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REGULARITY FOR SOLUTIONS OF NONLINEAR

RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS
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(Communicated by Yeol Je Cho)

Abstract. This paper deals with the existence and uniqueness of solutions for the nonlinear func-
tional differential equations with time delay. The regularity and a variation of constant formula
for solutions of the given equations are also studied.

1. Introduction

Let H and V be two real separable Hilbert spaces such that V is a dense subspace
of H . The subject of this paper is to investigate the regularity for a solution of the
following nonlinear functional differential equation on H :{

x′(t)+Ax(t) =
∫ 0
−h g(t,s,x(t),x(t + s))μ(ds)+ k(t), 0 < t � T,

x(0) = g0, x(s) = g1(s) s ∈ [−h,0).
(NE)

Let the principal operator A be given a single valued, monotone operator, which is
hemicontinuous and coercive from V to V ∗ . Here V ∗ stands for the dual space of V .

If the nonlinear integral term and the forcing term k belong to L2(0,T ;V ∗) , the
basic assumption made in these investigations is taken from the regularity result for the
quasi-autonomous differential equation(see Theorem 2.6 of Chapter III in [3]):{

x′(t)+Ax(t) = k(t), 0 < t � T,

x(0) = g0.

The regular problems of semilinear differential equations with the linear operator A
were studied by Vrabie [7] and Jeong et al. [6]. The existence of solutions for a class
of nonlinear evolution equations in the case in which A is nonlinear were developed
in many references [1, 3-5]. Ahmed and Xiang [1] gave some existence results for the
initial value problem in case where the nonlinear term is not monotone, which improve
Hirano’s result [5].

In this paper, we will establish the existence and regularity for solutions of the
equation (NE) with a nonlinear operator A on L2(0,T ;V )∩W 1,2(0,T ;V ∗) under some
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general condition of the Lipschitz continuity of the nonlinear operator, which is rea-
sonable and widely used in case of the nonlinear system. We also extent the regularity
result of the semilinear case [6] to the equation (NE). with the aid of the intermedi-
ate property and the contraction mapping principle. The main research direction is to
find conditions on the nonlinear term such that the regularity result of (NE) is pre-
served under perturbation and show that the mapping H×L2(0,T ;V )×L2(0,T ;V ∗) �
(g0,g1,k) �→ x ∈ L2(0,T ;V )∩C([0,T ];H) is continuous in view of the monotonicity of
A .

2. Assumptions and main theorem

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the
corresponding injections are continuous. The norm on V , H and V ∗ will be denoted
by || · || , | · | and || · ||∗ , respectively. Thus, in terms of the intermediate theory we may
assume that

(V,V ∗)1/2,2 = H

where (V,V ∗)1/2,2 denotes the real interpolation space between V and V ∗ . The duality
pairing between the element v1 of V ∗ and the element v2 of V is denoted by (v1,v2) ,
which is the ordinary inner product in H if v1,v2 ∈ H . For the sake of simplicity, we
may consider

||u||∗ � |u| � ||u||, u ∈V.

We note that a nonlinear operator A is said to be hemicontinuous on V if

w− lim
t→0

A(x+ ty) = Ax

for every x, y ∈V where “w− lim” indicates the weak convergence on V .
Let A : V −→ V ∗ be given a monotone operator and hemicontinuous from V to

V ∗ such that

A(0) = 0, (Au−Av,u− v) � ω1||u− v||2−ω2|u− v|2, (A1)

||Au||∗ � ω3(||u||+1) (A2)

for every u,v ∈V where ω2 is a real number and ω1, ω3 are some positive constants.
Here, we note that if 0 
= A(0) we need the following assumption

(Au,u) � ω1||u||2−ω2|u|2

for every u ∈ V . It is also known that A is maximal monotone and R(A) = V ∗ where
R(A) denotes the range of A .

Let L and B be the Lebesgue σ -field on [0,∞) and the Borel σ -field on [−h,0]
for some h > 0, respectively. Let μ be a Borel measure on [−h,0] and g : [0,∞)×
[−h,0]×V ×V → H be a nonlinear mapping satisfying the following:
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(i) For any x,y ∈V the mapping g(·, ·,x,y) is strongly L ×B -measurable;
(ii) There exist positive constants L0,L1,L2 such that

|g(t,s,x,y)−g(t,s, x̂, ŷ)| � L1||x− x̂||+L2||y− ŷ||, (G1)

|g(t,s,0,0)| � L0 (G2)

for all (t,s) ∈ [0,∞)× [−h,0] and x, x̂,y, ŷ ∈V .

REMARK 1. The above operator g is the semilinear case of the nonlinear part of
quasilinear equations considered by Yong and Pan [8].

For x ∈ L2(−h,T ;V ) , T > 0 we set

G(t,x) =
∫ 0

−h
g(t,s,x(t),x(t + s))μ(ds). (2.1)

Here as in [8] we consider the Borel measurable corrections of x(·) .
The main theorems of this paper are as follows.

THEOREM 1. (Main) Let the assumptions (A1), (A2), (G1) and (G2) be satisfied.
Then, for every k ∈ L2(0,T ;V ∗) and (g0,g1) ∈ H×L2(0,T ;V ) the equation (NE) has
a unique solution

x ∈ L2(0,T ;V )∩C([0,T ];H)∩W1,2(0,T ;V ∗)

and there exists a constant C1 depending on T such that

||x||L2∩C∩W 1,2 � C1(1+ |g0|+ ||g1||L2(0,T ;V ) + ||k||L2(0,T ;V∗)). (2.2)

As a corollary to Theorem 1, we have the following result.

COROLLARY 1. Let the assumptions (A1), (A2), (G1) and (G2) be satisfied. Let
the operator B be a monotone set in H ×H . Then for every k ∈ L2(0,T ;V ∗) and
(g0,g1) ∈ H ×L2(0,T ;V ) , the Cauchy problem{

x′(t) ∈ (A+B)x(t)+G(t,x(t))+ k(t), 0 < t � T,

x(0) = g0, x(s) = g1(s) s ∈ [−h,0)

has a unique solution
x ∈ L2(0,T ;V )∩C([0,T ];H)

and there exists a constant C2 depending on T such that

||x||L2∩C � C2(1+ |g0|+ ||g1||L2(0,T ;V ) + ||k||L2(0,T ;V∗)).

THEOREM 2. Let the assumptions (A1), (A2), (G1) and (G2) be satisfied and
(g0,g1,k) ∈ H ×L2(0,T ;V )×L2(0,T ;V ∗) , Then the solution x of the equation (NE)
belongs to L2(0,T ;V )∩C([0,T ];H) and the mapping

H×L2(0,T ;V )×L2(0,T ;V ∗) � (g0,g1,k) �→ x ∈ L2(0,T ;V )∩C([0,T ];H)

is continuous.

The proofs will be given in section 3.



1086 J.-M. JEONG AND S.-J. SON

3. Proofs of the main theorems

Let us consider with the quasi-autonomous differential equation{
x′(t)+Ax(t) = k(t), 0 < t � T,

x(0) = g0,
(3.1)

where A is given and satisfies the hypotheses mentioned in section 2. The following
result is from Theorem 2.6 of Chapter III in [3].

LEMMA 1. Let g0 ∈ H and k ∈ L2(0,T ;V ∗) . Then there exists a unique solution
x of (3.1) belonging to

C([0,T ];H)∩L2(0,T ;V )∩W 1,2(0,T ;V ∗)

and satisfying

|x(t)|2 +
∫ t

0
||x(s)||2ds � C3(|g0|2 +

∫ t

0
||k(s)||2∗ds), (3.2)

∫ t

0

∣∣∣∣∣∣dx(s)
ds

∣∣∣∣∣∣2∗dt � C3(|g0|2 +
∫ t

0
||k(s)||2∗ds), (3.3)

where C3 is a constant.

Acting on both sides of (3.1) by x(t) , we have

1
2

d
dt
|x(t)|2 + ω1||x(t)||2 � ω2|x(t)|2 +(k(t),x(t)).

As is seen Theorem 2.6 in [3], integrating from 0 to t we can determine the constant
C3 in this lemma.

The following Lemma is from Brézis [4, Lemma A.5]

LEMMA 2. Let m∈ L1(0,T ;R) satisfying m(t)� 0 for all t ∈ (0,T ) and a � 0 be
a constant. Let b be a continuous function on [0,T ] satisfying the following inequality:

1
2
b2(t) � 1

2
a2 +

∫ t

0
m(s)b(s)ds, t ∈ [0,T ].

Then,

|b(t)| � a+
∫ t

0
m(s)ds, t ∈ [0,T ].

Proof. Let

βε(t) =
1
2
(a+ ε)2 +

∫ t

0
m(s)b(s)ds, ε > 0.
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Then
dβε(t)

dt
= m(t)b(t), τ ∈ (0,T ),

and
1
2
b2(t) � β0(t) � βε(t), t ∈ [0,T ]. (3.4)

Hence, we have
dβε(t)

dt
� m(t)

√
2
√

βε(t).

Since t → βε(t) is absolutely continuous and

d
dt

√
βε(t) =

1

2
√

βε(t)
dβε(t)

dt

for all t ∈ (0,T ) , it holds
d
dt

√
βε(t) � 1√

2
m(t),

that is, √
βε(t) �

√
βε(0)+

1√
2

∫ t

0
m(s)ds, t ∈ (0,T ).

Therefore, combining this with (3.4), we conclude that

|b(t)| �
√

2
√

βε(t) �
√

2
√

βε(0)+
∫ t

0
m(s)ds

= a+ ε +
∫ t

0
m(s)ds, t ∈ [0,T ]

for arbitrary ε > 0. �

LEMMA 3. Let x ∈ L2(−h,T ;V ) , T > 0 . Then the nonlinear term G(·,x) defined
by (2.1) belongs to L2(0,T ;H) and

||G(·,x)||L2(0,T ;H) (3.5)

� μ([−h,0]){L0

√
T +(L1 +L2)||x||L2(0,T ;V ) +L2||g1||L2(−h,0;V)}.

Moreover if x1, x2 ∈ L2(−h,T ;V ) , then

||G(·,x1)−G(·,x2)||L2(0,T ;H) (3.6)

� μ([−h,0]){(L1 +L2)||x1− x2||L2(0,T ;V ) +L2||x1− x2||L2(−h,0;V)}.

Proof. From (G1) and (G2) it is easily seen that

||G(·,x)||L2(0,T ;H) � μ([−h,0]){L0

√
T +L1||x||L2(0,T ;V ) +L2||x||L2(−h,T ;V )}

� μ([−h,0]){L0

√
T +(L1 +L2)||x||L2(0,T ;V ) +L2||x||L2(−h,0;V)}.

The proof of (3.6) is similar. �
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LEMMA 4. For (g0
i ,g

1
i ,ki) ∈ H × L2(−h,0;V)× L2(0,T ;V ∗) (i = 1,2) , let us

consider the following equation:{
y
′
i (t)+Ayi(t) = G(t,xi)+ ki(t), 0 < t � T,

yi(0) = g0
i , yi(s) = g1

i (s) s ∈ [−h,0).
(3.7)

Then for c < ω1 , we have

e−ω2t |y1(t)− y2(t)| (3.8)

� e−ω2t(|g0
1−g0

2|+
√

2c−1||k1− k2||L2(0,T ;V∗))+
∫ t

0
e−ω2s|G(s,x1)−G(s,x2)|ds.

Proof. Invoking Lemma 1 and Lemma 3, we obtain that the problem{
y
′
(t)+Ay(t) = G(t,x)+ k(t), 0 < t � T,

y(0) = g0, y(s) = g1(s) s ∈ [−h,0)

has a unique solution y ∈ L2(0,T ;V )∩C([0,T ];H) . Let y1, y2 be the solutions of (3.7)
with x replaced by x1, x2 ∈ L2(0,T ;V ) , respectively. From (3.7) it follows that{

y
′
1(t)− y

′
2(t)+Ay1(t)−Ay2(t) = G(t,x1)−G(t,x2)+ k1(t)− k2(t), t > 0,

y1(0)− y2(0) = g0
1−g0

2, y1(s)− y2(s) = g1
1(s)−g1

2(s), s ∈ [−h,0).
(3.9)

Multiplying on both sides of y1(t)− y2(t) and by the assumption (A1), we get

1
2

d
dt
|y1(t)− y2(t)|2 + ω1||y1(t)− y2(t)||2

� ω2|y1(t)− y2(t)|2 + |G(t,x1)−G(t,x2)| |y1(t)− y2(t)| (3.10)

+ ||k1(t)− k2(t)||∗ ||y1(t)− y2(t)||.

Putting
H(t) = |G(t,x1)−G(t,x2)| |y1(t)− y2(t)|

and we can choose a constant c > 0 such that ω1− c > 0 and

||k1(t)− k2(t)||∗ ||y1(t)− y2(t)|| � 1
c
||k1(t)− k2(t)||2∗ + c||y1(t)− y2(t)||2.

By integrating (3.10) over (0,t) , this yields that

1
2
|y1(t)− y2(t)|2 +(ω1− c)

∫ t

0
||y1(s)− y2(s)||2ds (3.11)

� 1
2
|g0

1−g0
2|2 +

1
c
||k1− k2||2L2(0,T ;V ) + ω2

∫ t

0
|y1(s)− y2(s)|2ds+

∫ t

0
H(s)ds.
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From (3.11) it follows that

d
dt
{e−2ω2t

∫ t

0
|y1(s)− y2(s)|2ds} (3.12)

= 2e−2ω2t
{1

2
|y1(t)− y2(t)|2 −ω2

∫ t

0
|y1(s)− y2(s)|2ds

}
� 2e−2ω2t

{ 1
2
|g0

1−g0
2|2 +

1
c
||k1− k2||2L2(0,T ;V∗) +

∫ t

0
H(s)ds

}
.

Integrating (3.12) over (0,t) we have

e−2ω2t
∫ t

0
|y1(s)− y2(s)|2ds

� e−2ω2t

ω2

{ 1
2
|g0

1−g0
2|2 +

1
c
||k1− k2||2L2(0,T ;V∗V )

}
+2

∫ t

0
e−2ω2τ

∫ τ

0
H(s)dsdτ

=
e−2ω2t

ω2

{ 1
2
|g0

1−g0
2|2 +

1
c
||k1− k2||2L2(0,T ;V∗)

}
+2

∫ t

0

∫ t

s
e−2ω2τdτH(s)ds

=
e−2ω2t

ω2

{ 1
2
|g0

1−g0
2|2 +

1
c
||k1− k2||2L2(0,T ;V∗)

}
+2

∫ t

0

e−2ω2s − e−2ω2t

2ω2
H(s)ds

=
e−2ω2t

ω2

{ 1
2
|g0

1−g0
2|2 +

1
c
||k1− k2||2L2(0,T ;V∗)

}
+

1
ω2

∫ t

0
(e−2ω2s − e−2ω2t)H(s)ds,

thus, we get

ω2

∫ t

0
|y1(s)− y2(s)|2ds

� 1
2
|g0

1−g0
2|2 +

1
c
||k1 − k2||2L2(0,T ;V ∗) +

∫ t

0
(e2ω2(t−s)−1)H(s)ds. (3.13)

Combining (3.11) with (3.13) it holds that

1
2
|y1(t)− y2(t)|2 +(ω1− c)

∫ t

0
||y1(s)− y2(s)||2ds (3.14)

� |g0
1−g0

2|2 +
2
c
||k1 − k2||2L2(0,T ;V ∗) +

∫ t

0
e2ω2(t−s)H(s)ds

= |g0
1−g0

2|2 +
2
c
||k1 − k2||2L2(0,T ;V ∗) +

∫ t

0
e2ω2(t−s)|G(s,x1)−G(s,x2)| |y1(s)− y2(s)|ds,

which implies

1
2
(e−ω2t |y1(t)− y2(t)|)2 +(ω1− c)e−2ω2t

∫ t

0
||y1(s)− y2(s)||2ds

� e−2ω2t(|g0
1−g0

2|2 +
2
c
||k1 − k2||L2(0,T ;V ∗))

2

+
∫ t

0
e−ω2s|G(s,x1)−G(s,x2)|e−ω2s|y1(s)− y2(s)|ds.
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By using Lemma 2, we obtain that

e−ω2t |y1(t)− y2(t)|
� e−ω2t(|g0

1−g0
2|+

√
2c−1||k1− k2||L2(0,T ;V∗))+

∫ t

0
e−ω2s|G(s,x1)−G(s,x2)|ds. �

Proof of Theorem 1. Let (g0
i ,g

1
i ) ∈ H × L2(−h,0;V ) (i = 1,2) . Consider the

following equation:{
y
′
i (t)+Ayi(t) = G(t,xi)+ k(t), 0 < t � T,

yi(0) = g0, yi(s) = g1(s) s ∈ [−h,0).

Then it follows that{
y
′
1(t)− y

′
2(t)+Ay1(t)−Ay2(t) = G(t,x1)−G(t,x2), t > 0,

y1(0)− y2(0) = 0, y1(s)− y2(s) = 0, s ∈ [−h,0).

Let us fix T0 > 0 such that

1
4ω1ω2

(e2ω2T0 −1)μ([−h,0])2(L1 +L2)2 < 1. (3.15)

By using Lemma 4, we are going to show that x �→ y is strictly contractive from
L2(0,T0;V ) to itself if the condition (3.15) is satisfied. From (3.14) and (3.8) it fol-
lows that

1
2
|y1(t)− y2(t)|2 + ω1

∫ t

0
||y1(s)− y2(s)||2ds (3.16)

�
∫ t

0
e2ω2(t−s)|G(s,x1)−G(s,x2)|

∫ s

0
eω2(s−τ)|G(τ,x1)−G(τ,x2)|dτds

= e2ω2t
∫ t

0
e−ω2s|G(s,x1)−G(s,x2)|

∫ s

0
e−ω2τ |G(τ,x1)−G(τ,x2)|dτds

= e2ω2t
∫ t

0

1
2

d
ds

{
∫ s

0
e−ω2τ |G(τ,x1)−G(τ,x2)|dτ}2ds

=
1
2
e2ω2t{

∫ t

0
e−ω2τ |G(τ,x1)−G(τ,x2)|dτ}2

� 1
2
e2ω2t

∫ t

0
e−2ω2τdτ

∫ t

0
|G(τ,x1)−G(τ,x2)|2dτ

=
1
2
e2ω2t

1− e−2ω2t

2ω2

∫ t

0
|G(τ,x1)−G(τ,x2)|2dτ

=
1

4ω2
(e2ω2t −1)

∫ t

0
|G(s,x1)−G(s,x2)|2ds.

From (3.6) of Lemma 3 it follows that for any t > 0

||G(·,x1)−G(·,x2)||L2(0,t;H) � μ([−h,0])(L1 +L2)||x1 − x2||L2(0,t;V ),
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and hence in view of (3.16) we have proved

1
2
|y1(t)− y2(t)|2 + ω1

∫ t

0
||y1(s)− y2(s)||2ds (3.17)

� 1
4ω2

(e2ω2t −1)μ([−h,0])2(L1 +L2)2
∫ t

0
||x1(s)− x2(s)||2ds.

Starting from the initial value x0(t) = g0 , x0(s) = g1(s) for s ∈ [−h,0) consider a
sequence {xn(·)} satisfying{

d
dt xn+1(t)+Axn+1(t) = G(t,xn)+ k(t), 0 < t � T,

xn(0) = g0, xn(0) = g1(s), s ∈ [−h,0).

Then from (3.8) of Lemma 4, it follows that

1
2
|xn+1(t)− xn(t)|2 + ω1

∫ t

0
||xn+1(s)− xn(s)||2ds (3.18)

� 1
4ω2

(e2ω2t −1)μ([−h,0])2(L1 +L2)2
∫ t

0
||xn(s)− xn−1(s)||2ds.

So by virtue of the condition (3.15) the contraction principle gives that there exists
x(·) ∈ L2(0,T0;V ) such that

xn(·) → x(·) in L2(0,T0;V ),

and hence, from (3.18) there exists x(·) ∈C([0,T0];H) such that

xn(·) → x(·) in C(0,T0;H).

Next we establish the estimates of solution. Let y be the solution of{
y
′
(t)+Ay(t) = k(t), 0 < t � T0,

y(0) = g0.

Then, since
(x′(t)− y

′
(t))+Ax(t)−Ay(t) = G(t,x),

by multiplying by x(t)− y(t) and (A1), we obtain

1
2
|x′(t)− y

′
(t)|2 + ω1||x(t)− y(t)||2 (3.19)

� ω2|x(t)− y(t)|2 + |G(t,x)| |x(t)− y(t)|.
By integrating on (3.19) over (0,t) we have

1
2
|x(t)− y(t)|2 + ω1

∫ t

0
||x(s)− y(s)||2ds (3.20)

� ω2

∫ t

0
|x(s)− y(s)|2ds+

∫ t

0
|G(s,x)| |x(s)− y(s)|ds.
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By the procedure similar to (3.16) we have

1
2
|x(t)− y(t)|+ ω1

∫ t

0
||x(s)− y(s)||2ds

�
∫ t

0
e2ω2(t−s)|G(s,x)|

∫ s

0
eω2(s−τ)|G(τ,x)|dτds

=
1

4ω2
(e2ω2t −1)

∫ t

0
|G(s,x))|2ds

� 1
4ω2

(e2ω2t −1)
∫ t

0
|G(s,x)|2ds.

Put

N =
1

4ω1ω2
(e2ω2T0 −1).

Then it holds

||x− y||L2(0,T0;V ) � N1/2μ([−h,0]){L0

√
T 0 +(L1 +L2)||x||L2(0,T0;V ) +L2||g1||L2(−h,0;V)}.

and hence, from (3.2) of Lemma 1, we have that

||x||L2(0,T0;V ) � 1

1−N1/2μ([−h,0])(L1 +L2)
||y||L2(0,T0;V ) (3.21)

+
N1/2μ([−h,0]){L0

√
T 0 +L2||g1||L2(−h,0;V)}

1−N1/2μ([−h,0])(L1 +L2)

�
√

C3

1−N1/2μ([−h,0])(L1 +L2)
(||g0||+ ||k||L2(0,T0;V ∗))

+
N1/2μ([−h,0]){L0

√
T 0 +L2||g1||L2(−h,0;V)}

1−N1/2μ([−h,0])(L1 +L2)

� C1(1+ |g0|+ ||g1||L2(−h,0;V) + ||k||L2(0,T0;V ∗))

for some positive constant C1 . Noting that

L2(0,T0;V )∩W 1,2(0,T0;V
∗) ⊂C([0,T0];(V,V ∗)1/2,2) (3.22)

= C([0,T0];H).

It follows from (3.21), (3.22) that

|x(T0)| � C1(1+ |g0|+ ||g1||L2(0,T0;V ) + ||k||L2(0,T0;V∗)).

Thus, since the condition (3.15) is independent of initial values, we can solve the equa-
tion in [T0,2T0] with the initial value x(T0) and obtain an analogous estimate to (3.21)
holds for the solution under the condition (3.15). By repeating this process, the solu-
tion of (NE) can be extended the interval [0,nT0] for natural number n , i.e., for the
initial x(nT0) in the interval [nT0,(n+1)T0] , as analogous estimate (3.21) holds for the
solution in [0,(n+1)T0] . Hence, the proof of Theorem 1 is complete. �
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Proof of Theorem 2. If (g0,g1) ∈ H ×L2(0,T ;V ) and k ∈ L2(0,T ;H) then x be-
longs to L2(0,T ;V )∩C([0,T ];H) from Theorem2.1. Let (g0

i ,g
1
i ,ki)∈H×L2(0,T ;V )×

L2(0,T ;H) and xi be the solution of (NE) with (g0
i ,g

1
i ,ki) in place of (g0,g1,k) for

i = 1, 2. Multiplying on (NE) by x1(t)− x2(t) , we have

1
2

d
dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2 (3.23)

� ω2|x1(t)− x2(t)|2 + |G(t,x1)−G(t,x2)| |x1(t)− x2(t)|
+ ||k1(t)− k2(t)||∗ ||x1(t)− x2(t)||.

Put
H(t) = |G(t,x1)−G(t,x2)| |x1(t)− x2(t)|.

Then by similar to (3.11), for c < ω1 , we have

1
2
|x1(t)− x2(t)|2 +(ω1− c)

∫ t

0
||x1(s)− x2(s)||2ds

� 1
2
|g0

1−g0
2|2 + ω2

∫ t

0
|x1(s)− x2(s)|2ds+

1
c
||k1− k2||2L2(0,T ;V∗) +

∫ t

0
H(s)ds.

Thus, by the similar way to (3.14) and (3.8) we have

1
2
|x1(t)− x2(t)|2 +(ω1− c)

∫ t

0
||x1(s)− x2(s)||2ds (3.24)

� |g0
1−g0

2|2 +
2
c
||k1− k2||2L2(0,T ;V∗) +

∫ t

0
e2ω2(t−s)H1(s)ds.

and

e−ω2t |x1(t)− x2(t)| � e−ω2t(|g0
1−g0

2|2 +
√

2c−1||k1− k2||L2(0,T ;V∗)) (3.25)

+
∫ t

0
e−ω2s|G(s,x1)−G(s,x2)|ds.

From (3.24) and (3.25) it follows that

1
2
|x1(t)− x2(t)|2 +(ω1− c)

∫ t

0
||x1(s)− x2(s)||2ds (3.26)

� |g0
1−g0

2|2 +
2
c
||k1− k2||2L2(0,T ;V∗)

+ (|g0
1−g0

2|2 +
√

2c−1||k1− k2||L2(0,T ;V∗))
∫ t

0
e2ω2(t−s)|G(s,x1)−G(s,x2)|ds

+
∫ t

0
e2ω2(t−s)|G(s,x1)−G(s,x2)|

∫ s

0
eω2(s−τ)|G(τ,x1)−G(τ,x2)|dτds.

The third term of the right hand side of (3.22) is estimated as

(e2ω2t −1)
4ω2

∫ t

0
|G(s,x1)−G(s,x2)|2ds. (3.27)
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The second term of the right hand side of (3.22) is estimated as

1
2
(|g0

1−g0
2|2 +

√
2c−1||k1− k2||L2(0,T ;V∗))

2 +
(e4ω2t −1)

8ω2

∫ t

0
|G(s,x1)−G(s,x2)|2ds.

(3.28)
We note that from (3.6) of Lemma 3 for 0 < t < T

||G(·,x1)−G(·,x2)||L2(0,t;H) (3.29)

� μ([−h,0]){(L1 +L2)||x1 − x2||L2(0,t;V ) +L2||g1
1−g2

2||L2(−h,0;V)}.
Let T1 < T be such that

ω1 − c−min
{e2ω2T1 −1)

4ω2
,
(e4ω2T1 −1)

8ω2

}
[μ([−h,0])(L1 +L2)]2 > 0.

Therefore, from (3.26)–(3.29) it follows that there exists a constant C > 0 such that

|x1(T1)− x2(T1)|2 +
∫ T1

0
||x1(s)− x2(s)||2ds (3.30)

� C(|g0
1−g0

2|2 + ||g1
1−g2

2||L2(−h,0;V) +
∫ T1

0
|k1(s)− k2(s)|2ds)

Suppose (g0
n,g

1
n,kn) → (g0,g1,k) in ∈ H ×L2(0,T ;V )×L2(0,T ;H) , and let xn and x

be the solutions (NE) with (g0
n,g

1
n,kn) and (g0,g1,k) , respectively. Then, by virtue of

(3.30), we see that xn → x in L2(0,T1,V )∩C([0,T1];H) . This implies that xn(T1) →
x(T1) in H . Therefore the same argument shows that xn → x in

L2(T1,min{2T1,T};V )∩C([T1,min{2T1,T}];H).

Repeating this process, we conclude that xn → x in L2(0,T ;V )∩C([0,T ];H) .
If k ∈ L2(0,T,V ∗) we can choose a constant c0 > 0 such that

ω1− c0

2
−ω−1

2 μ([−h,0])2(L1 +L2)2(e2ω2T1 −1) > 0.

and in (3.23)

||k1(t)− k2(t)||∗ ||x1(t)− x2(t)|| � 1
2c0

||k1(t)− k2(t)||∗ +
c0

2
||x1(s)− x2(s)||2.

Thus, by the similar way to the proof of the case where k ∈ L2(0,T,H) we can obtain
the results. �

REMARK 2. Let us assume that the embedding V ⊂ H is compact. Let xk be
the solution of the equation (NE) corresponding to k ∈ L2(0,T ;H) . Hence if k is
bounded in L2(0,T ;V ∗) , then so is xk in L2(0,T ;V )∩W 1,2(0,T ;V ∗) from Theorem
1. Since V is compactly embedded in H by assumption, the embedding L2(0,T ;V )∩
W 1,2(0,T ;V ∗) ⊂ L2(0,T ;H)) is compact in view of Theorem 2 of Aubin [2]. Hence,
the mapping k �→ xk is compact from L2(0,T ;V ∗) to L2(0,T ;H) .
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