant, it suffices to show that there exist x,y ∈ L0 such that x ∈ X and y /∈ X though
they have the same distribution. Choose z ∈ X1 \X2 so that z∗ = 0 on [2−1,1] . Since
(Ω,Σ,μ) is nonatomic, there exist x,y ∈ L0 such that

{ω ∈ Ω : x(ω) �= 0} ⊂ Ω1, {ω ∈ Ω : y(ω) �= 0} ⊂ Ω2,

and
x∗ = y∗ = z∗ on [0,1]

(see [3, (5.6)]). Since z ∈ X1 \X2 , it follows that x ∈ X1 and y /∈ X2 . Hence x ∈ X and
y /∈ X though they have the same distribution. This completes the proof of the claim.
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The next example shows that (i) and (ii) of Theorem 2 are not necessarily equiva-
lent when Φ does not satisfy the Δ2 -condition.

EXAMPLE 3. Let w be a weight function such that w∗(t) = (3/4) · t−1/4 for all
t ∈ (0,1] . Of course, (ii) of Theorem 2 does not hold. Let Φ be the Young function
defined by

Φ(u) = eu −u−1, u ∈ [0,∞).

We claim that (i) and (iv) of Theorem 2 hold. To see this, it suffices to show that LΦ,w

and LΦ coincide and the norms of these spaces are equivalent. To this end, suppose first
that x ∈ LΦ . Let a = E

[
w2

]
= 9/8 and let b = 2a‖x‖LΦ

. Then, since Φ(u)2 � Φ(2u)
for all u ∈ [0,∞) ,

E
[
Φ

(
b−1|x|)w]

� E
[
w2]1/2

E
[
Φ

(
b−1|x|)2 ]1/2

� E
[
w2]1/2

E
[
Φ

(
2b−1|x|)]1/2

= E
[
w2]1/2

E
[
Φ

(
a−1‖x‖−1

LΦ
|x|)]1/2

� E
[
w2]1/2

a−1/2
E
[
Φ

(‖x‖−1
LΦ

|x|)]1/2

= E
[
Φ

(‖x‖−1
LΦ

|x|)]1/2 � 1.

It follows that x ∈ LΦ,w and ‖x‖LΦ,w
� b = 2a‖x‖LΦ

. Suppose now that x ∈ LΦ,w . Let

a = E
[
w−1

]
= 16/15 and let b = 2a‖x‖LΦ,w

. Then

E
[
Φ

(
b−1|x|)] � E

[
w−1]1/2

E
[
Φ

(
b−1|x|)2

w
]1/2

� E
[
w−1]1/2

E
[
Φ

(
2b−1|x|)w]1/2

= E
[
w−1]1/2

E
[
Φ

(
a−1 ‖x‖−1

LΦ,w
|x|)w]1/2

� E
[
w−1]1/2

a−1/2
E
[
Φ

(‖x‖−1
LΦ,w

|x|)w]1/2

= E
[
Φ

(‖x‖−1
LΦ,w

|x|)w]1/2 � 1.

It follows that x ∈ LΦ and ‖x‖LΦ
� b = 2a‖x‖LΦ,w

. Thus the proof of the claim is
complete.

6. Application to martingale inequalities

In this section we discuss some maximal inequalities for martingales. For basic
results and notions concerning martingales, we refer the reader to [4] or [13].

We denote by M the set of all martingales on Ω and by Mu the set of all uniformly
integrable martingales on Ω . For each f = ( fn)n∈Z+ ∈ M , we let

M f = sup
n∈Z+

| fn|.
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Recall that every martingale in Mu converges a.e. For each f = ( fn)n∈Z+ ∈ Mu , we let

f∞ = lim
n→∞

fn a.e.

It is well known (see [13, p. 150] or [4, p. 17]) that if f = ( fn) ∈ Mu , then

‖M f‖w-L1
� sup

n∈Z+

‖ fn‖L1
= lim

n→∞
‖ fn‖L1

= ‖ f∞‖L1
.

The following theorem is a generalization of this result.

THEOREM 3. Let X be a Banach function space. Then the following are equiva-
lent:

(i) There is a constant C > 0 such that for all f = ( fn)n∈Z+ ∈ Mu ,

‖M f‖w-X � C‖ f∞‖X . (21)

(ii) There is a constant C > 0 such that for all f = ( fn)n∈Z+ ∈ M ,

‖M f‖w-X � C lim
n→∞

‖ fn‖X . (22)

(iii) There is a constant C > 0 such that for all f = ( fn)n∈Z+ ∈ M ,

‖M f‖w-X � C lim
n→∞

‖ fn‖X .

(iv) The equivalent conditions of Theorem 1 hold.

Proof. (i)⇒(ii) Suppose that (i) holds. Let f = ( fn) ∈ M and n ∈ Z+ . Since the
stopped martingale f 〈n〉 := ( fn∧k)k∈Z+ is uniformly integrable, it follows that

‖Mn f‖w-X = ‖M f 〈n〉‖w-X � C‖ fn‖X ,

where Mn f = maxk�n | fk| . This implies (22).
(ii)⇒(iii) Obvious.
(iii)⇒(iv) Suppose that (iii) holds. Let x ∈ X and let A be a sub-σ -algebra of

Σ . Define f = ( fn) ∈ M by

fn =
{

E[x|A ] if n = 0,
x if n � 1.

Then by (iii),
∥∥E[x|A ]

∥∥
w-X � ‖M f‖w-X � C lim

n→∞
‖ fn‖X = C‖x‖X .

Thus (ii) of Theorem 1 holds.
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(iv)⇒(i) Suppose that (ii) of Theorem 1 holds. Let f = ( fn) ∈ Mu and define a
filtration F = (Fn) by Fn = σ{ f0, f1, . . . , fn}, n ∈ Z+ . Given λ > 0, let τ be the
F -stopping time defined by

τ(ω) = min
{
n ∈ Z+ : | fn(ω)| > λ

}
with the convention that min /0 = ∞ . Then

{ω ∈ Ω : (M f )(ω) > λ} = {ω ∈ Ω : τ(ω) < ∞}
and

λ1{ω∈Ω :(M f )(ω)>λ} � | fτ |1{ω∈Ω :τ(ω)<∞} � E
[| f∞|∣∣Fτ

]
a.e.

Therefore

λ
∥∥1{ω∈Ω :(M f )(ω)>λ}

∥∥
X

= λ
∥∥1{ω∈Ω :(M f )(ω)>λ}

∥∥
w-X

�
∥∥E

[| f∞|∣∣Fτ
]∥∥

w-X � C‖ f∞‖X .

Thus (21) holds, as required. �

REMARK 1. In Theorem 3, M and Mu can be replaced by the set of all nonnega-
tive submartingales and the set of all uniformly integrable nonnegative submartingales,
respectively.

We conclude with the following theorem.

THEOREM 4. Let Φ be a strictly increasing Young function and let w be a weight
function. Suppose that Φ satisfies the Δ2 -condition. Then the following are equivalent:

(i) There is a constant C > 0 such that for all f = ( fn)n∈Z+ ∈ Mu ,

‖M f‖w-LΦ,w
� C‖ f∞‖LΦ,w

.

(ii) There is a constant C > 0 such that for all f = ( fn)n∈Z+ ∈ M ,

‖M f‖w-LΦ,w
� C lim

n→∞
‖ fn‖LΦ,w

.

(iii) There is a constant C > 0 such that for all f = ( fn)n∈Z+ ∈ M ,

‖M f‖w-LΦ,w
� C lim

n→∞
‖ fn‖LΦ,w

.

(iv) The equivalent conditions of Theorem 2 hold.

Proof. The argument of Theorem 3 applies with X replaced by LΦ,w . �
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1980.
[5] L. GRAFAKOS AND N. KALTON, Some remarks on multilinear maps and interpolation, Math. Ann.

319, 1 (2001), 151–180.
[6] M. KIKUCHI, Boundedness and convergence of martingales in rearrangement-invariant function

spaces, Arch. Math. (Basel) 75, 4 (2000), 312–320.
[7] M. KIKUCHI, On weighted weak type maximal inequalities for martingales, Math. Inequal. Appl. 6, 1

(2003), 163–175.
[8] M. KIKUCHI, Characterization of Banach function spaces that preserve the Burkholder square-

function inequality, Illinois J. Math. 47, 3 (2003), 867–882.
[9] M. KIKUCHI, On some mean oscillation inequalities for martingales, Publ. Mat. 50, 1 (2006), 167–

189.
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