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REGULARITY FOR SOLUTIONS OF NONLINEAR
RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

JIN-MUN JEONG AND SANG-JIN SON

(Communicated by Yeol Je Cho)

Abstract. This paper deals with the existence and uniqueness of solutions for the nonlinear func-
tional differential equations with time delay. The regularity and a variation of constant formula
for solutions of the given equations are also studied.

1. Introduction

Let H and V be two real separable Hilbert spaces such that V' is a dense subspace
of H. The subject of this paper is to investigate the regularity for a solution of the
following nonlinear functional differential equation on H :

X (1) +Ax(t) = f?h g(t,s,x(t),x(t+s))u(ds)+k(r), 0<r<T, (NE)
x(0)=g" x(s)=g'(s) se[-h0).

Let the principal operator A be given a single valued, monotone operator, which is
hemicontinuous and coercive from V to V*. Here V* stands for the dual space of V.
If the nonlinear integral term and the forcing term k belong to L?(0,T;V*), the
basic assumption made in these investigations is taken from the regularity result for the
quasi-autonomous differential equation(see Theorem 2.6 of Chapter III in [3]):
X(t)+Ax(t)=k(), 0<1<T,
x(0) = g°.
The regular problems of semilinear differential equations with the linear operator A
were studied by Vrabie [7] and Jeong et al. [6]. The existence of solutions for a class
of nonlinear evolution equations in the case in which A is nonlinear were developed
in many references [1, 3-5]. Ahmed and Xiang [1] gave some existence results for the
initial value problem in case where the nonlinear term is not monotone, which improve
Hirano’s result [5].

In this paper, we will establish the existence and regularity for solutions of the
equation (NE) with a nonlinear operator A on L*(0,7;V)NW!2(0,T;V*) under some
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general condition of the Lipschitz continuity of the nonlinear operator, which is rea-
sonable and widely used in case of the nonlinear system. We also extent the regularity
result of the semilinear case [6] to the equation (NE). with the aid of the intermedi-
ate property and the contraction mapping principle. The main research direction is to
find conditions on the nonlinear term such that the regularity result of (NE) is pre-
served under perturbation and show that the mapping H x L?(0,T;V) x L*(0,T;V*) >
(g, ¢',k) —x € L?(0,T;V)NC([0,T];H) is continuous in view of the monotonicity of
A.

2. Assumptions and main theorem

If H is identified with its dual space we may write V C H C V* densely and the
corresponding injections are continuous. The norm on V, H and V* will be denoted
by ||-]], || and || - ||, respectively. Thus, in terms of the intermediate theory we may
assume that

V.V )ip2=H

where (V,V*);/2, denotes the real interpolation space between V and V*. The duality
pairing between the element v; of V* and the element v, of V is denoted by (v1,v7),
which is the ordinary inner product in H if v;,v, € H. For the sake of simplicity, we
may consider

el |« < ful <full, weV.

We note that a nonlinear operator A is said to be hemicontinuous on V if
w— linéA(x +1y) =Ax
—!

forevery x, y € V where “w —lim” indicates the weak convergenceon V.

Let A:V — V* be given a monotone operator and hemicontinuous from V to
V* such that

A0)=0, (Au—Av,u—v) > o|ju—v|]*— wlu—v|, (A1)
||Au|]. < o3([|u|[+1) (A2)

for every u,v € V where w, is a real number and ®;, w3 are some positive constants.
Here, we note that if 0 # A(0) we need the following assumption

(Au, ) > o [[ul* — @ful?

* where

for every u € V. It is also known that A is maximal monotone and R(A) =V
R(A) denotes the range of A.

Let .Z and Z be the Lebesgue o -field on [0,0) and the Borel o -field on [—£,0]
for some h > 0, respectively. Let u be a Borel measure on [—%,0] and g : [0,00) x

[~h,0] x V x V — H be a nonlinear mapping satisfying the following:



REGULARITY FOR SOLUTIONS OF NONLINEAR RETARDED EQUATIONS 1085

(i) For any x,y € V the mapping g(-,-,x,y) is strongly £ x Z-measurable;
(i1) There exist positive constants Ly, L;,L, such that

g (t,5,x,y) — g(t,5,%,9)] < Li||x — &[] + La[|ly — 911, (Gl
1g(1,5,0,0)| < Lo (G2)

for all (¢,s) € [0,%0) X [—h,0] and x,%,y,§ € V.
REMARK 1. The above operator g is the semilinear case of the nonlinear part of

quasilinear equations considered by Yong and Pan [8].

For x € L*>(—h,T;V), T > 0 we set

0
Glt,x) = th(t,s,x(t),x(t+s))u(ds). @.1)

Here as in [8] we consider the Borel measurable corrections of x(-).
The main theorems of this paper are as follows.

THEOREM 1. (Main) Let the assumptions (Al), (A2), (G1) and (G2) be satisfied.
Then, for every k € L*(0,T;V*) and (g°,¢") € H x L*(0,T;V) the equation (NE) has
a unique solution

x € L*0,T;V)NC([0,T);H)NW2(0,T;V*)
and there exists a constant Cy depending on T such that
Il 2ncrmwi2 < Cr(1+ (g% +11¢"| 20,y T 1Kl 20,7+9)- 2.2)
As a corollary to Theorem 1, we have the following result.
COROLLARY 1. Let the assumptions (Al), (A2), (G1) and (G2) be satisfied. Let

the operator B be a monotone set in H x H. Then for every k € L*(0,T;V*) and
(g%, ¢") € H x L*(0,T;V), the Cauchy problem

X (1) € (A+B)x(t) + G(t,x(t)) + k(r), 0<r<T,
x(0)=g"% x(s)=g'(s) se[-h0)
has a unique solution
x € L*(0,T;V)NC([0,T];H)
and there exists a constant Cy depending on T such that

Il 20¢ < C2(1+ 1% + g l200,7:v) 1kl 200, 704)-

THEOREM 2. Let the assumptions (Al), (A2), (GI) and (G2) be satisfied and
(g%, ¢',k) € Hx L*(0,T;V) x L*(0,T;V*), Then the solution x of the equation (NE)
belongs to L*(0,T;V)NC([0,T];H) and the mapping

Hx L*0,T;V) x L*(0,T;V*) 3 (¢° &', k) — x € L*(0,T;V)NC([0,T]; H)
is continuous.

The proofs will be given in section 3.
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3. Proofs of the main theorems
Let us consider with the quasi-autonomous differential equation

{ X () +Ax(t)=k(r), 0<t<T, 3.1

where A is given and satisfies the hypotheses mentioned in section 2. The following
result is from Theorem 2.6 of Chapter III in [3].

LEMMA 1. Let g° € H and k € L*(0,T;V*). Then there exists a unique solution
x of (3.1) belonging to

C([0,T);H)NL*(0,T;V)NW (0, T; V")

and satisfying
g !
(1) + / [[x(s)|[Pds < C3(1&°* + / 1k(s)|[3ds), (32)
0 0
t11dx(s) |2 o [ )
/o ds H*‘”<C3(\8 | +/O 1k (s)|[ds), (3.3)

where C3 is a constant.

Acting on both sides of (3.1) by x(¢), we have

5= (O] + o1 |[e(0)]* < @nlx(0) P+ (k(2),x(1)).

As is seen Theorem 2.6 in [3], integrating from O to # we can determine the constant
C3 in this lemma.
The following Lemma is from Brézis [4, Lemma A.5]

LEMMA 2. Let m € L'(0,T;R) satisfying m(t) >0 forall t € (0,T) and a >0 be
a constant. Let b be a continuous function on [0,T) satisfying the following inequality:

%b%) < %a2+ /O "m(s)b(s)ds, 1€ [0,T).

Then,
r
|b(t)|<a+/ m(s)ds, 1€[0,T).
0

Proof. Let

Be(t) = %(a—l—&‘)z—l-/Otm(s)b(s)ds7 e>0.
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Then dBe(7)
< (1
——= L =mnb(t), TE(O.T),
and 1
S50 < Bo(t) < Bele), 1 €[0,T) G4

Hence, we have
P < o) V2 /B0,

Since # — B¢ (1) is absolutely continuous and

d 1 dBe)
EVﬂg(t)_Z\/ﬁg—(t) dl

forall € (0,T), it holds

d 1
7V Be(t) < \/_Em(t)’

that is,

1 t
Be(t) < \/ﬁg(0)+ﬁ/0 m(s)ds, te(0,T).

Therefore, combining this with (3.4), we conclude that

(0 < VAVBD < VEVEO) + [ m(s)ds
:a+£+/0tm(s)ds, t€[0,T]
for arbitrary € > 0. [

LEMMA 3. Let x € L>(—h,T;V), T > 0. Then the nonlinear term G(-,x) defined
by (2.1) belongs to L*(0,T;H) and

NG 02 0,7:m) (3.5)

< ([ OD{LoVT + (Ly + La) ¥l 20,7 + Lllg |20y }-

Moreover if x1, x; € L2(—h, T;V), then

|G(-x1) — G('7x2)”L2(O,T;H) (3.6)

< u([=h,0D{(L1 + Lo)lx1 = %2l 20, 7vy + Lol X1 — X2l 2oy -

Proof. From (G1) and (G2) it is easily seen that
HG('7X)HL2(O,T;H) < I-‘([_hvo]){l@ﬁ+LlHXHLZ(O,T;V) +L2HXHL2(7h,T;V)}
< p([=h, OD{LoVT + (L1 + La) || l20,7:v) + Lallxl |2 (<o) }-

The proof of (3.6) is similar. [
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LEMMA 4. For (§0,gl,k)) € H x L*(—=h,0;V) x L*(0,T;V*) (i = 1,2), let us
consider the following equation:

3 () + A1) = Glt,x) + i), 0<r<T, a7
i(0) =g, yi(s)=gl(s) s€[-h0). '
Then for ¢ < my, we have
e yi(t) —y2(0)] (3.8)

!
< e_th(|g(l) _8(2)‘ + 2C_1Hk1 - k2HL2(O,T;V*)) +/0 e_wZS‘G(svxl) - G(s,x2)|ds.

Proof. Invoking Lemma 1 and Lemma 3, we obtain that the problem

Y () +Ay(t) = G(t X)+k() 0<t<T,
y(0)=4g" y(s)=g'(s) s€[-h,0)

has a unique solution y € L*(0,T;V)NC([0,T];H). Let y;, y» be the solutions of (3.7)
with x replaced by x, xo € L>(0,T;V), respectively. From (3.7) it follows that

{ V1) = y3(1) + Ayi (1) = Aya(t) = G(t,301) = Glt,02) +ki (1) —ka(t), 1> 0,

1(0) =32(0) = g — g3, yi(s) —y2(s) = gi(s) —g3(s). s €[~h,0).
3.9
Multiplying on both sides of y;(r) — y»(z) and by the assumption (A1), we get

LI )P+ r (1) a0

< o lyi (1) = y2(t)* +|G(t,x1) — G(t,x2)| [y1(£) — y2(1)] (3.10)
+ [k () = ko ()] ]« [[y1 () = ¥2(0)]]-

Putting
H(t) =[G(t,x1) — G(t,x2)| [y1 () — y2(1)]

and we can choose a constant ¢ > 0 such that @w; —c¢ > 0 and
1
1kt (7) = ko (@)]] [[y1(5) =32 ()] < — [k (2) —ka(t)[Z +clly1 (1) = y2 ()]
By integrating (3.10) over (0,¢), this yields that
1 2 ! 2
5 1) =32(0)]" + (e —C)/O [[y1(s) = y2(s)[|"ds (3.11)

1 1 t t
< 5188 =8P+ 2l ~al oy 02 [ r() =ra(o)Pds+ [ H(s)ds
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From (3.11) it follows that
{6‘2"’” / yi(s) —y2(s)|ds} (3.12)
- 2e*2”2’{ 3010 =30F = @ [ bi(s) - ra(6) s}
<2020 U= g + 2l — kol By + [ HOdS}.

Integrating (3.12) over (0,7) we have

/ [vi(s) s)|*ds

e 1 -
< wz { |g1 &+ + Ik~ kol 720 70w }+2/ 2‘*’”/ H(s)dsdt
= { el — g3+ Il — kel [Fao oy }+2/ / e 22T qTH (5)ds
—20’2 2 1 o205 _ ,—2ant
S { |81 &l EHkl k2|\L2 0T+ }+2/ —wzH(s)ds
— 6—2602t{ _| 0_ 0|2+1||k —k H2 }+_ t(e_z"’ZS—e_zwzt)H(s)ds
- oy ) 8182 ¢ 1 2 L2(0,T:V*) o Jo s

thus, we get

(02/ [v1(s) 2ds

:

3188 — 83+ Ik —k2||iz(om + [@= - pH@ds 61y

Combining (3.11) with (3.13) it holds that
210 =220+ @) [ [i(s) 0] P (.14
<lgl -l + %Hlﬂ — kol 20wy + /Ot 2= H (s)ds
=168 =8 21l — kel e+ | G 30) — Gls,30) b 5) — (),
which implies
30 =32 + (@~ e [ |ln(s) — (o)l
Se 20}2t(| 82|2 —||k1 _k2HL2(O,T;V*))2

+ [ 16050 - Gls, e () ~ ol
0
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By using Lemma 2, we obtain that

e yi(t) = y2(1)]

1
<& () = g3+ V2e Tl ~kal o) + [ € G(s0) ~ Glsx)lds. O

Proof of Theorem 1. Let (g%,g}) € H x L*(—h,0;V) (i
following equation:

yi(t) +Ayi(t) = G(t,x;) +k(t), 0<1<
yi(0)=g% yi(s)=g'(s) se[-h,0).

Then it follows that

{ Y1(t) = y3(t) +Ayi (1) — Aya(r) =
¥1(0) =32(0) =0, yi(s) —y2(s)
Let us fix Ty > 0 such that

1

T (20— Du([=h,0])*(Li + L) <

4w

1,2).

( 1) —G(1,x2),
= s € [—h,0).

t>0,

Consider the

(3.15)

By using Lemma 4, we are going to show that x — y is strictly contractive from
L?(0,Ty;V) to itself if the condition (3.15) is satisfied. From (3.14) and (3.8) it fol-

lows that

1O =2 OF + o1 [ 1) = ()]s

1 S
< / 209G (s5,x1) — G(s,%2)| / 679G (1, x1) — G(7,x2)|dvds
0 0

! N
- ezwﬂ/ eiwzx‘G(saxl) - G(S,X2)| / eiwzr‘G(T?xl) - G(T,X2)|deS
0

:ezwzf/ 2ds{/ |G (1,x1) — G(7,x2)|d7)2ds
1
! / e ®7G(1,x1) — G(7,x2)|d7)>
0

1 ' t
<§e2“’2"/e‘2“’ﬂdr/ G(t,x1) = G(t,x)PdT
0

2
= (2 — / |G(s,x1) — G(s,x2)|?ds.

1 72(»2[
_ Lpeylze ™ / |G(1,x1) — G(T,x2)|*dT

From (3.6) of Lemma 3 it follows that for any # > 0

G (- x1) = G(,x2) |20 5m) < M([=R,01) (L1 + L) ||x1 — x2[ |12 (0 137

(3.16)
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and hence in view of (3.16) we have proved

0 =P + o1 [ [nils) = ()]s G.17)
< 4 @ = V(R0 + 122 [ [ (s) )]s

Starting from the initial value xo(t) = g°, xo(s) = g'(s) for s € [~h,0) consider a

sequence {x,(-)} satisfying

{ A1 (1) +Axpi1 (1) = Glt,x0) +k(1), 0<1<T,
x(0) =g x,(0)=g'(s), s€&[-h,0).

Then from (3.8) of Lemma 4, it follows that

%|xn+1(t) —xu(t))* + 0y /Ot Xt 1 (8) —xa(5)|*ds (3.18)
< ﬁ(em’zt D) u(—h, 02 (L + Ln)? /0 " as) — 201 ()] 2ds.

So by virtue of the condition (3.15) the contraction principle gives that there exists
x(-) € L*(0,Tp; V) such that

Xo(-) = x(-) in L*0,Ty;V),
and hence, from (3.18) there exists x(-) € C([0, Tp]; H) such that
Xu(-) —x(-) in C(0,Ty;H).

Next we establish the estimates of solution. Let y be the solution of

{ (t)+Ay() k(t), 0<t<Tp,
y(0) =

Then, since )
(' (1) =y (1)) +Ax(t) — Ay(t) = G(t,x),
by multiplying by x(7) — y(¢) and (A1), we obtain

SO~ 0P + onllx(r) (1) (3.19)

< @2lx(t) = y(0) P +1G(t,x)| [x(z) = y(1)].

By integrating on (3.19) over (0,7) we have
|x( (0))*+ o / |x(s) —y(s)||*ds (3.20)

(Dz/ |x(s) 2ds—l—/ |G(s,x)||x(s) — y(s)|ds.
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By the procedure similar to (3.16) we have
S0 =30 +o1 [ [1x(s) = 5()| s
1 N
< / 2020) |G (s,.%)| / ™57\ (1, x)|dTds
0

= (2™ — /|Gsx )|ds

<— 2ot _ /|Gsx|ds
Put 1
=—— (20 ),
4w1w2(e )
Then it holds

X =ll200,m:v) < NY2u([=h,0)){LoV'To+ (L1 +Lo)]|x| l20,7:v) + Lol 8] l2(=now) b
and hence, from (3.2) of Lemma 1, we have that

1

) S . 3.21
HXHLZ(O,TO,V) 1 —Nl/z,u([—h,O})(Ll 1) H)’HLZ(QTO,V) ( )
N'2u([—h,0)){LoV'To + Lollg' 2 (—now }
1 —NI/Z.LL([—}LOD(Ll + L)
VG 0
< k BDVAS
= Nu([—h,0)) (L —|—L2)(Hg [+ 11Kl 20,70+
N'Y2u([=h,01){LoV'To +L2|\81|\L2(7h,0;\/)}
L= N'Y2u([~=h,0]) (L1 + Lo)
<Ci(1+1g%+ 18" 122 (—nowy + Kl |20, 7:v+))
for some positive constant C; . Noting that

L*(0,To:V)NW'2(0,To;V*) € C([0,To); (V.V*)1/2.2) (3.22)

It follows from (3.21), (3.22) that

(7o) < CL(1+ 18] + 1181l 207 + Ikl 20 70))-

Thus, since the condition (3.15) is independent of initial values, we can solve the equa-
tion in [Tp,27Tp] with the initial value x(7) and obtain an analogous estimate to (3.21)
holds for the solution under the condition (3.15). By repeating this process, the solu-
tion of (NE) can be extended the interval [0,nTy] for natural number n, i.e., for the
initial x(nTp) in the interval [nTy, (n+ 1)Ty], as analogous estimate (3.21) holds for the
solution in [0, (n+ 1)Ty]. Hence, the proof of Theorem 1 is complete. [
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Proof of Theorem 2. 1f (g°,g') € H x L*(0,T;V) and k € L*(0,T;H) then x be-
longsto L2(0,7;V)NC([0,T];H) from Theorem 2.1. Let (g7, g}, k) € Hx L*(0,T;V) x
L*(0,T;H) and x; be the solution of (NE) with (g7, g!,k;) in place of (g% ¢! k) for
i =1, 2. Multiplying on (NE) by x; (¢) — x2(), we have

S —|x1 () —x2(6) P + o1 [[x1 (1) — x2(1) || (3.23)

< ol (1) —x2(0) P +[G(1,x1) = Gt,x2)| 31 () = xa (1)
+{[ka (1) = k()]s [Per (1) = x2(1)]]-

Put
H(t) =|G(t,x1) = G(t,x2)| |x1 (1) — x2(1)]-

Then by similar to (3.11), for ¢ < @;, we have
1 :
300 =)+ (@ =) [ [ln() —xals)|Pds
< 18—+ n [ s —a()Pds+ 2k~ kol + [ HS
Thus, by the similar way to (3.14) and (3.8) we have
S0 0P + (=) [ () —x()|Pds (.24
<lgl -l + %qu _k2|‘i2(0,T;V*) + /Ot E2UIH, (5)ds.
and
e [x (1) = xa ()] < e (Ig) — 837 + V2 N [ky — Ko l20,7:v+)) (3.25)
+ /Ot e *|G(s,x1) — G(s,x2)|ds.
From (3.24) and (3.25) it follows that
S0 =)+ @) [ () x| Pds (3.26)
< I8~ 3P + 21k — ol
(6= 3P+ V2T~ ol ) [ @0Gls0) - Gloxlds
+ /Ot 2 |G(s,x1) — G(s,x)] /OS ¢®079|G(1,x)) — G(t,x2)|d1ds.

The third term of the right hand side of (3.22) is estimated as

200t 1 ¢
%/0 |G(s,x1) — G(s,x2)|*ds. (3.27)
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The second term of the right hand side of (3.22) is estimated as

L .o op Va1 2 (e4a)zt—1) ! 2
5(\81—82| + V2 ki —koll207v)) +T/o |G(s,x1) — G(s,x2)|"ds.

(3.28)
We note that from (3.6) of Lemma 3 for 0 <z < T

NG (-, x1) = G20, (3.29)
< (=R, 0D{ (L1 + Lo) 11 = %2l 20y + Lallgt — &3l112(now) }-
Let T; < T be such that
2™l 1) (efTi 1)
40, 8w,
Therefore, from (3.26)—(3.29) it follows that there exists a constant C > 0 such that

o —c—min{ }[u([—h,O])(L1+L2)]2 > 0.

)

T
(M) = (TP + [ [l (9) —xa(s)|Pds (3:30)
T
<Clgh = 3 +llgt = Blliznom) + | la(s) —kals) )

Suppose (g, g, k,) — (¢°,¢',k) in € H x L*(0,T;V) x L>(0,T;H), and let x,, and x
be the solutions (NE) with (g%, ¢} k,) and (g°g!,k), respectively. Then, by virtue of
(3.30), we see that x, — x in L*(0,T;,V)NC([0,Ty];H). This implies that x,(7;) —
x(T1) in H. Therefore the same argument shows that x, — x in

L*(Ty,min{27T,T};V)NC([T;, min{2T, T}]; H).

Repeating this process, we conclude that x,, — x in L*(0,7;V)NC([0,T];H).
If k € L*(0,T,V*) we can choose a constant ¢ > 0 such that

o — %0 — 0y ' ([=h,0)A(Ly + Ly)2 (2™ — 1) > 0.
and in (3.23)
1
11 (1) = ko (1)1 [Px1 (1) = x2(@)]] < 5 [lka (1) = ko ()| + %OHM(S) —x2(9)[[-
0

Thus, by the similar way to the proof of the case where k € L?(0,T,H) we can obtain
the results. [

REMARK 2. Let us assume that the embedding V C H is compact. Let x; be
the solution of the equation (NE) corresponding to k € L?>(0,T;H). Hence if k is
bounded in L*(0,T;V*), then so is x; in L*(0,T;V)NW2(0,T;V*) from Theorem
1. Since V is compactly embedded in H by assumption, the embedding L*(0,7;V)N
W'2(0,T;V*) C L*(0,T;H)) is compact in view of Theorem 2 of Aubin [2]. Hence,
the mapping k + x; is compact from L*(0,T;V*) to L>(0,T;H).
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