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Abstract. In this paper, some systems of quasi-variational inequality problems are considered
on a class of nonconvex sets, as uniformly prox-regular sets. Some sufficient conditions for the
existence solution of the considered problems are provided. Also, some interesting remarks are
discussed. The results which are presented in this paper are more general, and may be viewed as
an extension, improvement and refinement of the previously known results in the litterateurs.

1. Introduction

Let H be a real Hilbert space and T : H → H be a mapping. In the early 1960s,
Stampacchia [24], introduced the problem of finding x∗ ∈ K such that

〈Tx∗,x− x∗〉 � 0, for all x ∈ K, (1)

where K is a closed convex subset of H. The problem of type (1) is called the vari-
ational inequality problem. Since then, the variational inequality theory has become
a powerful tool, which is a rich source of inspiration for study the problem in mathe-
matics. Subsequently, it has been studied by many researchers, who generalized and
extended such a mentioned problem and, moreover, it has been used to analyze many
problems arising in mathematics, economics, engineering sciences and physics(see
[3, 5, 7, 15, 21] and the references therein). Roughly speaking, the development of
variational inequality theory can be viewed as the simultaneous pursuit of two different
lines of research. On the one hand, it reveals the fundamental facts on the qualitative
aspects of the solutions to important classes of problems. On the other hand, it also
enables us to develop highly efficient and powerful new numerical methods for solv-
ing. In the early 1970s, Bensoussan et al. [1] introduced and studied the concept of the
quasi-variational inequality, which is the problem of finding x∗ ∈C(x∗) such that

〈Tx∗,x− x∗〉 � 0, for all x∗ ∈C(x∗), (2)
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where C is a set-valued mapping on H into itself. Since in many important problems
the considered set also depends upon the solutions explicitly or implicitly, it is worth
mentioning that the problem of type (2) is of interest to study; see [13] for more de-
tails. Obviously, the concept of the quasi-variational inequality contains the variational
inequality, introduced by Stampacchia [24], as a special case. On the other direction, in
2001, R. U. Verma [25] introduced the concept of the system for variational inequality
problem, by considering the problem of finding x∗,y∗ ∈ K such that

〈ρTy∗+ x∗ − y∗,x− x∗〉 � 0, for all x ∈ K,

〈ηTx∗ + y∗− x∗,x− y∗〉 � 0, for all x ∈ K, (3)

where ρ ,η are two fixed positive real numbers and K is a closed convex subset of H.
Notice that, the concept of a system of variational inequality is very interesting, this
is because a variety of equilibrium models, such as, the traffic equilibrium problem,
the spatial equilibrium problem, the Nash equilibrium problem and the general equi-
librium programming problem, can be uniformly modelled as a system of variational
inequalities.

It is worth to pointed out that the approximate solution of various types of varia-
tional and its generalizations were considered by using the projection method and its
variant forms. Subsequently, the most problems for solving the existence and iterative
approximations of variational inequalities problems have been considered underlying
convex sets, which are considered by using the properties of projection operator, for
guaranteeing the well definedness of the proposed iterative algorithm. In fact, for this
purpose, the convexity assumption may not require because it may be well-defined even
the considered set are nonconvexs (e.g., when the considered set is a closed subset of
a finite dimensional space or a compact subset of a Hilbert space, etc.). Motivated by
these observations, in 2003, M. Bounkhel et al. [2] studied and analyzed a variational
inequality problem on a class of nonconvex set, by considering the following problem:
find a point x∗ ∈ K such that

−Tx∗ ∈ NP
K(x∗), (4)

where K is a closed subset of a real Hilbert space H and NP
K(x) denotes for the proxi-

mal normal cone to K at x. In a such paper, they proposed some iterative algorithms for
finding a solution of type (4), when K is belong to a class of nonconvex sets, namely
uniformly prox-regular sets. Later, inspired by R. U. Verma [25] and M. Bounkhel et
al. [2], N. Petrot [19] studied a system of variational inequality problem on a class of
uniformly prox-regular sets. He considered the problem of finding x∗,y∗ ∈ K such that

y∗ − x∗ −ρTy∗ ∈ NP
K(x∗),

x∗ − y∗−ηTx∗ ∈ NP
K(y∗), (5)

where ρ ,η are two fixed positive real numbers, K is a closed uniformly prox-regular
subset of H . Notice that the problem (5), and also the problem (3), are relatively more
challenging than the usual variational inequalities, because it can be applied to problems
arising, especially from complementarity problems, convex quadratic programming,
and other variational problems, see also [11].
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In this paper, we will continuing study the problem of type (5) by consider a such
problem by using the concept of quasi-variational inequality problem. Some sufficient
conditions for the existence solutions of a considered problem will be provided. Also,
some remarks related to our main results are discussed.

2. Preliminaries

Now we will provide some basic concepts and results, which will be used in this
paper.

Let H be a real Hilbert space equipped with norm ‖ · ‖ and inner product 〈·, ·〉.
Let 2H be denoted for the class of all nonempty subsets of H, and K be a nonempty
subset of H . We denote by d(·,K) for the usual distance function on H to the subset
K , that is, d(u,K) = infv∈K ‖u− v‖ for all u ∈ H .

DEFINITION 1. Let u ∈ H be a point not lying in K . A point v ∈ K is called
a closest point or a projection of u onto K if d(u,K) = ‖u− v‖ . The set of all such
closest points is denoted by Pro jK(u) , that is,

Pro jK(u) = {v ∈ K : d(u,K) = ‖u− v‖}.

DEFINITION 2. Let K be a subset of H . The proximal normal cone to K at x is
given by

NP
K(x) = {z ∈ H : ∃ρ > 0 such that x ∈ Pro jK(x+ ρz)}

The following characterization of NP
K(x) can be found in [6].

LEMMA 1. [2] Let K be a closed subset of a Hilbert space H . Then

z ∈ NP
K(x) ⇔∃σ > 0; 〈z,y− x〉 � σ‖y− x‖2, for all y ∈ K.

Recall that the Clarke normal cone is given by

N(K,x) = co[NP
K(x)],

where co[S] means the closure of the convex hull of S, see [4]. It is clear that one
always has NP

K(x) ⊂ N(K,x), however, the converse is not true in general. Note that
N(K,x) is always a closed and convex cone and that NP

K(x) is always a convex cone
but may be nonclosed (see [4, 6]).

In 1995, Clarke et al. [8] has introduced and studied a new class of nonconvex
sets, which are called proximally smooth sets. Notice that, in 2000, this concepts was
also considered independently by Poliquin et al. [20]. Later, the proximally smooth
sets have been studied by many researchers. In recent years, Bounkhel et al. [2], Cho
et al. [5], Moudafi [10], Noor [14, 15], M. A. Noor et al. [17], N. Petrot [19] and Pang
et al. [22] have considered both variational inequalities and equilibrium problems in
the context of proximally smooth sets. They suggested and analyzed some projection
type iterative algorithms by using the prox-regular technique and auxiliary principle
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technique. This class of proximally smooth sets has played an important part in many
nonconvex applications such as optimization, dynamic systems and differential inclu-
sions. Next, we will take the following characterization proved in [6] as definition of
the proximally smooth set. Note that the original definition was given in terms of the
differentiability of the distance function.

DEFINITION 3. For a given r ∈ (0,+∞] , a subset K of H is said to be uniformly
prox-regular with respect to r, say, uniformly r -prox-regular sets, if for all x ∈ K and
for all 0 �= z ∈ NP

K(x) , one has〈
z

‖z‖ ,x− x

〉
� 1

2r
‖x− x‖2, for all x ∈ K.

REMARK 1. For the case of r = ∞ , the uniform r -prox-regularity K is equivalent
to the convexity of K . Moreover, it is clear that the class of uniformly prox-regular sets
is sufficiently large to include the class p -convex sets, C1,1 submanifolds (possibly with
boundary) of H , the images under a C1,1 diffeomorphism of convex sets and many
other nonconvex sets, see [6, 20].

For each r ∈ (0,+∞], from now on, we put

Kr := {x ∈ H : d(x,K) < r}.
Next, we will recall some results which summarizes the important consequences

of the uniformly prox-regularity sets which are needed in the sequel. The proof of this
result can be found in [8, 20].

LEMMA 2. Let r ∈ (0,+∞] and K be a nonempty closed subset of H. If K is
uniformly r -prox-regular sets, then the following holds

(i) For all x ∈ Kr,Pro jK(x) �= /0 ;

(ii) For all s ∈ (0,r),Pro jK is Lipschitz continuous with constant r
r−s on Ks ;

(iii) The proximal normal cone is closed as a set-valued mapping.

As a direct consequence of Lemma 2 (iii) , we obtain that N(K,x) = NP
K(x).

From now on, we will denote [Cl(H)]r for the class of all uniformly r -prox regular
subset of H, where r ∈ (0,+∞] is a fixed positive real number.

Recall that, a set-valued mapping C : H → 2H is said to be a κ -Lipschitz continu-
ous if there exists κ > 0 such that

|d(y,C(x))−d(y
′
,C(x

′
))| � ‖y− y

′‖+ κ‖x− x
′‖ (6)

for all x,x
′
,y,y

′ ∈ H .
The following result is also needed and important here.

LEMMA 3. [2] Let r ∈ (0,+∞] and let C : H → 2H be a κ -Lipschitz continuous
set-valued mapping with uniformly r -prox-regular values then the following closedness
property holds: “For any xn → x∗,yn → y∗ and un → u∗ with yn ∈ C(xn) and un ∈
N(C(xn),yn), one has u∗ ∈ N(C(x∗),y∗).”
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3. Existence theorem of the system of the quasi-variational inequality on the
uniformly prox-regular set

Now, we introduce the main problem of this paper.
Let T : H → H and C : H → 2H be mappings. Let ρ and η be two fixed positive

real numbers, in this paper, we are mainly interesting in the following problem: find
x∗ ∈C(y∗) and y∗ ∈C(x∗) such that

y∗ − x∗−ρTy∗ ∈ NP
C(y∗)(x

∗),

x∗ − y∗−ηTx∗ ∈ NP
C(x∗)(y

∗). (7)

In this case, we will write (x∗,y∗) ∈ SQVIP(T,C,ρ ,η). The problem (7) will be
called the system of quasi-variational inequality problem.

Next, we collect some special cases of the problem (7).

REMARK 2. If K is a closed subset of H, and C : H → 2H is defined by

C(x) = K, for all x ∈ H. (8)

Then, the problem (7) is reduced to the problem of finding x∗,y∗ ∈ K such that

y∗ − x∗ −ρTy∗ ∈ NP
K(x∗),

x∗ − y∗−ηTx∗ ∈ NP
K(y∗). (9)

The problem of type (9) was consider by N. Petrot [19], in 2010.
Further, if K is a closed convex subset of H, one can show that the problem (9) is

equivalent to the following problem: find x∗,y∗ ∈ K such that

〈ρTy∗ − y∗+ x∗,x− x∗〉 � 0 for all x ∈ K,

〈ηTy∗ − x∗ + y∗,y− y∗〉 � 0 for all y ∈ K,

which was introduced by R. U. Verma [25].

In this work, we are interested in the following classes of mappings.

DEFINITION 4. A single-valued mapping T : H → H is said to be β -strongly
monotone if there exists β > 0 such that

〈T (x)−T (y),x− y〉� β‖x− y‖2,

for all x,y ∈ H.

DEFINITION 5. A single-valued mapping T : H → H is said to be ξ -Lipschitz
continuous if there exists ξ > 0 such that

‖T (x)−T (y)‖ � ξ‖x− y‖,
for all x,y ∈ H.
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Here, for the sake of simplicity, let us propose the following assumption.

ASSUMPTION (A ) . Let T : H → H and C : H → [Cl(H)]r be mappings, which
are satisfied the following conditions:

(a) T is a β - strongly monotone and a ξ - Lipschitz continuous mapping;

(b) C is a κ - Lipschitzian continuous mapping for some κ ∈ [0,1) ;

(c) there is ω ∈ [0,1) such that

‖Pro jC(x)(z)−Pro jC(y)(z)‖ � ω‖x− y‖, for all x,y,z ∈ H.

In order to obtain our main result, We will use the algorithm below as an important
tool.

ALGORITHM (C ) . Let T : H → H and C : H → [Cl(H)]r be mappings. Let x0

be an element in H, we define the following two-step projection method:

yn = Pro jC(xn)[xn −ηTxn],
xn+1 = Pro jC(yn)[yn −ρTyn], (10)

where ρ and η are fixed positive real numbers which were appeared in the problem
(7).

REMARK 3. The algorithm (10) is well-defined provided the projection on C is
not empty, and our adaptation of the projection algorithm will be base on Lemma 2.

To prove the well-definedness of the sequence {xn} and {yn}, proposed in Algo-
rithm (C ) , we start with an observation.

REMARK 4. Let T : H →H and C : H → [Cl(H)]r be mappings. Let s and η be
positive real numbers such that s ∈ (0,r). If C is a Lipschitz continuous mapping and
there is x0 ∈ H such that d(x0,C(x0)) � s−η‖Tx0‖, then Pro jC(x0)[x0 −ηTx0] �= /0.
Indeed, by the Lipschitz continuous of C, we see that

d(x0−ηTx0,C(x0)) � d(x0,C(x0))+ η‖Tx0‖
� s−η‖Tx0‖+ η‖Tx0‖
< r.

Thus, by Lemma 2 (i) , the required result is followed immediately.

Using, Remark 4, we now show the well-definedness of Algorithm (C ) .

LEMMA 4. Let T : H → H and C : H → [Cl(H)]r be mappings. Assume that
Assumption(A ) holds and there are μ > 1 and x0 ∈ H such that

(i) ρ ,η ∈
(
0, s∗

δT

)
, where δT = sup{‖Tx‖ : x ∈ H} and s∗ = r(1−κ)

1+μκ , and
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(ii) d(x0,C(x0)) � s∗ −η‖Tx0‖ and d(y0,C(y0)) � s∗ −ρ‖Ty0‖, where
y0 = Pro jC(x0)[x0−ηTx0].

Then the sequences {xn} and {yn} in (10) are well-defined. Further,

1
φ(η)

‖yn+1− yn‖ � ‖xn+1− xn‖ � φ(η)φ(ρ)‖xn − xn−1‖,

where φ(t) = 1
κ(μ−1)

√
1−2tβ + t2ξ 2 + ω .

Proof. Let us consider a positive real number s∗ and x0 ∈ H , which are satisfied
condition (i) and (ii) . By using the Lipchitz continuity of C and the condition (ii) ,
we see that

d(y0−ρTy0,C(y0)) � d(y0,C(y0))+ ρ‖Ty0‖
� s∗ −ρ‖Ty0‖+ ρ‖Ty0‖
= s∗. (11)

This means y0 − ρTy0 ∈ [C(y0)]s∗ . Thus, by Lemma 2 (i) , we have Pro jC(y0)[y0 −
ρTy0] �= /0. Let x1 ∈ Pro jC(y0)[y0−ρTy0]. Using the condition(i) and the κ -Lipschitz
continuous of C, we obtain

d(x1−ηTx1,C(x1)) � d(x1,C(x1))+ η‖Tx1‖
= d(x1,C(x1))−d(x1,C(y0))+ η‖Tx1‖
< κ‖x1− y0‖+ s∗. (12)

Meanwhile, by a choice of x1 and (11), we have

‖x1− y0‖ � ‖x1− (y0−ρTy0)‖+‖(y0−ρTy0)− y0‖
= d(y0−ρTy0,C(y0))+ ρ‖Ty0‖
< s∗ + s∗

= 2s∗. (13)

Replacing (13) into (12), we have

d(x1−ηTx1,C(x1)) < 2κs∗ + s∗

= s∗(2κ +1)

= s∗
(

1+ κ −2κ2

1−κ

)
< r.

Then, by Lemma 2 (i) , we have Pro jC(x1)[x1 −ηTx1] �= /0. Let y1 ∈ Pro jC(x1)[x1 −
ηTx1], we see that

d(y1−ρTy1,C(y1)) � d(y1,C(y1))+ ρ‖Ty1‖
= d(y1,C(y1))−d(y1,C(x1))+ ρ‖Ty1‖
< κ‖y1− x1‖+ s∗, (14)
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and

‖y1− x1‖ � ‖y1− (x1−ηTx1)‖+‖x1−ηTx1− x1‖
= d(x1−ηTx1,C(x1))+ η‖Tx1‖

< s∗
(

1+ κ −2κ2

1−κ

)
+ s∗. (15)

Replacing (15) into (14), we obtain that

d(y1 −ρTy1,C(y1)) < s∗κ
(

1+ κ −2κ2

1−κ

)
+ s∗κ + s∗

= s∗
(

1+ κ −2κ3

1−κ

)
< r.

Hence, Pro jC(y1)[y1 − ρTy1] �= /0. Consequently, we can choose x2 ∈ Pro jC(y1)[y1 −
ρTy1].

Now, let us assume that

d(x j −ηTx j,C(x j)) < s∗
(

1+ κ −2κ2 j

1−κ

)
and

d(y j −ρTy j,C(y j)) < s∗
(

1+ κ −2κ2 j+1

1−κ

)
,

where y j ∈ pro jC(x j)[x j −ηTx j]. For x j+1 ∈ Pro jC(y j)[y j −ρTy j], we see that

d(x j+1−ηTx j+1,C(x j+1)) � d(x j+1,C(x j+1))+ η‖Tx j+1‖
< d(x j+1,C(x j+1))−d(x j+1,C(y j))+ s∗

< κ‖x j+1− y j‖+ s∗. (16)

Further,

‖x j+1− y j‖ � ‖x j+1− (y j −ρTy j)‖+‖y j −ρTy j− y j‖
= d(y j −ρTy j,C(y j))+ ρ‖Ty j‖

< s∗
(

1+ κ −2κ2 j+1

1−κ

)
+ s∗

= 2s∗
(

1−κ2 j+1

1−κ

)
. (17)

Replacing (17) into (16), we get

d(x j+1−ηTx j+1,C(x j+1)) < 2κs∗
(

1−κ2 j+1

1−κ

)
+ s∗

= s∗
(

1+ κ −2κ2( j+1)

1−κ

)

< r.
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This means, Pro jC(x j+1)[x j+1 −ηTx j+1] �= /0. Let y j+1 ∈ Pro jC(x j+1)[x j+1 −ηTx j+1],
we have

d(y j+1−ρTy j+1,C(y j+1)) � d(y j+1,C(y j+1))+ ρ‖Ty j+1‖
< d(y j+1,C(y j+1))−d(y j+1,C(x j+1))+ s∗

< κ‖y j+1− x j+1‖+ s∗. (18)

Also,

‖y j+1− x j+1‖ � ‖y j+1− (x j+1−ηTx j+1)‖+‖x j+1−ηTx j+1− x j+1‖
= d(x j+1−ηTx j+1,C(x j+1))+ η‖Tx j+1‖

< s∗
(

1+ κ −2κ2( j+1)

1−κ

)
+ s∗

= 2s∗
(

1−κ2( j+1)

1−κ

)
. (19)

Replacing (19) into (18), we get

d(y j+1−ρTy j+1,C(y j+1)) < 2κs∗
(

1−κ2( j+1)

1−κ

)
+ s∗

= s∗
(

1+ κ −2κ2( j+1)+1

1−κ

)

< r.

Hence, from (17) and (19), we have a conclusion that the sequences {xn} and {yn} are
well-defined.

Moreover, it is easy to see that

yn −ρTyn ∈ [C(yn)] r(1+κ)
1+μκ

and xn−ηTxn ∈ [C(xn)] r(1+κ)
1+μκ

,

for all n ∈ N. Consequently, from (10) and Lemma 2 (ii) , we have

‖xn+1− xn‖ = ‖Pro jC(yn)(yn −ρTyn)−Pro jC(yn−1)(yn−1−ρTyn−1)‖
� ‖Pro jC(yn)(yn −ρTyn)−Pro jC(yn)(yn−1−ρTyn−1)‖

+‖Pro jC(yn)(yn−1−ρTyn−1)−Pro jC(yn−1)(yn−1−ρTyn−1)‖
� 1

κ(μ −1)
‖yn− yn−1−ρ [Tyn−Tyn−1]‖+ ω‖yn− yn−1‖. (20)

Since T is a β - strongly monotone and ξ -Lipschitz continuous mapping, we see that

‖yn− yn−1−ρ [Tyn−Tyn−1]‖2

= ‖yn− yn−1‖2−2ρ〈Tyn−Tyn−1,yn − yn−1〉+ ρ2‖Tyn−Tyn−1‖2

� ‖yn− yn−1‖2−2ρβ‖yn− yn−1‖2 + ρ2ξ 2‖yn− yn−1‖2

= (1−2ρβ + ρ2ξ 2)‖yn− yn−1‖2.
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This means,

‖yn− yn−1−ρ [Tyn−Tyn−1]‖ �
√

1−2ρβ + ρ2ξ 2‖yn− yn−1‖. (21)

Replacing (21) into (20), we get

‖xn+1− xn‖ �
[

1
κ(μ −1)

√
1−2ρβ + ρ2ξ 2 + ω

]
‖yn− yn−1‖. (22)

Similarly, in the same way as obtaining (22), we can show that

‖yn+1− yn‖ �
[

1
κ(μ −1)

√
1−2ηβ + η2ξ 2 + ω

]
‖xn+1− xn‖. (23)

Replacing (23) into (22), we get

‖xn+1− xn‖ �
[

1
κ(μ −1)

√
1−2ρβ + ρ2ξ 2 + ω

]

×
[

1
κ(μ −1)

√
1−2ηβ + η2ξ 2 + ω

]
‖xn− xn−1‖.

This completes the proof. �
Now, by using Lemma 4, we are in a position to present our main result.

THEOREM 1. (Main) Let T : H → H and C : H → [Cl(H)]r be mappings. As-
sume that all assumptions of Lemma 4 are satisfied, and

(i′) β
ξ 2 − f (ts∗) < ρ , η < min

{
β
ξ 2 + f (ts∗), s∗

δT

}
,

where f (t) =
√

β 2t2−ξ 2[t2−(1−ω)2]
tξ 2 for all t ∈

[
1, ξ (1−ω)√

ξ 2−β 2

]
, and ts∗ = r

r−s∗ . Then the

problem (7) has a solution.

Proof. Notice that, from condition (i′) , one can check that φ(ρ) and φ(η) are
belong to the open interval (0,1). On the other hand, from Lemma 4, we know that

‖xn+1− xn‖ � φ‖xn− xn−1‖,
where φ = φ(ρ)φ(η). This implies that

‖xn+1− xn‖ � φn‖x1− x0‖, for all n ∈ N.

Hence, for any m � n > 1, we see that

‖xm− xn‖ � Σm−1
i=n ‖xi+1− xi‖

� ‖x1− x0‖Σm−1
i=n φ i

� ‖x1− x0‖Σ∞
i=nφ i

�
(

φn

1−φ

)
‖x1− x0‖.
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Since φ < 1, it follows that {xn} is a Cauchy sequence in H. Moreover, since ‖yn+1−
yn‖� φ(η)‖xn+1−xn‖, we can show that {yn} is also a Cauchy sequence in H. Thus,
by the completeness of H, there exist x∗,y∗ ∈ H such that xn → x∗ and yn → y∗ as
n → ∞.

Next, by the κ - Lipschitz continuous of C , we have

d(x∗,C(y∗)) = |d(xn+1,C(yn))−d(x∗,C(y∗))|
� ‖xn+1− x∗‖+ κ‖yn− y∗‖. (24)

It follows that d(x∗,C(y∗)) = 0. Similarly, we can show that d(y∗,C(x∗)) = 0. So, by
the closedness of C(x∗) and C(y∗), we must have y∗ ∈C(x∗) and x∗ ∈C(y∗), respec-
tively.

We now claim that(x∗,y∗) ∈ SQVIP(T,C,ρ ,η). In fact, from (10), we have

yn = Pro jC(xn)[yn +(xn− yn−ηTxn)],
xn+1 = Pro jC(yn)[xn+1 +(yn− xn+1−ρTyn)].

That is,

(xn− yn)−ηTxn ∈ N(C(xn),yn),
(yn − xn+1)−ρTyn ∈ N(C(yn),xn+1).

Hence, by letting n → ∞, then in view of Lemma 3, we have

x∗ − y∗ −ηTx∗ ∈ N(C(x∗),y∗),
y∗ − x∗ −ρTy∗ ∈ N(C(y∗),x∗).

This means (x∗,y∗) ∈ SQVIP(T,C,ρ ,η), and the proof is completed. �

REMARK 5. Let us consider the proposed assumptions of Theorem 1. In the ap-
plication point of view, one may ask for the best choice of the real number μ , and hence
s∗. We would like to notice here that, the real number μ = κΔ−1

κ(1−Δ) , where Δ = ξ (1−ω)√
ξ 2−β 2

,

should provide the answer. This is because, by the following observation:

• the domain of function f is ξ (1−ω)√
ξ 2−β 2

,

• s∗ = r(1−κ)
1+μκ ⇔ ts = 1+μκ

κ(1+μ) ,

• the function μ �→ 1+μκ
κ(1+μ) is an increasing function on its domain,

• 1+μκ
κ(1+μ) = Δ ⇔ μ = κΔ−1

κ(1−Δ) , where Δ = ξ (1−ω)√
ξ 2−β 2

.

Recall that a set-valued mapping C : H → 2H is said to be a Hausdorff Lipschitz
continuous if there exists a real number κ > 0 such that

H (C(x),C(y)) � κ‖x− y‖ for all x,y ∈ H,
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where H stands for the Hausdorff distance relative to the norm associated with the
Hilbert space H, that is,

H (A,B) = max

{
sup
x∈A

inf
y∈B

‖x− y‖,sup
y∈B

inf
x∈A

‖x− y‖
}

, for all A,B ∈ 2H .

It is easy to check that the class of Lipschitz continuous mappings, which has
defined in (6), is larger that the class of Hausdorff Lipschitz continuous mappings.
Thus, Theorem 1 can also be applied when the Assumption (A )(b) is replaced by “C
is a κ -Hausdorff Lipschitzian continuous set-valued mapping”. Moreover, it is well-
known that, in this case, a set valued mapping C has a fixed point, see [12]. Thus, we
have the following result.

COROLLARY 1. Let T : H → H be a mapping and C : H → [Cl(H)]r be a Haus-
dorff Lipschitz continuous mapping. If Assumption(A )(a) and (A )(c) hold and the
condition(i′) in Theorem 1 is satisfied, then the problem (7) has a solution.

Proof. The required result is followed immediately from Theorem 1 and above
observation. �

It is well known that if K is a closed convex set then it is r -prox-regular set for
every r > 0 (see [8]). Using this fact, and by careful consideration the proof of Theorem
1, one can see that in this case a control condition (ii) of Lemma 4 can be omitted. That
is, we have the following results.

COROLLARY 2. [23] Let T : H → H be a single-valued mapping and C : H →
CC (H) be a set-valued mapping, where CC (H) is a class of nonempty closed convex
subset of H. If Assumption (A ) holds and the condition (ii) in Theorem 1 is satisfied,
then the problem (7) has a solution.

If K is a convex subset of H, and a mapping C : H → 2H is defined by

C(x) = K, for all x ∈ H. (25)

Then we obtain as the following result immediately.

COROLLARY 3. [19] Let K be a uniformly r -prox-regular closed subset of a
Hilbert space H. Let T : K → H be a strongly monotone and a Lipschitz continuous
mapping. If the condition (i′) in Theorem 1 is satisfied, then the problem (7) has a
solution.

In view of Remark 1 and Corollary 3, we also obtain the following result, as a
special case.

REMARK 6. In this paper, we not only give the conditions for the existence solu-
tions of the considered problem, but also provide the algorithm to find such solutions.
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COROLLARY 4. [25] Let H be a real Hilbert space and K be a closed convex
subset of H and T : H → H be a single-valued mapping. If T is a strongly monotone
and a Lipschitz continuous single-valued mapping, then the problem (7) has a solution.
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