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CVAR-BASED FORMULATION AND APPROXIMATION METHOD FOR A
CLASS OF STOCHASTIC VARIATIONAL INEQUALITY PROBLEMS

HUI-QIANG MA AND NAN-JING HUANG

(Communicated by Yeol Je Cho)

Abstract. In this paper, we consider CVaR-based formulation and approximation method pro-
posed by Chen and Lin [5] for a class of stochastic variational inequality problems (for short,
SVIP). Different from the work mentioned above, we regard the regularized gap function for
SVIP as a loss function for SVIPs and obtain a restrained deterministic minimization reformula-
tion for SVIPs. We show that the reformulation is a convex program for a wider class of SVIPs
than that in [5]. Furthermore, by using the smoothing techniques and Monte Carlo method, we
get an approximation problem of the minimization reformulation and consider the convergence
of optimal solutions and stationary points of the approximation problems. Finally we apply our
proposed model to solve the migration equilibrium problem under uncertainty.

1. Introduction

Given a mapping f : R" — R" and a nonempty closed convex set S C R", the
classical variational inequality problem (for short, VIP) is to find a vector x* € S such
that

(x—x)Tf(x*) >0, Vxes.

It is well known that the VIP has been used widely since its origins in the 1960s
(see, for example, [12, 15, 18, 40] and the references therein). Its applications to the
modeling of economic equilibrium, optimization and control, transportation and re-
gional science generate great interest (see [12, 15]). If S =R’ = {x e R" | x > 0},
then the VIP reduces to the nonlinear complementarity problem (for short, NCP): find
an x € R" such that

x>0, f(x)=0, x'f(x)=0.

For more details about the basic theory, effective algorithms and important applications
of the VIP and the NCP, we refer to [9, 12, 14, 18, 30] and the references therein.

In some important practical instances, the data in f often involves some stochas-
tic factors. In order to take the uncertainty into account, the stochastic variational
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inequality problem (for short, SVIP) and stochastic complementarity problems (for
short, SCP) have been receiving more and more attention in the recent literature (see
[1,4,5,7,13,17,20,21, 22, 23,24, 25, 26, 27, 36, 37, 38, 39, 40] and the references

therein). Let (Q,.%,P) be a probability space. The SVIP is to find an x* € S such that
PlocQ: (x—x)fx",0)>0 VrxeS}=1,
or equivalently,
(x—x)Tf(x*, @) >0, VxeS, as. o€, (1)
and the SCP is to find an x € R" such that
x>0, fx,w) >0, X fx,0)=0, as. 0eQ,

where f:R" x Q — R” is a mapping and a.s. is abbreviation for “almost surely”
under the given probability measure P.

Because of the existence of a random element @, we can not generally find a
vector x* € S such that (1) holds almost surely. That is, (1) is not well defined if we
think of solving (1) before knowing the realization @. Therefore, in order to get a
reasonable resolution, an appropriate deterministic reformulation of the SVIP becomes
an important issue in the study of the considered problem.

In 2005, Chen and Fukushima [4] employed the expected residual minimization
method to solve stochastic linear complementarity problems and got a sufficient con-
dition for the existence of a solution to the expected residual minimization problem.
Furthermore, Fang et al. [13] got a necessary and sufficient condition for the solution
set of the expected residual minimization problem to be nonempty and bounded.

In 2009, Luo and Lin [26] employed the expected residual minimization method
to solve the SVIP. By employing the regularized gap function

a
galv,0) = max { (x= )7 f(x,0) = 5 =¥} @)
yesS 2
they presented the following deterministic optimization problem:
min £[g, (x, )], 3)

where E denotes the expectation operator and a is a given positive number, and re-
garded the solution of (3) as the resolution of (1).

On the other hand, in the view of portfolio optimization, Chen and Lin [5] re-
garded the so called D-gap function 0,,(x,®) = g4(x,®) — gp(x, ®) as “loss function”
and by employing the risk measure, conditional value-at-risk(CVaR), proposed a new
deterministic reformulation for (1) as follows:

min CVaRy(x), 4)
xeR"?
where CVaR(x) is defined as the conditional expectation of the loss associated with x.
For a fixed confidence level o € (0,1), the value-at-risk (VaR) for the loss associated
with x is defined as

VaR y(x) = min{u| P[0, (x, ®) < u] > a},
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which is the lowest value such that, with probability o, the loss will not exceed the
amount. Thought VaR is a popular risk measure, it is generally nonconvex and com-
putationally nontractable which makes the resulting VaR optimization problem hard
to solve. CVaR, a best convex approximation to VaR, is the expectation of the loss
associated with x in the conditional distribution of its upper o -tail, that is,

CVaRy, (x) = Eaftail [Oah (x, CO)] 3
where the o -tail cumulative distribution function of 6,;(x, ®) is given by

B 0 for ,<VaRa(x)a
Fo(x,2) = { (1- a)—l(F(x7z) —a) fgr 22 VaRy(x),

and F(x,z) denotes the distribution of the random variable z(®) = 6,;(x, ®).
By Theorem 14 of [34], problem (4) is equivalent to

min @(x,u) :M+(1 _a)ilE[eub()Qw) _M}Jra (5)
(x,u)eR+1

where [t]; = max{r,0} for any r € R, in the sense that (x*,u*) solves (5) if and only
if x* solves (4) and u* solves min,cg O(x*,u).

In order to guarantee that problem (5) is a convex program, some conditions of
f(x,0) are needed. However, the conditions given by Chen and Lin [5] may be too
strong and will not be satisfied in some situations (see Example 2.1 for more de-
tails). Motivated by the work mentioned above, we regard the regularized gap function
ga(x, w) as the “loss function”. In a similar manner to [5], we define the deterministic
reformulation for (1) as follows:

min  O(x,u) = E[®(x,u,®)] = u+ (1 — o) 'E[ga(x, ) —ul, (6)
(x,u)eSxR

where ©(x,u, ®) = u+ (1 — o) [ga(x,®) —u]; . We show that (6) is a convex program
under suitable conditions and that reformulation (6) is able to solve a wider class of
SVIPs than reformulation (5).

The rest of this paper is organized as follows. In Section 2, we show that problem
(6) is a convex program and the level sets of © are bounded under some suitable con-
ditions. Then, smoothing techniques and Monte Carlo method for solving (6) are pre-
sented in Section 3, the convergence results of optimal solutions and stationary points
are also given. Finally, in Section 4, we discuss a migration equilibrium problem under
uncertainty and use the results in this paper to find the equilibrium pattern.

2. Properties of the objective function

It is well known that g,(x,®) is a merit function for (1), that is, g,(x,®) is
nonnegative-valued on S and the variational inequality problem (1) is equivalent to
ga(x", ) = 0. We refer the readers to [10, 11] for more details. It has been shown in
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[11] that, for any fixed @ € Q, g,(x, ) is well defined and continuously differentiable
everywhere if f(-, ®) is. In particular, the gradient is given by

ngu(x7w) = f(x7w) - (fo(x7w) —al)(ya(x, CO) —)C),

where I denotes the 1 x 1 identity matrix and y,(x, ®) = Projs[x—a~! f(x,®)] denotes
the projection of x —a~! f(x,®) onto S and the unique solution of the optimization
problem on the right hand-side of (2).

LEMMA 1. (see Theorem 2.1 in [5]) For any positive number a, the regularized
gap function g,(x,®) and its gradient V,g,(x, @) are measurable in @ for every x € S.

THEOREM 1. Suppose that f(x,0) =M(w)x+ Q(w), where M : Q — R™" and
0:Q—R" and 0 < infycq\q, Anin(M(0)TM(®)), where Qq is a null subset of
Q, Anin(G) stands for the smallest eigenvalue of a symmetric matrix G. We have the
following statements:

(i) If 0 < a <infyeq\ ) Amin(M(®) +M(w)7), the regularized gap function g,(-, ®)
is convex for almost every ® € Q and hence problem (6) is a convex program.

(ii) Furthermore, if 0 < a < infyeq\ ) Amin(M (@) +M(@)"), the function g.(-, ®)
is strongly convex for almost every ® € Q and the level set ((1) = {(x,u) €
SxR|O(x,u) < 1} is bounded for any given positive scalar T.

Proof. For any positive semidefinite matrix A € R"*", we have

AT +A
5 )

2fmin (ATA) < 2fmin (
From the condition 0 < infyeq\ o, Amin (M (0)"M(w)), we know that

0 inf  Aypin(M M(w)"
<wé%90 (M(w)+M(w)")

and a is well defined.
For any fixed y € S, we define the function

h@%w%:@—wnM@W+me—ng—ﬂﬁ

and get that V2h(x,y, @) = 2M(®) — al . For any vector z € R", we have

ZIV2h(x,y,0)z = 2" M(0)z—a | z|?

' M(o)+M(o)" —allz
Ponin(M (@) +M(0)") —a] || 2 ||* . (7)

Since a < infyeq\q, Amin(M(®) +M(®)" ), we have from (7) that ZI'V2h(x,y,0)z >0
holds for any z € R" and almost every @ € Q, which means that the Hessen matrix

()

WV

(
in(M
)"
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V2h(x,y,) of h(x,y,®) is positive semidefinite and hence h(x,y,®) is convex in x for
any y € S and almost every @ € Q. Thus, by (2), the regularized gap function g,(x, ®)
is a convex function in x for almost every @ € Q. It then follows from Corollary 11 of
[34] that problem (6) is a convex program.

Furthermore, if

0 inf Afmin M M T )
<a<inf Join(M(0) + M(@))

then for any z € R” and almost every @ € Q,
2 Vih(xy, o)z > | z|?

holds, where
L= wei(%{(zo Amin(M(0) +M(0)") —a

and u > 0. This means the function i(x,y, ®) is strongly convex in x with modulus p
for any y € S and almost every @ € Q and hence, by (2), the regularized gap function
ga(+, ) is strongly convex with modulus p for almost every @ € Q. As a result, the
function E[g,(x, ®)] is also strongly convex and

lim Efg,(x,®)] = +eo.

(x| =

Next, we will assume that there exists a number 7" such that #(7*) is unbounded,
that is, there exists a sequence {(x*,u¥)} C £(7*) and limy_.. || (x*, %) ||= +oo.
By the definition of the level set /(1) and the function ©, for any k, we get

T > @(xk,uk) > uk
and

> 005, i) = uf + (1 — ) 'Efg. (¢, 0) — ]

Wb+ (1—0) E[ga(x", 0) — u¥]
[1—(1—a) uk.

VoV

Since o € (0,1), we have —a ' (1 — a)t* < u* < 7" for each k, that means the se-

quence {u*} is bounded, and thus limy ... || x* ||= +eo. Hence, we obtain that

T > ub 4 (1 - o) E[g (x5, 0)] — (1 — o) 1
= [1—(1—0) " + E[ga(", 0)]

— o0,

This is a contradiction and we know that the level set £(7) is bounded for any given
positive scalar 7. This completes the proof. []
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REMARK 1. In this section, we have proved that problem (6) is a convex program
under some suitable conditions. In order to ensure the convexity of problem (5), Chen
and Lin [5] assumed that

0 inf  Apin(M(@0)"M
<w€13\90 (M(0) M(w))

and

SUp  Apax(M(@)" M(®)) < +eo. ®)
0eQ\Q)

Meanwhile, they assumed that
n 1 T T .
S= x€R|§x Oix+qjx+r<0,i=1,---17, 9)
where Q; (i=1,2,---,1) are n X n symmetric positive semidefinite matrices, ¢; € R"

and r; € R are constant vectors or numbers. However, we only need the condition

0 inf  Apin(M(@0)"M
<w£3\go (M(0)' M(w))

and assume that the constraint set S is nonempty, closed and convex, which is more
general than the form given by (9).

The following example shows that all the conditions of Theorem 1 are satisfied but
condition (8) fails.

EXAMPLE 1. Let

1+E(w)000
0 100

M(w) = 0 010]"
0 001

where £ () is an exponential random variable with intensity A . It is easy to get that
Aoin(M (@) +M(0)") =2,
Donin(M(@)" M()) = 1

and
Anax(M(0)"M(w)) = [1+ & ()]

Thus, we have

inf Afmin M TM :1, inf xmin M M T =2
welgzl\Qo (M(w)" M(w)) welgzl\QO (M(ow)+M(w)")

and so all the conditions of Theorem 1 are satisfied. However, it is easy to see that

Sup 2’Wla)((1‘4((0)1"]‘4(60)) == Sup [l +§((D)]2 = —|—<x>7
0eQ\Q weQ\Qg

which implies that condition (8) is not satisfied.
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3. Convergence of solutions and stationary points

In this section, we will give the approximation methods for (6). Note that the
objective function ©(x,u) is nonsmooth and contains mathematical expectation. In
order to deal with the objective function, we will use smoothing techniques and the
Monte carlo sampling techniques.

The smoothing technique is used to deal with the nonsmoothness of the objective
function. As an approximation of the function [-], the smoothing class of Chen and
Mangasarian [6] is as follows: given a small scalar u > 0, we define

1, 1>,
u=1 apt+p)? —u<r<p, (10)
0, 1< —Uu.
It is easy to verify that
L, t>Au,
1) =< pt+u), —pu<r<p,
0, 1< —u,

and the following result.

LEMMA 2. For any real numbers t and s, we have
_ <|f — _ <l — it _ <l —
(17)u = [slul <l =sl, el = Isl+ [ < e =sl+ 70 Nl = [sle[ < =],

We next tackle the mathematical expectation in the objective function. Through-
out this paper, we assume that E[g,(x,®) —u]+ cannot be calculated in a closed form
so that we will have to approximate it through discretization. One of the most well
known discretization approaches is Monte Carlo method. In general, for an integrable
function ¢ : Q — R, we approximate the expected value E[¢ ()] with sample average
Nik DIIoN ¢(w;), where @y, - -, @y, are independently and identically distributed ran-
dom samples of @ and Q; = {wy,---, @y, }. By the strong law of large numbers, we
know that limy_... NLA Yoco, 9(@;) = E[¢(w)] holds with probability one (abbreviated
by“w.p.17).

Let O (x,u, 0, 1) = u+ (1 — o) [ga(x, 0) — u]u . Applying the above techniques,
we get the following smooth approximation of (6):

— 1 A
min Oy(x,u) = — O (x,u, w,
(x,u)EISX]R k(x l/l) Ny a),-EEEZk (x “haen 'uk)

=u+(l—a)'— 2 [8a(x, 0;) — ul (11)

where L | 0 and Ni ] oo as k — eo. Note that if the function f(x,®) = M(®)x+ Q(®)
and satisfies the condition (i) of the Theorem 1, then problem (11) becomes a convex
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program. We next will investigate the limiting behavior of the optimal solutions and
stationary points of (11). Consider the case f(x,0) =M(®)x+ Q(®), where M : Q —
R™™ and Q: Q — R" are measurable functions such that

E[| M(0) |I’] < +eo,  E[|| Q(@) [|’] < +oe. (12)
This condition implies that
EM(0)] <+eo, E[Q(0)] <+ee, E[[|M(0) ||| Q(@) [|] < +ee (13)
and, for any scalar c,
E[| M(w) —cI ||*] < +oo. (14)

THEOREM 2. Let {(x*,u*)} be a sequence of optimal solutions of problem (11).
Then, any accumulation point of {(x*,u*)} is an optimal solution of problem (6).

Proof. Let (x*,u*) be an accumulation point of {(x*,u*)}. Without loss of gen-
erality, we assume that (x*,uf) itself converges to (x*,u*) as k tends to infinity. It is
obvious that (x*,u*) € § x R. At first, we will show that, for any (x,u) € S xR,

lim — Y [ga(x, o) —uly, = Elga(x, ) — u]+. (15)

It follows from Lemma 2 that

1
ﬁ Z [gtl(x7wi)_u]ﬂk_E[ga(x7w)_u]+
kw,-er
<l 3 lealr@) - 3 ealro)
SEkva 8a\X, W) — Uy, — = 8a\X, ;) — U+
Nk W €Qy ‘ Nk w; €Qy
1
+ N, Z [ga(x, ;) —u]y — E[g.(x,0) —u],
kw,-er
1
< N, 2 |[ga(x»wi)_u]llk_[ga(x7wi)_u}+|
kw,-er
1
i 3 oo @)~ ~ Elgale 0)
kw,-er
M |1
< Z+ N, 2 [8a(x, @) —uly — E[ga(x, @) —ul+|.
kw,-er
Since
1
Lim = D [8alx, 1) — ) = E[ga(x, 0) —u] 4
— ka),-er
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and limy_,.. ty = 0, we obtain that the right-hand side of the above inequality converges

to 0 as k tends to infinity, and so (15) holds for any (x,u) € S x R.
We next show that

lim— [ga(+F, @) — ub]y, = Elga(x*, ©) — ] (16)

lim — ) [ga (X, @) — '] = Elga(x", @) — u*] . (17)

Noting that limy_.., NLA Yoca[8a(x, o) —u] = Elg,(x*, @) —u*] 1, we just need to
verify that

1
lim |— Y [ga( o) =]y — — Y [galx",0) —u'] | =0.  (18)
ke Nk CO,'EQk Nk CO,'EQk
From mean-value theorem, we have
1 xk k 1 * *
v Z [ga( ,(X)i)—bt]+—]7 Z [ga(x 760,‘)-”}4_
k ;€8 k ;€8
1 * *
<v > [lgald ) — ']y — [galx*, ) — u] 4|
ka),-er
* 1 *
< }uk—u }—i-ﬁ 2 }gu(xk,a),-)—gu(x ,w,-)|
k CO,'EQk
1 i X
< w4 X 1 VegalM @) |- 2 =2, (19)
;€L

where YK = Az + (1 — Ag)x* with Ay € [0,1].
On the other hand, from the nonexpansivity of the projection operator, for any
ye S and o € Q, we have

| Viga(y, ®) — Viga(x™, @) ||
= [ M(@)y+0(w) — (M(w) —al)
)

Projs(y—a” (M(@)y+Q())) —y) -
[M(@)x* +Q(0) — (M(®) —al !

Projs(x* —a " (M(@)x" + 0(w))) —x")] ||

= || 2M(w) — al)(y —x*) + (M(w) — al)(Projs(x* —a~' (M(0)x* + Q(w)))
—Projs(y—a ' (M(w)y+Q(w)))) |
< [2M (@) —al|| - |ly — x| + [IM (@) — al||[|ly — x*|| +a~ " [| M(@)]| - |ly — x|
= {[l2M(w) —al|| + |M(0) —al | +a”"|M(0)| - |M(w) —al| }|y—x*|  (20)

(
(
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and thus,
1 i *
o > 1 Viga, @) || —E || Vaga(x, 0) |
k ;€L
<t T 1V @) [~ [ Vasal ) |
X xéa ) (A xéa ) 1
Nk 0 €Qy Nk W €Qy
1
i D I Viga(¥ @) [| —E || Viga(x", 0) |
k ;€L
1 )
< ﬁ 2 ” nga(ykl7wi)_vxga(X*7wi) H
k CO,'EQk
1 B .
i Y 1Viga(x™ @) || —E || Viga (", 0) |
k ;€L
1
< 3 {I2M(@)—al | + | M(@) —al|
k ;€8
+a ' [ M(ay) || - || M(@) —al || } ]|y —x" |
1
v Y I Viga(x @) [| —E || Viga(x", 0) |
k ;€8

< S {2M(@)—al ||+ || M(w) —dl |

Nk CO,'EQk

+a ' [ M) |- || M(ay)—al || } || ¥ —x" |
1 i .

i Y 1Viga @) | —E || Vigalx®, @) ||| (21)
k @ €Qy

From (13) and (14), we know that the right-hand side of (21) converges to 0 as k tends
to infinity and hence,

.1 i *
hm - Y 1 VigaM ) [=E || Vagals™, @) || - (22)

koo

Since limy_...(x*,u¥) = (x*,u*), the right-hand side of (19) converges to 0 and (18)
holds, that implies (17) holds also.
From Lemma 2, we have

1
2 [8al o) —uy — Elga(x" @) — 1]y
k ;€L

LY el o) il S (gl 1) — i)

Nk w; €Qy Nk w; €Qy

<
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+ ]% Z [ga(xkawi) _uk]Jr _E[ga(x*,a)) _u*]+
k ;€8
s léka),-ezék [8a(*, 1) = ] — [ga(, 1) —uk]+’
+ ]% 2 [ga(xkawi) _uk]Jr _E[ga(x*,a)) _u*]+
k ;€L
s % - ]% wigit)k[ga(Xk,wi) B ukh‘ —E[gq(x", @) —u"]4

with the right-hand side converges to 0 as k tends to infinity, which means that (16)
holds.

Since (xk, uk) is an optimal solution of problem (11) for each k, we have that, for
any (xv,u) € SxR,

W (L—o) o Y [gal o) =iy Sut (L—a) ' Y [galr, ) — g,

Letting k — oo above, we get from (15) and (16) that
'+ (1= o) 'Elga(x", 0) —u']y <ut(1— ) 'Efgalx, o) —ul+,

which means (x*,u") is an optimal solution of problem (6). This completes the proof.
O

In general, it is difficult to obtain a global optimal solution of problem (11),
whereas computation of stationary points is relatively easy. Therefore, it is important
to study the limiting behavior of stationary points of problem (11).

DEFINITION 1. (i) (x%,u¥) is said to be stationary to problem (11) if
0e V(&u)@k(xk,uk) + JKSXR(Xk7uk)7

where A5, (x*,u*) denotes the normal cone (see e.g. [3]) of S x R at (x*,u¥)
and

N (K1) = { (e, u) € RV s () T (o, o) — (XK, ) <0, V(i) e SxR};
(ii) (x*,u*) is said to be stationary to problem (6) if
0e 8(x7u)@(x*,u*) + Nour (X 1),

where 8(x7u)@(x*,u*) is the Clarke generalized gradient (see [8]) of ©(x,u) with
respect to (x,u) at (x*,u*) and

O O(x",u*) = conv{ lim Ve Ox, 1) }

(x,u)e%(_) L(eu)— (% u*)
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with Df( 3 representing the set of points near (x*,u*) where © is Frechét differ-

entiable, V(x ) O(x,u) denoting the usual gradient of ® and “conv” meaning the
convex hull of a set.

In order to get our desirable result, we need the following lemma.

LEMMA 3. (see Theorem 4.4 in [39]) Let {(x*,u*)} be a sequence of stationary
points of problem (11) and let (x*,u*) be an accumulation point of {(x*,uf)}. Assume
that € is a compact subset of S X R which contains a neighborhood of (x*,u*) w.p.1
and there exists a small positive constant [y > 0 and a measurable function x(®) such
that

sup | Oy D (1, @0, 1) [|< (@)
(xu) €€, 10, o]

holds. Then w.p.1 (x*,u*) satisfies
0e E[&(W)@(x*,u*, ®,0)] + Asur (x*,u").
If, in addition, 5 satisfies the gradient consistency, that is,
8(x7u)1§(x*7u*,a),0) C I ¥ (x",u", @),
then (x*,u*) is a weak stationary point of (6), that is,

0 € B[00 (x", 0", 0)] + Asxm(x", u).

THEOREM 3. Let (xX,u¥) be stationary to problem (11) for each k. Then any
accumulation point (x*,u*) of {(x*,u*)} is a stationary point of problem (6).

Proof. Without loss of generality, we assume that {(x*,u*)} itself converges to
(x*,u*). At first, we show that, for any (x,u) € S xR,

IE[&(x’u)zS‘(f, u, CO)} - 3(,(7“)@(/?, i). (23)

In fact, for any (x,z) and (%,i) in the unit ball B with the center at (x,u), we have
from the mean-value theorem that

|9 (%,1, 0) — O (&,ii, )|

< fir— |+ (1= @) lga(. @) — il — [galit0) — il
< Ja—ii + (1= )7 ga(¥, 0) — it — ga (¥, ) + il
< T2+ (1= 0) ™ | Vagalsr @) | [ 5=, (4)

where % = Apx + (1 — Ap)X with A4 € [0, 1]. Note that there exists a constant C > 0
such that || z ||< C and || Projs[z] —z ||< C hold for any z € B. It follows that
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| V.gu (s ) |
< M) ||| 5o || + | 0(@) |
+ || M(@) —al || - || Projs[o —a™ (M(0)%0 +0(0))] — %o |
<Cl|M(0) |+ 0@) |
+ || M(@) —al || - || Projs[fo—a ' (M(0)%0 + 0(0))] — Projs[F] |
+ || M(@) ~al || - || Projs[%o] — %o |
< (| M(0) | + || M(@) —al | )+ || 0(w) |

+a”! | M(0) —al | (C||M(o) | + || Q() |)
= C([ M(o) [| + | M(@) —al |)+ | Q(w) ||
+a”'C||M(w)—al |- || M(o) | +a™" | M(0)—al||- || Q(@)||.  (25)
Thus, from (12)—(14) and (24)—(25), we know that there exists an integrable function
K : Q — R, such that

- - 2—o
|19(x7u,a))—19(x7u,a))’ < -

|i— i+ || k(@) [[I| =]

holds for any (x,:) and (%,ii) in B. Hence, (23) follows from Theorem 9 of Chapter 2
in [35] immediately.

We next show that 0 € E[d|, )0 (x",u", )] + Asxgr(x*,u"). Noting that 0 <
[t];J < 1 holds for any 7 € R and small scalar p > 0, and

V(X,u)é(xvuvwnu) = ( 01) + (1 - a)_l[ga(x7 (D) - u];,l (nga_()i7 w)> ) (26)

we have from (25) that, for any compact set ¢ containing a neighborhood of (x*,u*)
and small scalar L, there exists an integrable function k' : Q — R such that

sup H (9(,(7”)19()67”7&),[1) ”< K'/((D)
(Xau)ecf:ﬂe[oalio]

and so R
0 € B[y ) O (x", u", 0,0)] + A (x",u")

holds from Lemma 3. It is well known that the function [t], satisfies the gradient
consistency at 7 (see [32, 39]) and so

3(x,u)1§(x*au*7w70) - a()c,u)‘l9(')C*a1">k7w);
which implies

0 € B[y O (x",u", 0)] + Asxr (", u").
It follows from (23) that

0 € ) O(",u") + A (x",u").

This completes the proof. [l
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REMARK 2. In this section, we investigate the limiting behavior of the optimal
solutions and stationary points of (11). Comparing with the proof of Theorem 3.6 in
[5], we give a different approach to get the convergence of the stationary points. In fact,
Chen and Lin [5] constructed a set-valued mapping and applied Lemma 3.4 of [5] to get
the convergence of the stationary points. However, we first show that the accumulation
point of the stationary points of (11) is a weak stationary point of (6) and then employ
the relation (23) to get the desired result.

4. An application

In this section, we investigate the migration equilibrium problem under uncertainty
by using the results in previous sections. We first introduce the migration equilibrium
problem under uncertainty and formulate this problem as a SVIP. Then we present some
computational results.

We consider a closed economy consisting of n locations, typically denoted by i,
and J classes, typically denoted by k. Assume that the attractiveness of any location
i to class k is represented by a utility uf‘ Denote by pf-‘ the population of class &k at
location i and by ﬁk the total population of class k which is fixed and known. Group
the utilities into a vector u € R’" and the populations to a vector p € R’", respectively.
In general, the utility # can be a function of multiclass population vector p. We assume
that there are no migration costs between locations and there are no births and no deaths
in this economy.

The population of each class k& must be conserved in the economy, that is, the
following equations

Pr=Ypk k=10 (27)
i=1

must be satisfied. Let
S={peR™: p>0andsatisfy (27)}.

Then the migration equilibrium problem is to find a multiclass population vector px € S
such that there is no individual of any class having any incentive to move since a unilat-
eral decision will no longer increase his/her utility. The migration equilibrium problem
can be represented as the following variational inequality problem (see Theorem 5.1 in
[28]): find a vector p* € § such that

—u(p)'(p—p*) =0, VpeS.

Let Q denote the sample space of factors contributing to the uncertainty in the
migration problem, such as, weather, environment, public policy, etc. Let (Q, %, P)
be a probability space. The utility will be affected by the uncertainty factors, that is,
u=u(p,m).

The migration equilibrium problem under uncertainty can be written as the fol-
lowing stochastic variational inequality problem: find a vector p* such that

—u(p*, ) (p—p*) =0, VpeS, as. weQ.
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Now we give an example for the migration equilibrium problem with uncertainty.

EXAMPLE 2. Assume that there are two classes and two locations in the econ-
omy. Denote by &(w) a standard normal random variable on the probability space
(Q,.Z,P). The utility functions are given by

= —pi45, u=—(1+e®)p? —0.5p! +20,

uy = —pl+15, u3 = —p3+10.

Let
f(p,0) =M(w)p+0
with
1 0 00 pi -5
0.51+¢5@ 00 2 —-20
M)=1"5" "¢ 10| P~ 2 0= s
0 0 01 p3 ~10

Then it is easy to verify that

1 1
, 02, 24e5@ /e —|—— and 2+ e5(@) ~§()+Z

are eigenvalues of M(w) + T respectively. It is also easy to see that

1
1, 1, E(1.25+x +\/ —0.75)2 )

and % (1.25 +x(w)* - \/(x(a))2 —0.75)>+ l)

2

are eigenvalues of M(w)”M(w), respectively, where x(@) = 1+ ¢5(®) € (1,+e0).
Consider the function @(y) =y —+/y*>+b with b > 0. It is obvious that @(y) is
an increasing function and that limy_ .. ¢(y) = 0 holds. Taking y = x(®)? —0.75 and
b =1, we get that, for any o € Q,

% (1.25 +x(0) — \/(x(@P —0.75)2 + 1) e l9_8‘/ﬁ, 1] .

Letting y = 5@ and b= %, for any w € Q, we have

1 3
$(w) 28(w) 4 — -
2+e e +-c |:2,2].

Thus,

inf  Apin(M(0)"M(@)) = inf l(1.25+x(w)2—\/(x(a>)2_o.75)2+1>

0eQ\Q) 0eQ\Q)

917
=5 >0
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and

/ 1 3
inf  Apin(M M Y= inf 2 (o) _ 28(0) 4 — % = =,
C0‘513\90 (M(w)+M(@)") welg\Qo e ¢ + 4 2

It follows that all the conditions of Theorem 1 are satisfied. Set « = 1 and assume that
the total populations are give by pl=2and ;52 =8. Let

=20 (3240)e- (3)}

We solve (6) by using the solver fmincon in the optimization Toolbox of Matlab and
compute g,(x,®) for each ® € Q by employing the quadratic programming solver
quadprog of Matlab. The numerical results are presented in Table 1.

Table 1: equilibrium patterns with different sizes of samples

n pi pi P P
102 0 32776 20000  4.7224
5x100 0 30184 20000 49816
10° 0 29491 20000  5.0509

Here n denotes the size of samples. In Table 1, we take the smoothing parameter
1w=10"3,107*, 10~ corresponding to the size of sampling data n = 10?, 5 x 102,
103, respectively. As shown in Table 1, the final population of class 1 at location 1 is
pl =0. This is realistic due to the fact that the utility u} of location 1 to class 1 is
always less than the utility u% of location 2 to class 1. Thus, all the individual of class
1 has incentive to move to location 2.

Example 2 reveals that reformulation (6) is efficient and can be used to solve some
practical problems.
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