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Abstract. We prove the stability of the Pexiderized Cauchy’s additive functional equation with a
general form;

f (x+ y) = g(x)+h(y)+λ(x,y)

where λ(x,y) is a logarithm of a pseudo exponential function. From this result, we obtain the
stability with the following form;

1
1+φ(x,y)

� f (x+ y)
e(x,y)g(x)h(y)

� 1+φ(x,y),

where e(x,y) is a pseudo exponential function. It is a generalized result for the stability of the
Pexiderized Cauchy’s functional equation.

1. Introduction

In 1940, S. M. Ulam gave a wide ranging talk in the Mathematical Club of the Uni-
versity of Wisconsin in which he discussed a number of important unsolved problems
(ref. [8]). Among those there was the question concerning the stability of homomor-
phisms: Let G1 be a group and let G2 be a metric group with a metric d(·, ·) . Given
ε > 0 , does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the in-
equality d(h(xy),h(x)h(y)) � δ for all x , y ∈ G1 , then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) � ε for all x ∈ G1 ? In the next year, D. H. Hyers
[5] answered the question of Ulam for the case where G1 and G2 are Banach spaces.
Futhermore, the result of Hyers has been generalized by Th. M. Rassias [7].

The superstability of the functional equation f (x+ y) = f (x) f (y) was studied by
J. Baker, J. Lawrence and F. Zorzitto [2]. They proved that if f is a functional on a
real vector space W satisfying | f (x+ y)− (x) f (y)| � δ for some fixed δ > 0 and all
x,y ∈ W , then either f is bounded or else f (xy) = f (x) f (y) for all x,y ∈ W . This
result was generalized with a simplified proof by J. Baker [1] as following: Let δ > 0 ,
S be a semigroup and f : S → C satisfy | f (xy)− f (x) f (y)| � δ for all x,y ∈ S . Put
β := (1+

√
1+4δ)/2 . Then either f (x) � β for all x∈ S or else f (xy) = f (x) f (y) for

all x,y ∈ S . Since then, the stability and superstability problems of various functional
equations have been investigated by many authors (see [3, 6]).
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In this paper we prove the stability of a Pexiderized Cauchy’s additive functional
equation with a general form;

f (x+ y) = g(x)+h(y)+ λ (x,y). (1)

It is a generalized result for the stability of the Pexiderized Cauchy’s functional equa-
tion. Also we obtain the stability with a functional inequality;

1
1+ ϕ(x,y)

� f (x+ y)
exp(λ (x,y))g(x)h(y)

� 1+ ϕ(x,y). (2)

2. Definitions and solutions

Throughout this paper, we denote by D an additive subset (x+y ∈D for all x,y ∈
D) of R+∪{0} containing all nonnegative integers Z+ ∪{0} .

DEFINITION 1. A function e : D×D → R is pseudo exponential if e(x,y) satis-
fies as follows;

(a) e(x,y) = e(y,x) (x,y ∈ D),
(b) e(x,y) � 1 (x,y ∈ D),

(c) e(x,y)e(z,x+y)
e(x,y+z)e(y,z) = 1 (x,y ∈ D),

(d) e(x,n) → ∞ (as n → ∞ for n ∈ Z+ and fixed x ∈ D),
(e) e(0,x) = 1 (x ∈ D) .

DEFINITION 2. A function λ : D×D→ R is a logarithm of a pseudo exponential
function if λ (x,y) satisfies as follows;

(a) λ (x,y) = λ (y,x) (x,y ∈ D),
(b) λ (x,y) � 0 (x,y ∈ D),
(c) λ (x,y)+ λ (z,x+ y) = λ (x,y+ z)+ λ (y,z) (x,y ∈ D),
(d) λ (x,n) → ∞ (as n → ∞ for n ∈ Z+ and fixed x ∈ D),
(e) λ (0,x) = 0 (x ∈ D) .

EXAMPLE 1. Let λ (x,y) = xy for x,y ∈ [0,∞) then λ is a logarithm of a pseudo
exponential function. Also if we let λ (x,y) = axy(a > 1) and e(x,y) = exp(λ (x,y)) ,
then e(x,y) and λ (x,y) satisfy Definition 1 and Definition 2, respectively.

DEFINITION 3. A function f : D → R is of an approximate Cauchy’s additive
type if there is a function φ : D×D → [0,∞) and a logarithm of a pseudo exponential
function λ : D×D→ R such that

| f (x+ y)− f (x)− f (y)−λ (x,y) | � φ(x,y)

for all (x,y)∈D×D . In the case of φ = 0, we call f a Cauchy’s additive type function.
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DEFINITION 4. A function f : D→ R is of an approximate Pexiderized Cauchy’s
additive type if there is a function φ : D×D → [0,∞) , a logarithm of a pseudo expo-
nential function λ : D×D→ R and some functions g,h : D → R such that

| f (x+ y)−g(x)−h(y)−λ (x,y) | � φ(x,y)

for all (x,y) ∈ D×D . In the case of φ = 0, we call f a Pexiderized Cauchy’s additive
type function.

EXAMPLE 2. If f ,g,h : [0,∞) → R are functions satisfying the equation (1) and
λ (x,y) = lnaxy (a > 1), then λ is a logarithm of a pseudo exponential function, and

f (x) = lna
x2
2 +1,g(x) = lna

x2
2 ,h(x) = lna

x2
2 +1 are solutions of it. And also g is of a

Cauchy’s additive type function.
Now we consider the gamma-beta functional equation. If f ,g,h : (0,∞) → R are

functions satisfying the equation (1) and β (x,y) is the beta function then β−1 satisfies
the conditions (a)∼ (d) except (e) of Definition 1 (see, Corollary 4 in [6]) and f (x) =
ln6ax+1Γ(x),g(x) = ln3axΓ(x),h(x) = ln2ax+1Γ(x),λ (x,y) = lnβ−1 are solutions of
the equation (1).

3. Stability of Cauchy’s additive type functional equation

Throughout this section, we denote by φ : D×D→ [0,∞) a function such that

Φ(x,y) :=
∞

∑
i=0

φ(2ix,2iy)
2i+1 < ∞

for all (x,y) ∈ D×D and by λ : D×D → R a logarithm of a pseudo exponential
function. The following theorems are the Hyers-Ulam stability of the Cauchy’s additive
type functional equations

f (x+ y) = g(x)+h(y)+ λ (x,y).

THEOREM 1. Assume that a mapping f : D→R satisfies the functional inequality

| f (x+ y)− f (x)− f (y)−λ (x,y)|� φ(x,y) (3)

for all x,y ∈ D. Then there exists a unique mapping g : D → R such that

g(x+ y) = g(x)+g(y)+ λ (x,y)

for all x,y ∈ D and
| f (x)−g(x)| � Φ(x,x)

for all x ∈ D. In particular, g is defined by

g(x) := lim
n→∞

Pn(x)
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where

Pn(x) =
f (2nx)

2n −
n−1

∑
i=0

1
2i+1 λ (2ix,2ix)

for all x,y ∈ D.

Proof. Let e(x,y) = exp(λ (x,y)) for all x,y ∈ D . Then e(x,y) is a pseudo expo-
nential function and the inequality (3.1) is equivalent to the following inequality

| f (x+ y)− f (x)− f (y)− lne(x,y)| � φ(x,y) (4)

for all x,y ∈ D . If we replace y by x and dividing 2 in (4), we get
∣∣∣∣ f (2x)

2
− lne(x,x)

1
2 − f (x)

∣∣∣∣ � φ(x,x)
2

(5)

for all x ∈ D . We use induction on n to prove∣∣∣∣∣
f (2nx)

2n − ln
n−1

∏
i=0

e(2ix,2ix)
1

2i+1 − f (x)

∣∣∣∣∣ �
n−1

∑
i=0

φ(2ix,2ix)
2i+1 (6)

for all x∈D . On account of (5), the inequality holds for n = 1. Suppose that inequality
(6) holds true for some integer n > 1. Then (5) and (6) imply∣∣∣∣∣

f (2n+1x)
2n+1 − ln

n

∏
i=0

e(2ix,2ix)
1

2i+1 − f (x)

∣∣∣∣∣
�

∣∣∣∣∣
f (2n ·2x)

2 ·2n − 1
2

ln
n−1

∏
i=0

e(2i ·2x,2i ·2x)
1

2i+1 − f (2x)
2

∣∣∣∣∣+
∣∣∣∣ f (2x)

2
− lne(x,x)

1
2 − f (x)

∣∣∣∣
�

n

∑
i=0

φ(2ix,2ix)
2i+1

for any x∈D , which ends the proof of (6). For any x∈D and for every positive integer
n we define that

Pn(x) =
f (2nx)

2n − ln
n−1

∏
i=0

e(2ix,2ix)
1

2i+1

for all x,y ∈ D . Let m,n > 0 be integers with n > m . Then it follows from (6) that for
all x ∈ D

|Pn(x)−Pm(x)| = 1
2m

∣∣∣∣∣
f (2n−m(2mx))

2n−m − ln
n−1

∏
i=0

e(2ix,2ix)
1

2i−m+1 − f (2mx)

∣∣∣∣∣
=

1
2m

∣∣∣∣∣
f (2n−m(2mx))

2n−m − ln
n−m−1

∏
i=0

e(2i2mx,2i2mx)
1

2i+1 − f (2mx)

∣∣∣∣∣
�

n−1

∑
i=m

φ(2ix,2ix)
2i+1 → 0
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as m → ∞ . Therefore, the sequence {Pn(x)} is a Cauchy sequence, and we may define
a function g : D → (0,∞) by

g(x) := lim
n→∞

Pn(x)

for all x ∈ D . Now we prove that

g(x+ y) = g(x)+g(y)+ lne(x,y)

for all x,y ∈ D . For this, we consider the following property of the pseudo exponential
function.

e(x+ y,x+ y) =
e(x,x+ y)e(y,y+2x)

e(x,y)
=

e(x,x)e(y,y)e(2x,2y)
e(x,y)2

for all x,y ∈ D . By this property, we have the equation

n−1

∏
i=0

[
e(2i(x+ y),2i(x+ y))
e(2ix,2ix)e(2iy,2iy)

] 1
2i+1

=
n−1

∏
i=0

[
e(2i+1x,2i+1y)

e(2ix,2iy)2

] 1
2i+1

=
[
e(2x,2y)
e(x,y)2

] 1
2

·
[
e(22x,22y)
e(2x,2y)2

] 1
22

· · ·
[

e(2nx,2ny)
e(2n−1x,2n−1y)2

] 1
2n

=
e(2nx,2ny)

1
2n

e(x,y)

(7)

for all x , y ∈ D . From this equation (7) we get

|g(x+ y)−g(x)−g(y)− lne(x,y)|

= lim
n→∞

∣∣∣∣ f (2nx+2ny)
2n − f (2nx)

2n − f (2ny)
2n − 1

2n lne(2nx,2ny)
∣∣∣∣

= lim
n→∞

φ(2nx,2nx)
2n = 0

for all x,y ∈ D and thus

g(x+ y) = g(x)+g(y)+ lne(x,y)

for all x,y ∈ D . From the inequality (5), we have

| f (x)−g(x)| � Φ(x,x)

for all x ∈ D . Now suppose that h satisfies the equation

h(x+ y) = h(x)+h(y)+ lne(x,y)

for all x,y ∈ D . and
| f (x)−h(x)| � Φ(x,x)
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for all x ∈ D . Then for all x ∈ D

|g(x)−h(x)|� lim
n→∞

1
2n

∣∣∣∣∣ f (2nx)−h(2nx)

∣∣∣∣∣+
∣∣∣∣∣
h(2nx)

2n − ln
n−1

∏
i=0

e(2ix,2iy)
1

2i+1 −h(x)

∣∣∣∣∣
� lim

n→∞

Φ(2nx,2nx)
2n +0 = lim

n→∞

∞

∑
k=n

φ(2kx,2kx)
2k = 0

as n → ∞ and for all x ∈ D , and thus g is unique. �

COROLLARY 1. Assume that a mapping f : R+ → R+ satisfies the functional in-
equality

| f (x+ y)− f (x)− f (y)− xy| � δ

for all x,y ∈ R+. Then there exists a unique mapping g : R+ → R+ such that

g(x+ y) = g(x)+g(y)+ xy

for all x,y ∈ A and
| f (x)−g(x)| � δ

for all x ∈ R+ .

Proof. From Theorem 1 with λ (x,y) = xy , we complete the proof. �

THEOREM 2. Assume that mappings f ,g,h : D → R satisfy the functional in-
equality

| f (x+ y)−g(x)−h(y)−λ (x,y)|< φ(x,y) (8)

for all x,y ∈ D. Then there exists a unique mapping T : D → R such that

T (x+ y) = T (x)+T (y)+ λ (x,y)

for all x,y ∈ D and

| f (x)−T (x)| � Ψ(x) := Φ(x,x)+ Φ(0,x)+ Φ(x,0)+ |g(0)|+ |h(0)|,
|g(x)−T(x)| � φ(x,0)+ |h(0)|+ Ψ(x),
|h(x)−T(x)| � φ(0,x)+ |g(0)|+ Ψ(x)

for all x ∈ D.

Proof. By the functional inequality in (8), we get

| f (x+ y)− f (x)− f (y)−λ (x,y)|
� | f (x+ y)−g(x)−h(y)−λ (x,y)|+ |g(0)+h(y)+ λ (0,y)− f (y)|

+ |g(x)+h(0)+ λ (x,0)− f (x)|+ |g(0)|+ |h(0)|
� φ(x,y)+ φ(0,y)+ φ(x,0)+ |g(0)|+ |h(0)|
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for all x ∈ D . Note that
∞

∑
i=0

φ(0,2i)
2i+1 = Φ(0,y)

and
∞

∑
i=0

|g(0)|
2i+1 = |g(0)|.

By Theorem 1, there exists a unique mapping T : D → R such that

T (x+ y) = T (x)+T (y)+ λ (x,y)

for all x,y ∈ D and

| f (x)−T (x)| � Ψ(x) := Φ(x,x)+ Φ(0,x)+ Φ(x,0)+ |g(0)|+ |h(0)|

for all x ∈ D . Then we have

|g(x)−T(x)| � |g(x)− f (x)|+ | f (x)−T(x)|
� |g(x)+h(0)+ λ (x,0)− f (x)|+ |h(0)|+Ψ(x)
� φ(x,0)+ |h(0)|+ Ψ(x)

and similarly
|h(x)−T(x)| � φ(0,x)+ |g(0)|+ Ψ(x)

for all x ∈ D . �

R. Ger [4] suggested a new type of stability for the exponential equation
∣∣∣∣ f (x+ y)
f (x) f (y)

−1

∣∣∣∣ � δ .

Comparing this, we obtain the stability with a functional inequality;

1
1+ φ(x,y)

� f (x+ y)
e(x,y)g(x)h(y)

� 1+ φ(x,y).

Let ε : D×D→ [0,∞) be a function such that

ε(x,y) :=
∞

∑
i=0

ln(1+ φ(2ix,2iy))
2i+1

for all (x,y) ∈ D×D . Then

ε(x,y) � (1+ Φ(x,y)) < ∞

for all (x,y) ∈ D×D .
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THEOREM 3. If functions f ,g,h : D → (0,∞) satisfy the inequality

1
1+ φ(x,y)

� f (x+ y)
e(x,y)g(x)h(y)

� 1+ φ(x,y) (9)

for all (x,y) ∈ D×D and some pseudo exponential function e(x,y) , then there exists a
unique function T : D → (0,∞) such that

T (x+ y) = e(x,y)T (x)T (y)

for all x , y ∈ D and also

exp(−Φ1(x)) � T (x)
f (x)

� exp(Φ1(x)),

exp(−Φ2(x)) � T (x)
g(x)

� exp(Φ2(x)),

and

exp(−Φ3(x)) � T (x)
h(x)

� exp(Φ3(x))

for all x ∈ D, where

Φ1(x) = Φ(x,x)+ Φ(x,0)+ Φ(0,x)+3+ | lng(0)|+ | lnh(0)|,
Φ2(x) = Φ1(x)+1+ φ(x,0)+ | lnh(0)|,

and
Φ3(x) = Φ1(x)+1+ φ(0,x)+ | lng(0)|

for all x ∈ D. In particular, if f = g = h, then

exp(−1−Φ(x,x)) � T (x)
f (x)

� exp(1+ Φ(x,x))

for all x ∈ D.

Proof. If we define functions F,G,H : D → R by

F(x) = ln f (x), G(x) = lng(x), H(x) = lnh(x)

for all x ∈ D , then the inequality (9) may be transformed into

|F(x+ y)−G(x)−H(y)− lne(x,y)| � ln(1+ φ(x,y)). (10)

By Theorem 2 with λ (x,y) = lne(x,y), there exists a unique mapping W : D→ R such
that

W (x+ y) = W (x)+W(y)+ lne(x,y)
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for all x,y ∈ D and

|F(x)−W(x)| � Φ(x,x)+ Φ(0,x)+ Φ(x,0)+3+ | lng(0)|+ | lnh(0)|
= Φ1(x)

(11)

for all x ∈ D . Now we define a function T : D → R by

T (x) := exp(W (x))

for all x ∈ D . Then

T (x+ y) = exp(W (x)+W(y)+ lne(x,y)) = e(x,y)T (x)T (y)

for all x,y ∈ D , By (11) we have

−Φ1(x) � lnT (x)− ln f (x) � Φ1(x)

and thus

exp(−Φ1(x)) � T (x)
f (x)

� exp(Φ1(x))

for all x ∈ D .
By (10), we have

|F(x+ y)−G(y)−H(x)− lne(x,y)| � ln(1+ φ(y,x))

for all x,y ∈ D . Then

|G(x)−W (x)| � |G(x)−F(x)|+ |F(x)−W (x)|
� |G(x)+H(0)+ lne(x,0)−F(x)|+ |H(0)|+ Φ1(x)
� 1+ φ(x,0)+ |H(0)|+ Φ1(x) = Φ2(x)

and similarly,

|H(x)−W(x)| � 1+ φ(0,x)+ |G(0)|+ Φ1(x) = Φ3(x)

for all x,y ∈ D . Since W (x) = lnT (x), we have

exp(−Φ2(x)) � T (x)
g(x)

� exp(Φ2(x)),

and

exp(−Φ3(x)) � T (x)
h(x)

� exp(Φ3(x))

for all x ∈ D . If f = g = h , then we have

exp(−1−Φ(x,x)) � T (x)
f (x)

� exp(1+ Φ(x,x))

for all x ∈ D , applying to Theorem 1 instead of Theorem 2. �
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COROLLARY 2. Let δ > 0 . If a function f : R → (0,∞) satisfies the inequality

1
1+ δ

� f (x+ y)
f (x) f (y)

� 1+ δ

for all x,y ∈ R, then there exists a function T : R → (0,∞) such that

T (x+ y) = T (x)T (y)

for all x,y ∈ R and

exp(−1− δ ) � T (x)
f (x)

� exp(1+ δ )

for all x ∈ R.

Proof. Let φ(x,y) = δ and e(x,y) = 1 for all x,y ∈ R . Then

Φ(x,y) =
∞

∑
i=0

δ
2i+1 = δ

for all x,y ∈ R . By Theorem 3, we complete the proof. �

COROLLARY 3. Let δ > 0 and a > 1 be given. Suppose that f : [0,∞) → (0,∞)
be a function such that

1
1+ δ

� f (x+ y)
axy f (x) f (y)

� 1+ δ

for all x , y ∈ [0,∞) . Then there exists a unique function T : [0,∞) → (0,∞) such that

T (x+ y) = axyT (x)T (y)

for all x,y ∈ R and

exp(−1− δ ) � T (x)
f (x)

� exp(1+ δ )

for all x ∈ R.
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