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(Communicated by Yeol Je Cho)

Abstract. In this paper we consider (2n) -convex functions and completely convex functions.
Using Lidstone’s interpolating polynomials and conditions on Green’s functions we present re-
sults for Jensen’s inequality and converses of Jensen’s inequality for signed measure. By using
the obtained inequalities, we produce new exponentially convex functions. Finally, we give sev-
eral examples of the families of functions for which the obtained results can be applied.

1. Introduction

Let (Ω,A ,μ) be a measure space. The well-known Jensen inequality asserts that

f

( ∫
Ω pgdμ∫

Ω pdμ(x)

)
�
∫

Ω p f (g)dμ∫
Ω pdμ

, (1)

holds if f is a convex function on interval I ⊆ R , where g : Ω → I be a function from
L∞(μ) and p : Ω → R be a nonnegative function from L1(μ) , such that

∫
Ω pdμ �= 0.

If I = [α,β ] , where −∞ < α < β < +∞ , and function f is continuous, then the
converse of the integral Jensen’s inequality states∫

Ω p f (g)dμ∫
Ω pdμ

� f (α)
β − g
β −α

+ f (β )
g−α
β −α

, (2)

where g =
∫

Ω pgdμ∫
Ω pdμ (see [9] or [14]).

In [4], [11] and [12] authors obtained the generalization for real (signed) measure:

THEOREM 1. Let f : [α,β ]→R be convex, and g : [a,b]→ [α,β ] integrable with
respect to a real (signed) measure μ . If μ is such that

∫ b
a dμ(t) = 1 and

∫ b

a
GL(g(t),s)dμ(t) � 0, ∀s ∈ [α,β ], (3)
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then the inequality

∫ b

a
f (g(t))dμ(t) � f (α)

β − ∫ b
a g(t)dμ(t)
β −α

+ f (β )
∫ b
a g(t)dμ(t)−α

β −α
, (4)

holds, where the Lagrange Green’s function on [α,β ]× [α,β ] is defined by

GL(t,s) =

{ (α−s)(t−β )
α−β , s � t

− (β−s)(t−α)
β−α , s � t.

(5)

The reverse inequality in (3) implies the reverse inequality in (4).

Recently, in [13] the following generalization for m,M ∈ [α,β ] and Stieltjes mea-
sure dλ is done:

THEOREM 2. Let g : [a,b]→R be a continuous function and [α,β ] be an interval
such that the image of g is a subset of [α,β ] . Let m,M ∈ [α,β ] (m �= M) be such that
m � g(t) � M for all t ∈ [a,b] . Let λ : [a,b] → R be a continuous function or a
function of bounded variation, and λ (a) �= λ (b) . Then the following two statements
are equivalent:

(1) For every continuous convex function f : [α,β ] → R it holds

∫ b
a f (g(t))dλ (t)∫ b

a dλ (t)
� M−g

M−m
f (m)+

g−m
M−m

f (M).

(2) For all s ∈ [α,β ] it holds

∫ b
a GL(g(t),s)dλ (t)∫ b

a dλ (t)
� M−g

M−m
GL(m,s)+

g−m
M−m

GL(M,s),

where GL is Green’s function defined on [α,β ]× [α,β ] by (5), and

g =
∫ b
a g(x)dλ (x)∫ b

a dλ (x)
.

Also, in [13] authors established the following generalization of Jensen inequality
for Stieltjes measure dλ :

THEOREM 3. Let g : [a,b]→R be a continuous function and [α,β ] be an interval
such that the image of g is a subset of [α,β ] . Let λ : [a,b] → R be a continuous
function or a function of bounded variation, λ (a) �= λ (b) and g ∈ [α,β ] . Then the
following two statements are equivalent:

(1) For every continuous convex function f : [α,β ] → R it holds

f (g) �
∫ b
a f (g(t))dλ (t)∫ b

a dλ (t)
.
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(2) For all s ∈ [α,β ] it holds

GL(g,s) �
∫ b
a GL(g(t),s)dλ (t)∫ b

a dλ (t)
.

Lidstone series is a generalization of Taylor’s series. It approximates a given func-
tion in the neighborhood of two points (instead of one). Such series have been studied
by G. J. Lidstone (1929), H. Poritsky (1932), J. M. Wittaker (1934) and others.

DEFINITION 1. Let f ∈C∞([0,1]) , then the Lidstone series has the form

∞

∑
k=0

(
f (2k)(0)Λk(1− x)+ f (2k)(1)Λk(x)

)
,

where Λn is a polynomial of degree 2n+1 defined by the relations

Λ0(t) = t,

Λ′′
n(t) = Λn−1(t), (6)

Λn(0) = Λn(1) = 0, n � 1.

Other explicit representations of the Lidstone polynomial are given by [1] and
[17],

Λn(t) = (−1)n 2
π2n+1

∞

∑
k=1

(−1)k+1

k2n+1 sinkπt,

Λn(t) =
1
6

[
6t2n+1

(2n+1)!
− t2n−1

(2n−1)!

]
−

n−2

∑
k=0

2(22k+3−1)
(2k+4)!

B2k+4
t2n−2k−3

(2n−2k−3)!
, n = 1,2, . . . ,

Λn(t) =
22n+1

(2n+1)!
B2n+1

(
1+ t

2

)
, n = 1,2 . . . ,

where B2k+4 is the (2k + 4)-th Bernoulli number and B2n+1
( 1+t

2

)
is the Bernoulli

polynomial.
In [19], Widder proved the fundamental lemma:

LEMMA 1. If f ∈C(2n)([0,1]) , then

f (t) =
n−1

∑
k=0

[
f (2k)(0)Λk(1− t)+ f (2k)(1)Λk(t)

]
+
∫ 1

0
Gn(t,s) f (2n)(s)ds, (7)

where

G1(t,s) = G(t,s) =
{

(t−1)s, if s � t,
(s−1)t, if t � s,

(8)

is homogeneous Green’s function of the differential operator d2

ds2
on [0,1] , and with the

successive iterates of G(t,s)

Gn(t,s) =
∫ 1

0
G1(t, p)Gn−1(p,s)dp, n � 2. (9)
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The Lidstone polynomial can be expressed in terms of Gn(t,s) as

Λn(t) =
∫ 1

0
Gn(t,s)sds.

DEFINITION 2. Let f be a real-valued function defined on the segment [a,b] .
The divided difference of order n of the function f at distinct points x0, ...,xn ∈ [a,b]
is defined recursively (see [2], [14]) by

f [xi] = f (xi), (i = 0, . . . ,n)

and

f [x0, . . . ,xn] =
f [x1, . . . ,xn]− f [x0, . . . ,xn−1]

xn− x0
.

The value f [x0, . . . ,xn] is independent of the order of the points x0, . . . ,xn .
The definition may be extended to include the case that some (or all) of the points

coincide. Assuming that f ( j−1)(x) exists, we define

f [x, . . . ,x︸ ︷︷ ︸
j−times

] =
f ( j−1)(x)
( j−1)!

. (10)

The notion of n-convexity goes back to Popoviciu ([16]). We follow the definition
given by Karlin ([7]):

DEFINITION 3. A function f : [a,b]→ R is said to be n -convex on [a,b] , n � 0,
if for all choices of (n+1) distinct points in [a,b], the n -th order divided difference of
f satisfies

f [x0, ...,xn] � 0.

In fact, Popoviciu proved that each continuous n -convex function on [a,b] is the
uniform limit of the sequence of n -convex polynomials. Many related results, as well
as some important inequalities due to Favard, Berwald and Steffensen can be found in
[8].

Bernstein in [3] introduced the term absolutely monotonic function and completely
monotonic function. A function is absolutely monotonic on [a,b] if

f (k)(x) � 0, k = 0,1, . . .

and completely monotonic function on [a,b] if

(−1)k f (k)(x) � 0, k = 0,1, . . .

Many studies were made on the influence of the sign of the derivatives of a functions
on its analytic character.

Widder in [18] introduces the term of completely convex function:
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DEFINITION 4. A real function f is completely convex on the interval [a,b] if it
has derivatives of all orders and

(−1)k f (2k)(x) � 0, a � x � b; k = 0,1, . . .

For example, the functions sinx and cosx are completely convex on the intervals
[0,π ] and [− π

2 , π
2 ], respectively.

In [19], Widder showed that if f is a completely convex function on (a,b) then f
can be analytically extended to an entire function of exponential type at most π .

Further, he showed the close connection of completely convex function with Lid-
stone series, similar to the one that exists between the completely monotonic function
and the Taylor’s series:

THEOREM 4. If a real function f is completely convex on [α,β ] with (β −α)� 1
then

(i) there exists a positive number p < π such that f (n)(x) = O(pn) uniformly on
α � x � c, where c ∈ [α,β ] , (β − c) > 1 ,

(ii) and the equation

f (x) =
∞

∑
k=0

(β −α)2k
[

f (2k)(α)Λk

(
β − x
β −α

)
+ f (2k)(β )Λk

(
x−α
β −α

)]
(11)

holds.

We will also consider (2n)-completely convex function, (2n)-absolutely convex
function and (2n)-convex function:

DEFINITION 5. A real function f is (2n)-completely convex on the interval [α,β ]
if it has derivatives of orders i = 1,2, . . . ,2n and if

(−1)k f (2k)(x) � 0, α � x � β , k = 0,1, . . . ,n.

DEFINITION 6. A real function f is (2n)-absolutely convex on the interval [α,β ]
if it has derivatives of orders i = 1,2, . . . ,2n and if

f (2k)(x) � 0, α � x � β , k = 0,1, . . . ,n.

In this paper, we will obtain some new identities by using the Lidstone polynomi-
als. From these identities we find sufficient conditions on the corresponding Green’s
functions, on a real signed measure μ , under which generalizations of Jensen’s type
and conversed Jensen’s type inequality are valid. We will give a results for Theorem
2 and Theorem 3 for (2n)-completely convex function, (2n)-absolutely convex func-
tion and (2n)-convex function. Also, we give mean value theorems for the obtained
inequalities. We will deduce a method of producing n -exponentially convex functions
by using some known families of functions.
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2. Generalization of Jensen’s inequality by Lidstone’s polynomial

LEMMA 2. Let f : [α,β ] → R be of class C(2n) on [α,β ]. Let μ be a regular,
real (signed) Borel measure and let g : [a,b]→ R be integrable with respect to μ such

that g([a,b]) ⊆ [α,β ] and g =
∫ b
a g(t)dμ(t)∫ b

a dμ(t)
∈ [α,β ]. Then

f (g)−
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
(12)

=
n−1

∑
k=1

⎧⎨
⎩ f (2k)(α)(β −α)2k

⎡
⎣Λk

(
β −g
β −α

)
−
∫ b
a Λk

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦

+ f (2k)(β )(β −α)2k

⎡
⎣Λk

(
g−α
β −α

)
−
∫ b
a Λk

(
g(t)−α
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦
⎫⎬
⎭

+(β−α)2n−1
∫ β

α
f (2n)(s)

⎡
⎣Gn

(
g−α
β−α

,
s−α
β−α

)
−
∫ b
a Gn

(
g(t)−α
β−α , s−α

β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦ ds.

Proof. By Widder’s lemma we can represent every function f ∈ C(2n)([α,β ]) in
the form:

f (x) =
n−1

∑
k=0

(β −α)2k
[

f (2k)(α)Λk

(
β − x
β −α

)
+ f (2k)(β )Λk

(
x−α
β −α

)]

+(β −α)2n−1
∫ β

α
Gn

(
x−α
β −α

,
s−α
β −α

)
f (2n)(s)ds. (13)

The integration of the composition f ◦ g for the real measure μ on [a,b] gives

∫ b

a
f (g(t))dμ(t) (14)

=
n−1

∑
k=0

(β−α)2k
[

f (2k)(α)
∫ b

a
Λk

(
β−g(t)
β−α

)
dμ(t)+ f (2k)(β )

∫ b

a
Λk

(
g(t)−α
β−α

)
dμ(t)

]

+(β −α)2n−1
∫ β

α
f (2n)(s)

[∫ b

a
Gn

(
g(t)−α
β −α

,
s−α
β −α

)
dμ(t)

]
ds.

By using (13) we calculate f (g)

f (g) =
n−1

∑
k=0

(β −α)2k
[

f (2k)(α)Λk

(
β −g
β −α

)
+ f (2k)(β )Λk

(
g−α
β −α

)]

+(β −α)2n−1
∫ β

α
Gn

(
g−α
β −α

,
s−α
β −α

)
f (2n)(s)ds.
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By easy calculation we obtain the difference

f (g)−
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)

=
n−1

∑
k=0

⎧⎨
⎩ f (2k)(α)(β −α)2k

⎡
⎣Λk

(
β −g
β −α

)
−
∫ b
a Λk

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦

+ f (2k)(β )(β −α)2k

⎡
⎣Λk

(
g−α
β −α

)
−
∫ b
a Λk

(
g(t)−α
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦
⎫⎬
⎭

+(β−α)2n−1
∫ β

α
f (2n)(s)

⎡
⎣Gn

(
g−α
β−α

,
s−α
β−α

)
−
∫ b
a Gn

(
g(t)−α
β−α , s−α

β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦ ds.

Since ∫ b
a Λ0

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)
= Λ0

(
β −g
β −α

)
,

we obtain identity (12). �
Using Lemma 2 we can get the following generalization of Jensen’s inequality for

(2n)-convenx function:

THEOREM 5. Let n ∈ N , μ be a regular, real (signed)Borel measure and g :

[a,b]→R be integrablewith respect to μ such that g([a,b])⊆ [α,β ] and g =
∫ b
a g(t)dμ(t)∫ b

a dμ(t)
∈ [α,β ].

If for all s ∈ [α,β ]

Gn

(
g−α
β −α

,
s−α
β −α

)
�
∫ b
a Gn

(
g(t)−α
β−α , s−α

β−α

)
dμ(t)∫ b

a dμ(t)
, (15)

then for every (2n)-convex function f : [α,β ] → R

f (g) �
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
(16)

+
n−1

∑
k=1

⎧⎨
⎩ f (2k)(α)(β −α)2k

⎡
⎣Λk

(
β −g
β −α

)
−
∫ b
a Λk

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦

+ f (2k)(β )(β −α)2k

⎡
⎣Λk

(
g−α
β −α

)
−
∫ b
a Λk

(
g(t)−α
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦
⎫⎬
⎭ .

If the reverse inequality in (15) holds, then also the reverse inequality in (16) holds.
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REMARK 1. For n = 1 in Theorem 5 we obtain Theorem 3 for real (signed) mea-
sure. The following two statements are equivalent:

(1) For every continuous convex function f : [α,β ] → R it holds

f (g) �
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
.

(2) For all s ∈ [α,β ] it holds

G

(
g−α
β −α

,
s−α
β −α

)
�
∫ b
a G
(

g(t)−α
β−α , s−α

β−α

)
dμ(t)∫ b

a dμ(t)
.

We use the fact that the function G(·, s̃) , s̃ ∈ [0,1] is continuous and convex on [0,1].
Furthermore, the statements (1) and (2) are also equivalent if we change the sign

of both inequalities.

Using Lemma 2 we get the following result for (2n)-completely convex functions:

COROLLARY 1. Let n ∈ N , μ be a regular, real (signed) Borel measure and g :
[a,b] → R be integrable with respect to μ such that g([a,b]) ⊆ [α,β ] ((β −α) > 1)

and g =
∫ b
a g(t)dμ(t)∫ b

a dμ(t)
∈ [α,β ].

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]

(−1)kΛk

(
β −g
β −α

)
� (−1)k

∫ b
a Λk

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)
, (17)

(−1)kΛk

(
g−α
β −α

)
� (−1)k

∫ b
a Λk

(
g(t)−α
β−α

)
∫ b
a dμ(t)

and

(−1)nGn

(
g−α
β −α

,
s−α
β −α

)
� (−1)n

∫ b
a Gn

(
g(t)−α
β−α , s−α

β−α

)
dμ(t)∫ b

a dμ(t)
,

then for every (2n)-completely convex function f : [α,β ] → R it holds

f (g) �
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
. (18)

If the reverse inequalities in (17) hold, then also the reverse inequality in (18)
holds.

We can get similar result for (2n)-absolutely convex functions:
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COROLLARY 2. Let n,μ ,g be as in Theorem 1. If for all k = 1, . . . ,n−1 and for
all s ∈ [α,β ]

Λk

(
β −g
β −α

)
�
∫ b
a Λk

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)
, (19)

Λk

(
g−α
β −α

)
�
∫ b
a Λk

(
g(t)−α
β−α

)
∫ b
a dμ(t)

and

Gn

(
g−α
β −α

,
s−α
β −α

)
�
∫ b
a Gn

(
g(t)−α
β−α , s−α

β−α

)
dμ(t)∫ b

a dμ(t)
,

then for every (2n)-absolutely convex function f : [α,β ] → R it holds

f (g) �
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
. (20)

If the reverse inequalities in (19) hold, then also the reverse inequality in (20)
holds.

As a consequences of the above results, the following results for the left-hand side
of the generalized Hermite-Hadamard inequality hold:

COROLLARY 3. Let n ∈ N , μ be a regular, real (signed) Borel measure on the

interval [a,b] ⊆ [α,β ] and x =
∫ b
a xdμ(x)∫ b
a dμ(x)

∈ [α,β ].

If for all s ∈ [α,β ]

Gn

(
x−α
β −α

,
s−α
β −α

)
�
∫ b
a Gn

(
x−α
β−α , s−α

β−α

)
dμ(x)∫ b

a dμ(x)
, (21)

then for every (2n)-convex function f : [α,β ] → R

f (x) �
∫ b
a f (x)dμ(x)∫ b

a dμ(x)
(22)

+
n−1

∑
k=1

⎧⎨
⎩ f (2k)(α)(β −α)2k

⎡
⎣Λk

(
β − x
β −α

)
−
∫ b
a Λk

(
β−x
β−α

)
dμ(x)∫ b

a dμ(x)

⎤
⎦

+ f (2k)(β )(β −α)2k

⎡
⎣Λk

(
x−α
β −α

)
−
∫ b
a Λk

(
x−α
β−α

)
dμ(x)∫ b

a dμ(x)

⎤
⎦
⎫⎬
⎭ .

If the reverse inequality in (21) holds, then also the reverse inequality in (22) holds.
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COROLLARY 4. Let n ∈ N , μ be a regular, real (signed) Borel measure on the

interval [a,b] ⊆ [α,β ] and x =
∫ b
a xdμ(x)∫ b
a dμ(x)

∈ [α,β ].

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]

(−1)kΛk

(
β − x
β −α

)
� (−1)k

∫ b
a Λk

(
β−x
β−α

)
dμ(x)∫ b

a dμ(x)
, (23)

(−1)kΛk

(
x−α
β −α

)
� (−1)k

∫ b
a Λk

(
x−α
β−α

)
dμ(x)∫ b

a dμ(x)

and

(−1)nGn

(
x−α
β −α

,
s−α
β −α

)
� (−1)n

∫ b
a Gn

(
x−α
β−α , s−α

β−α

)
dμ(x)∫ b

a dμ(x)
,

then for every (2n)-completely convex function f : [α,β ] → R it holds

f (x) �
∫ b
a f (x)dμ(x)∫ b

a dμ(x)
. (24)

If the reverse inequalities in (23) hold, then also the reverse inequality in (24)
holds.

COROLLARY 5. Let n ∈ N , μ be a regular, real (signed) Borel measure on the

interval [a,b] ⊆ [α,β ] and x =
∫ b
a xdμ(x)∫ b
a dμ(x)

∈ [α,β ].

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]

Λk

(
β − x
β −α

)
�
∫ b
a Λk

(
β−x
β−α

)
dμ(x)∫ b

a dμ(x)
, (25)

Λk

(
x−α
β −α

)
�
∫ b
a Λk

(
x−α
β−α

)
dμ(x)∫ b

a dμ(x)

and

Gn

(
x−α
β −α

,
s−α
β −α

)
�
∫ b
a Gn

(
x−α
β−α , s−α

β−α

)
dμ(x)∫ b

a dμ(x)
,

then for every (2n)-absolutely convex function f : [α,β ] → R it holds

f (x) �
∫ b
a f (x)dμ(x)∫ b

a dμ(x)
. (26)

If the reverse inequalities in (25) hold, then also the reverse inequality in (26)
holds.
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3. Generalization of converses of Jensen’s inequality by Lidstone’s polynomial

We will use the following notation for composition of functions:

Λk

(
x−α
β −α

)
= Λ̃k(x), x ∈ [α,β ], k = 0,1, . . . ,n−1, (27)

Λk

(
β − x
β −α

)
= Λ̂k(x), x ∈ [α,β ], k = 0,1, . . . ,n−1, (28)

Gn

(
x−α
β −α

,
s−α
β −α

)
= G̃n(x,s), x,s ∈ [α,β ], n � 1. (29)

Let μ be a regular, real (signed) Borel measure and let g : [a,b]→ R be integrable
with respect to μ such that g([a,b]) ⊆ [m,M] ⊆ [α,β ] . For a function F : [α,β ] → R

denote by LR(F,g,m,M,μ)

LR(F,g,m,M,μ) =
∫ b
a F(g(t))dμ(t)∫ b

a dμ(t)
− M−g

M−m
F(m)− g−m

M−m
F(M) (30)

where g =
∫ b
a g(t)dμ(t)∫ b

a dμ(t)
.

LEMMA 3. Let f : [α,β ] → R be of class C(2n) on [α,β ]. Let μ be a regular,
real (signed) Borel measure and let g : [a,b] → R be integrable with respect to μ and
such that g([a,b])⊆ [m,M] ⊆ [α,β ] . Then

LR( f ,g,m,M,μ) (31)

=
n−1

∑
k=1

[
f (2k)(α)(β−α)2k ·LR(Λ̂k,g,m,M,μ)+ f (2k)(β )(β−α)2k ·LR(Λ̃k,g,m,M,μ)

]

+(β −α)2n−1
∫ β

α
f (2n)(s)[LR(G̃n(·,s),g,m,M,μ)]ds

Proof. We use Widder’s Lemma for representation of function in the form:

f (x) =
n−1

∑
k=0

(β −α)2k
[
f (2k)(α)Λ̂k(x)+ f (2k)(β )Λ̃k(x)

]

+(β −α)2n−1
∫ β

α
G̃n(x,s) f (2n)(s)ds. (32)

Using the above representation, for f ∈C(2n)[α,β ] we can calculate f (m) and f (M) :

f (m) =
n−1

∑
k=0

(β −α)2k
[
f (2k)(α)Λ̂k(m)+ f (2k)(β )Λ̃k(m)

]

+(β −α)2n−1
∫ β

α
G̃n(m,s) f (2n)(s)ds,
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f (M) =
n−1

∑
k=0

(β −α)2k
[
f (2k)(α)Λ̂k(M)+ f (2k)(β )Λ̃k(M)

]

+(β −α)2n−1
∫ β

α
G̃n(M,s) f (2n)(s)ds.

We can easily calculate the difference LR( f ,g,m,M,μ) defined by (30):

LR( f ,g,m,M,μ)

=
n−1

∑
k=0

[
f (2k)(α)(β −α)2k ·LR(Λ̂k,g,m,M,μ)+ f (2k)(β )(β −α)2k ·LR(Λ̃k,g,m,M,μ)

]

+(β −α)2n−1
∫ β

α
f (2n)(s)[LR(G̃n(·,s),g,m,M,μ)]ds.

Since LR(Λ̂0,g,m,M,μ) = 0, LR(Λ̃0,g,m,M,μ) = 0 we obtain (31). �

REMARK 2. For n = 1 in Lemma 3 we obtain the identity from [13] for regular
real measure μ :∫ b

a f (g(t))dμ(t)∫ b
a dμ(t)

− M−g
M−m

f (m)− g−m
M−m

f (M)

= (β −α)
∫ β

α
f ′′(s)

[∫ b
a G̃(g(t),s)dμ(t)∫ b

a dμ(t)
− M−g

M−m
G̃(m,s)− g−m

M−m
G̃(M,s)

]
ds.

Using Lemma 3 we can get the following generalization of converse of Jensen’s
inequality for (2n)-convex function:

THEOREM 6. Let n ∈ N , μ be a regular, real (signed) Borel measure and g :
[a,b]→R be integrable function with respect to μ such that g([a,b])⊆ [m,M]⊆ [α,β ] .

Let g =
∫ b
a g(t)dμ(t)∫ b

a dμ(t)
.

If for all s ∈ [α,β ]∫ b
a G̃n(g(t),s)dμ(t)∫ b

a dμ(t)
� M−g

M−m
G̃n(m,s)+

g−m
M−m

G̃n(M,s), (33)

then for every (2n)-convex function f : [α,β ] → R it holds∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
� M−g

M−m
f (m)+

g−m
M−m

f (M) (34)

+
n−1

∑
k=1

[
f (2k)(α)(β−α)2k ·LR(Λ̂k,g,m,M,μ)+ f (2k)(β )(β−α)2k ·LR(Λ̃k,g,m,M,μ)

]
.

If the reverse inequalities in (33) hold, then also the reverse inequality in (34)
holds.
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REMARK 3. For n = 1 in Theorem 6 we obtain result in Theorem 2 for real
(signed) measure μ . The following two statements are equivalent:

(1) For every continuous convex function f : [α,β ] → R it holds

∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
� M−g

M−m
f (m)+

g−m
M−m

f (M),

(2) for all s ∈ [α,β ] it holds

∫ b
a G̃(g(t),s)dμ(t)∫ b

a dμ(t)
� M−g

M−m
G̃(m,s)+

g−m
M−m

G̃(M,s).

Furthermore, the statements (1) and (2) are also equivalent if we change the sign
of both inequalities.

We use the fact that the function G̃(·,s), s ∈ [α,β ] is continuous and convex on
[α,β ] .

Setting m = α and M = β and
∫ b
a dμ(t) = 1 in Theorem 6 we got the corollary

as in [11]:

COROLLARY 6. Let f : [α,β ] → R be (2n)-convex function on [α,β ]. Let μ be
a regular, real (signed) Borel measure and g : [a,b]→ [α,β ] integrable with respect to
μ . If ∫ b

a
Gn

(
g(t)−α
β −α

,s

)
dμ(t) � 0, ∀s ∈ [0,1], (35)

then

∫ b

a
f (g(t))dμ(t) �

n−1

∑
k=0

(β −α)2k
[

f (2k)(α)
∫ b

a
Λk

(
β −g(t)
β −α

)
dμ(t)

+ f (2k)(β )
∫ b

a
Λk

(
g(t)−α
β −α

)
dμ(t)

]
. (36)

If the reverse inequality in (35) holds, then also the reverse inequality in (36) holds.

Using Lemma 3 we get the following generalization for (2n)-completely convex
functions:

COROLLARY 7. Let n ∈ N , μ be a regular, real (signed) Borel measure and g :
[a,b] → R be an integrable function with respect to measure μ such that g([a,b]) ⊆
[m,M] ⊂ [α,β ] and ((β −α) > 1) . Let g =

∫ b
a g(t)dμ(t)∫ b

a dμ(t)
.

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]

(−1)k

∫ b
a Λ̂k(g(t))dμ(t)∫ b

a dμ(t)
� (−1)k

[
M−g
M−m

Λ̂k(m)+
g−m
M−m

Λ̂k(M)
]
, (37)
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(−1)k

∫ b
a Λ̃k(g(t))dμ(t)∫ b

a dμ(t)
� (−1)k

[
M−g
M−m

Λ̃k(m)+
g−m
M−m

Λ̃k(M)
]

and

(−1)k

∫ b
a G̃n(g(t),s)dμ(t)∫ b

a dμ(t)
� (−1)k

[
M−g
M−m

G̃n(m,s)+
g−m
M−m

G̃n(M,s)
]
,

then for every (2n)-completely convex function f : [α,β ] → R it holds∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
� M−g

M−m
f (m)+

g−m
M−m

f (M). (38)

If the reverse inequalities in (37) hold, then also the reverse inequality in (38) hold.

Proof. For any n � 1, using the representation (32) for (2n)-completely convex
in a form

f (x) =
n−1

∑
k=0

(β −α)2k[(−1)k f (2k)(α)(−1)kΛ̂k(x)+ (−1)k f (2k)(β )(−1)kΛ̃k(x)]

+(β −α)2n−1
∫ β

α
(−1)nG̃n(x,s)(−1)n f (2n)(s)ds,

we can calculate the difference∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
− M−g

M−m
f (m)− g−m

M−m
f (M)

=
n−1

∑
k=1

(−1)k f (2k)(α)(β −α)2k · (−1)kLR(Λ̂k,g,m,M,μ)

+(−1)k f (2k)(β )(β −α)2k · (−1)kLR(Λ̃k,g,m,M,μ)

+(β −α)2n−1
∫ β

α
(−1)n f (2n)(s)[(−1)nLR(G̃n(·,s),g,m,M,μ)]ds.

By definition of (2n)-completely convex function the proof is done. �
Using Lemma 3 we get the following generalization for (2n)-absolutely com-

pletely convex function:

COROLLARY 8. Let n ∈ N and μ be a regular, real (signed) Borel measure and
g : [a,b] → R be integrable function with respect to measure μ such that g([a,b]) ⊆
[m,M] ⊂ [α,β ] and ((β −α) > 1) . Let g =

∫ b
a g(t)dμ(t)∫ b

a dμ(t)
.

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]∫ b
a Λ̂k(g(t))dμ(t)∫ b

a dμ(t)
� M−g

M−m
Λ̂k(m)+

g−m
M−m

Λ̂k(M), (39)
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∫ b
a Λ̃k(g(t))dμ(t)∫ b

a dμ(t)
� M−g

M−m
Λ̃k(m)+

g−m
M−m

Λ̃k(M)

and ∫ b
a G̃n(g(t),s)dμ(t)∫ b

a dμ(t)
� M−g

M−m
G̃n(m,s)+

g−m
M−m

G̃n(M,s),

then for every (2n)-absolutely convex function f : [α,β ] → R it holds∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
� M−g

M−m
f (m)+

g−m
M−m

f (M). (40)

If the reverse inequalities in (39) hold, then also the reverse inequality in (40) hold.

As a consequence of the above results, the following results for the right-hand side
of generalized Hermite-Hadamard inequality hold:

COROLLARY 9. Let n ∈ N , μ be a regular, real (signed) Borel measure on inter-

val [a,b] ⊆ [α,β ] and x =
∫ b
a xdμ(x)∫ b
a dμ(x)

. If for all s ∈ [α,β ]

∫ b
a G̃n(x,s)dμ(x)∫ b

a dμ(x)
� b− x

b−a
G̃n(a,s)+

x−a
b−a

G̃n(b,s), (41)

then for every (2n)-convex function f : [α,β ] → R it holds∫ b
a f (x)dμ(x)∫ b

a dμ(x)
� b− x

b−a
f (a)+

x−a
b−a

f (b) (42)

+
n−1

∑
k=1

[
f (2k)(α)(β−α)2k ·LR(Λ̂k, id,a,b,μ)+ f (2k)(β )(β−α)2k ·LR(Λ̃k, id,a,b,μ)

]
.

If the reverse inequalities in (41) hold, then also the reverse inequality in (43)
holds.

Using Lemma 3 we get the following generalization for (2n)-completely convex
functions:

COROLLARY 10. Let n ∈ N , μ be a regular, real (signed) Borel measure on in-

terval [a,b]⊆ [α,β ] and x =
∫ b
a xdμ(x)∫ b
a dμ(x)

.

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]

(−1)k

∫ b
a Λ̂k(x)dμ(t)∫ b

a dμ(x)
� (−1)k

[
b− x
b−a

Λ̂k(m)+
x−a
b−a

Λ̂k(b)
]
, (43)

(−1)k

∫ b
a Λ̃k(x)dμ(x)∫ b

a dμ(x)
� (−1)k

[
b− x
b−a

Λ̃k(a)+
x−a
b−a

Λ̃k(b)
]
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and

(−1)k

∫ b
a G̃n(x,s)dμ(x)∫ b

a dμ(x)
� (−1)k

[
b− x
b−a

G̃n(a,s)+
x−a
b−a

G̃n(b,s)
]
,

then for every (2n)-completely convex function f : [α,β ] → R it holds∫ b
a f (x)dμ(x)∫ b

a dμ(x)
� b− x

b−a
f (a)+

x−a
b−a

f (b). (44)

If the reverse inequalities in (43) hold, then also the reverse inequality in (44)
holds.

Using Lemma 3 we get the following generalization for (2n)-absolutely convex
functions:

COROLLARY 11. Let n ∈ N , μ be a regular, real (signed) Borel measure on in-

terval [a,b]⊆ [α,β ] and x =
∫ b
a xdμ(x)∫ b
a dμ(x)

.

If for all k = 1, . . . ,n−1 and for all s ∈ [α,β ]∫ b
a Λ̂k(x)dμ(t)∫ b

a dμ(x)
� b− x

b−a
Λ̂k(m)+

x−a
b−a

Λ̂k(b), (45)

∫ b
a Λ̃k(x)dμ(x)∫ b

a dμ(x)
� b− x

b−a
Λ̃k(a)+

x−a
b−a

Λ̃k(b)

and ∫ b
a G̃n(x,s)dμ(x)∫ b

a dμ(x)
� b− x

b−a
G̃n(a,s)+

x−a
b−a

G̃n(b,s),

then for every (2n)-absolutely convex function f : [α,β ] → R it holds∫ b
a f (x)dμ(x)∫ b

a dμ(x)
� b− x

b−a
f (a)+

x−a
b−a

f (b). (46)

If the reverse inequalities in (45) hold, then also the reverse inequality in (46)
holds.

4. n -exponential convexity of Jensen’s inequality by Lidstone’s polynomial

Motivated by the inequalities (16) and (34), we define functionals Φ1( f ) and
Φ2( f ) by

Φ1( f ) = f (g)−
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
(47)

−
n−1

∑
k=1

⎧⎨
⎩ f (2k)(α)(β −α)2k

⎡
⎣Λk

(
β −g
β −α

)
−
∫ b
a Λk

(
β−g(t)
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦
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+ f (2k)(β )(β −α)2k

⎡
⎣Λk

(
g−α
β −α

)
−
∫ b
a Λk

(
g(t)−α
β−α

)
dμ(t)∫ b

a dμ(t)

⎤
⎦
⎫⎬
⎭

and

Φ2( f ) =
∫ b
a f (g(t))dμ(t)∫ b

a dμ(t)
− M−g

M−m
f (m)− g−m

M−m
f (M) (48)

−
n−1

∑
k=1

[
f (2k)(α)(β−α)2k ·LR(Λ̂k,g,m,M,μ)+ f (2k)(β )(β−α)2k ·LR(Λ̃k,g,m,M,μ)

]
.

THEOREM 7. Let μ be a regular, real (signed) Borel measure and f : [α,β ]→R ,
f ∈C2n([α,β ]) . Let g : [a,b]→R be integrable with respect to μ such that g([a,b])⊆
[α,β ] and g =

∫ b
a g(t)dμ(t)∫ b

a dμ(t)
∈ [α,β ]. If for all s ∈ [α,β ] the reverse inequalities in (15)

and (33) hold, then there exists ξ ∈ [α,β ] such that

Φi( f ) = f (2n)(ξ )Φi(ϕ), i = 1,2, (49)

where ϕ(x) = x2n

(2n)! .

Proof. Let us denote m = min f (2n) and M = max f (2n) . We first consider the

following function φ1(x) = Mx2n

(2n)! − f (x) . Then φ (2n)
1 (x) = M− f (2n)(x) � 0, x∈ [α,β ] ,

so φ1 is a (2n)-convex function. Similarly, a function φ2(x) = f (x)− mx2n

(2n)! is a (2n)-
convex function. Now, we use inequalities from Theorem 5 and Theorem 7 for (2n)-
convex functions φ1 and φ2 . So, we can conclude that there exists ξ ∈ [α,β ] that we
are looking for in (49). �

COROLLARY 12. Let f ,h : [α,β ] → R such that f ,h ∈ C2n([α,β ]) . If for all
s ∈ [α,β ] the reverse inequalities in (15) and (33) hold, then there exists ξ ∈ [α,β ]
such that

Φi( f )
Φi(h)

=
f (2n)(ξ )
h(2n)(ξ )

, i = 1,2, (50)

provided that the denominator of the left-hand side is non-zero.

Proof. We use the following standard technique: Let us define the linear functional
L(χ) = Φi(χ), i = 1,2. Next, we define χ(t) = f (t)L(h)− h(t)L( f ) . According to
Theorem 7, applied on χ , there exists ξ ∈ (α,β ) so that

L(χ) = χ (2n)(ξ )Φi(ϕ), ϕ(x) =
x2n

(2n)!
, i = 1,2.

From L(χ) = 0, it follows f (2n)(ξ )L(h)−h(2n)(ξ )L( f ) = 0 and (50) is proved. �
Now, let us recall some definitions and facts about exponentially convex functions

(see [6]):
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DEFINITION 7. A function ψ : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ j ψ
(

xi + x j

2

)
� 0,

hold for all choices ξ1, . . . ,ξn ∈ R and all choices x1, . . . ,xn ∈ I .
A function ψ : I → R is n -exponentially convex if it is n -exponentially convex in

the Jensen sense and continuous on I .

REMARK 4. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, n -exponentially convex
function in the Jensen sense are k -exponentially convex in the Jensen sense for every
k ∈ N, k � n .

By definition of positive semi-definite matrices and some basic linear algebra we
have the following proposition:

PROPOSITION 1. If ψ is an n -exponentially convex in the Jensen sense, then the

matrix
[
ψ
(

xi+x j
2

)]k
i, j=1

is positive semi-definite matrix for all k ∈ N, k � n . Particu-

larly, det
[
ψ
(

xi+x j
2

)]k
i, j=1

� 0 for all k ∈ N, k � n.

DEFINITION 8. A function ψ : I →R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function ψ : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 5. It is known (and easy to show) that ψ : I → R is a log-convex in the
Jensen sense if and only if

α2ψ(x)+2αβ ψ
(

x+ y
2

)
+ β 2ψ(y) � 0

holds for every α,β ∈ R and x,y ∈ I . It follows that a function is log-convex in the
Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

We use an idea from [6] to give an elegant method of producing an n -exponentially
convex functions and exponentially convex functions applying the above functionals on
a given family with the same property (see [15]):

THEOREM 8. Let ϒ = { fs : s ∈ J} , where J an interval in R , be a family of
functions defined on an interval [α,β ] in R , such that the function s 
→ fs[z0, . . . ,z2l ]
is n-exponentially convex in the Jensen sense on J for every (2l +1) mutually different
points z0, . . . ,z2l ∈ [α,β ] . Let Φi( f ), i = 1,2 be linear functional defined as in (47)
and (48). Then s 
→ Φi( fs) is an n-exponentially convex function in the Jensen sense
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on J . If the function s 
→ Φi( fs) is continuous on J, then it is n-exponentially convex
on J .

Proof. For ξi ∈ R, i = 1, . . . ,n and si ∈ J, i = 1, . . . ,n , we define the function

h(z) =
n

∑
i, j=1

ξiξ j f si+s j
2

(z).

Using the assumption that the function s 
→ fs[z0, . . . ,z2l ] is n -exponentially convex in
the Jensen sense, we have

h[z0, . . . ,z2l ] =
n

∑
i, j=1

ξiξ j f si+s j
2

[z0, . . . ,z2l] � 0,

which in turn implies that h is a (2l)-convex function on J , so it is Φk(h) � 0, hence

n

∑
i, j=1

ξiξ jΦk

(
f si+s j

2

)
� 0.

We conclude that the function s 
→ Φk( fs) is n -exponentially convex on J in the Jensen
sense.

If the function s 
→ Φk( fs) is also continuous on J , then s 
→ Φk( fs) is n -expo-
nentially convex by definition. �

The following corollaries are an immediate consequences of the above theorem:

COROLLARY 13. Let ϒ = { fs : s ∈ J} , where J an interval in R , be a family of
functions defined on an interval [α,β ] in R , such that the function s 
→ fs[z0, . . . ,z2l ]
is exponentially convex in the Jensen sense on J for every (2l + 1) mutually different
points z0, . . . ,z2l ∈ [α,β ] . Let Φi( f ), i = 1,2 be linear functional defined as in (47)
and (48). Then s 
→ Φi( fs) is an exponentially convex function in the Jensen sense on
J . If the function s 
→ Φi( fs) is continuous on J, then it is exponentially convex on J .

COROLLARY 14. Let ϒ = { fs : s ∈ J} , where J an interval in R , be a family of
functions defined on an interval [α,β ] in R , such that the function s 
→ fs[z0, . . . ,z2l ]
is 2 -exponentially convex in the Jensen sense on J for every (2l +1) mutually different
points z0, . . . ,z2l ∈ [α,β ] . Let Φi( f ), i = 1,2 be linear functional defined as in (47)
and (48). Then the following statements hold:

(i) If the function s 
→ Φi( fs) is continuous on J , then it is 2 -exponentially convex
function on J . If s 
→ Φi( fs) is additionally strictly positive, then it is also log-
convex on J . Furthermore, the following inequality holds true:

[Φi( fs)]t−r � [Φi( fr)]
t−s [Φi( ft )]

s−r (51)

for every choice r,s,t ∈ J , such that r < s < t .
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(ii) If the function s 
→ Φi( fs) is strictly positive and differentiable on J, then for
every s,q,u,v ∈ J , such that s � u and q � v, we have

μs,q(g,Φi,ϒ) � μu,v(g,Φi,ϒ), (52)

where

μs,q(g,Φi,ϒ) =

⎧⎪⎨
⎪⎩
(

Φi( fs)
Φi( fq)

) 1
s−q

, s �= q,

exp

(
d
ds Φi( fs)
Φi( fq)

)
, s = q,

(53)

for fs, fq ∈ ϒ .

Proof.

(i) This is an immediate consequence of Theorem 8 and Remark 5.

(ii) Since by (i) the function s 
→ Φi( fs) is log-convex on J , that is, the function
s 
→ logΦi( fs) is convex on J . So, we get

logΦi( fs)− logΦi( fq)
s−q

� logΦi( fu)− logΦi( fv)
u− v

(54)

for s � u,q � v,s �= q,u �= v , and there form conclude that

μs,q(g,Φi,ϒ) � μu,v(g,Φi,ϒ).

Cases s = q and u = v follows from (54) as limit cases. �

REMARK 6. Note that the results from above theorem and corollaries still hold
when two of the points z0, . . . ,z2l ∈ [α,β ] coincide, say z1 = z0 , for a family of dif-
ferentiable functions fs such that the function s 
→ fs[z0, . . . ,z2l] is n -exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the
Jensen sense), and furthermore, they still hold when all (2l + 1) points coincide for a
family of 2l differentiable functions with the same property. The proofs are obtained
by (10) and suitable characterization of convexity.

5. Applications to Stolarsky type means

In this section, we present several families of functions which fulfil the conditions
of Theorem 8, Corollary 13, Corollary 14 and Remark 6. This enable us to construct a
large families of functions which are exponentially convex. For a discussion related to
this problem see [5].

EXAMPLE 1. Consider a family of functions

Ω1 = {ls : R → [0,∞) : s ∈ R}
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defined by

ls(x) =

{
esx

s2n , s �= 0,
x2n

(2n)! , s = 0.

We have d2nls
dx2n (x) = esx > 0 which shows that ls is (2n)-convex on R for every s ∈ R

and s 
→ d2nls
dx2n (x) is exponentially convex by definition. Using analogous arguing as

in the proof of Theorem 8 we also have that s 
→ ls[z0, . . . ,z2n] is exponentially convex
(and so exponentially convex in the Jensen sense). Using Corollary 13 we conclude that
s 
→ Φi(ls), i = 1,2 are exponentially convex in the Jensen sense. It is easy to verify that
this mapping is continuous (although mapping s 
→ ls is not continuous for s = 0), so
it is exponentially convex.

For this family of functions, μs,q(g,Φi,Ω1), i = 1,2 from (53), becomes

μs,q(g,Φi,Ω1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Φi(ls)
Φi(lq)

) 1
s−q

, s �= q,

exp
(

Φi(id·ls)
Φi(ls)

− 2n
s

)
, s = q �= 0,

exp
(

1
2n+1

Φi(id·l0)
Φi(l0)

)
, s = q = 0.

Now, using (52) it is monotonous function in parameters s and q .

We observe here that

(
d2nls
dx2n

d2nlq
dx2n

) 1
s−q

(lnx) = x so using Corollary 12 it follows that:

Ms,q(g,Φi,Ω1) = lnμs,q(g,Φi,Ω1), i = 1,2

satisfy
α � Ms,q(g,Φi,Ω1) � β , i = 1,2.

If we set that the image of the function g is [α,β ] , we have that

α = min
t∈[a,b]

{g(t)} � Ms,q(g,Φi,Ω1) � max
t∈[a,b]

{g(t)} = β , i = 1,2,

which shows that Ms,q(g,Φi,Ω1) are means of g(t) for i = 1,2. Because of above
inequality, this mean is also monotonic.

EXAMPLE 2. Consider a family of functions

Ω2 = { fs : (0,∞) → R : s ∈ R}
defined by

fs(x) =

{
xs

s(s−1)···(s−2n+1) , s /∈ {0,1, . . . ,2n−1}
x j lnx

(−1)2n−1− j j!(2n−1− j)! , s = j ∈ {0,1, . . . ,2n−1}.

Here, d2n fs
dx2n (x) = xs−2n = e(s−2n) lnx > 0 which shows that fs is (2n)-convex for x > 0

and s 
→ d2n fs
dx2n (x) is exponentially convex by definition. Arguing as in Example 1 we
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get that the mappings s 
→ Φi( fs) , i = 1,2 are exponentially convex. In this case we
assume that [α,β ] ∈ R

+ . Function (53) now is equal to:

μs,q(g,Φi,Ω2)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Φi( fs)
Φi( fq)

) 1
s−q

, s �= q,

exp
(
−(2n−1)!Φi( f0 fs)

Φi( fs)
+ ∑2n−1

k=0
1

k−s

)
, s = q /∈ {0,1, . . . ,2n−1},

exp

(
−(2n−1)!Φi( f0 fs)

2Φi( fs)
+ ∑2n−1

k=0
k �=s

1
k−s

)
, s = q ∈ {0,1, . . . ,2n−1}.

We observe that

(
d2n fs
dx2n

d2n fq
dx2n

) 1
s−q

(x) = x , so if Φi(i = 1,2) are positive, then Corollary

12 yield that there exist some ξi ∈ [α,β ], i = 1,2 such that

ξ s−q
i =

Φi( fs)
Φi( fq)

, i = 1,2.

Since the function ξ → ξ s−q is invertible for s �= q , we then have

α �
(

Φi( fs)
Φi( fq)

) 1
s−q

� β , i = 1,2. (55)

As in the previous example, if we set that the image of the function g is [α,β ] , in that
case we have that

α = min
t∈[a,b]

g(t) �
(

Φi( fs)
Φi( fq)

) 1
s−q

� max
t∈[a,b]

g(t) = β , i = 1,2, (56)

which shows that μs,q(g,Φi,Ω2) , i = 1,2 is mean.
Now, we impose one additional parameter r . For r �= 0 by substituting g →

gr,s → s
r and q → q

r in (56), we get the following:

min
t∈[a,b]

(g(t))r �
(

Φi(gr, ·, fs)
Φi(gr, ·, fq)

) r
s−q

� max
t∈[a,b]

(g(t))r, i = 1,2. (57)

We define new generalized mean as follows:

μs,q;r(g,Φi,Ω2) =

⎧⎨
⎩
(

μ s
r , q

r
(gr,Φi,Ω2)

) 1
r
, r �= 0,

μs,q(lng,Φi,Ω2), r = 0.
(58)

This new generalized mean is also monotonic. If s,q,u,v ∈ R,r �= 0 such that s �
u,q � v , then we have

μs,q;r(g,Φi,Ω2) � μu,v;r(g,Φi,Ω2), i = 1,2.
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The above result follows from the following inequality:

μ s
r , q

r
(gr,Φi,Ω2) =

(
Φi(gr, ·, fs)
Φi(gr, ·, fq)

) r
s−q

�
(

Φi(gr, ·, fs)
Φi(gr, ·, fq)

) r
u−v

= μ u
r , v

r
(gr,Φi,Ω2),

for s,q,u,v ∈ R,r �= 0, such that s
r � u

r ,
q
r � v

r , and the fact that μs,q(g,Φi,Ω2) for
i = 1,2 is monotonous in both parameters. For r = 0, we obtain the required result by
taking the limit r → 0.

EXAMPLE 3. Consider a family of functions

Ω3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

hs(x) =

{
s−x

(ln s)2n , s �= 1
x2n

(2n)! , s = 1.

Since d2nhs
dx2n (x) = s−x is the Laplace transform of a non-negative function (see [20]) it

is exponentially convex. Obviously hs are (2n)-convex functions for every s > 0. For
this family of functions, μs,q(g,Φi,Ω3), i = 1,2, in this case for [α,β ] ∈ R

+ , from
(53) becomes

μs,q(g,Φi,Ω3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Φi(hs)
Φi(hq)

) 1
s−q

, s �= q,

exp
(
−Φi(id·hs)

sΦi(hs)
− 2n

s lns

)
, s = q �= 1,

exp
(
− 1

2n+1
Φi(id·h1)

Φi(h1)

)
, s = q = 1.

This is monotonous function in parameters s and q by (52).
Using Corollary 12 it follows that

Ms,q(Φi,Ω3) = −L(s,q) lnμs,q(Φi,Ω3), i = 1,2

satisfy
α � Ms,q(Φi,Ω3) � β , i = 1,2.

As in the previous examples, if we set that the image of the function g is [α,β ] , in that
case we have that

α = min
t∈[a,b]

g(t) � Ms,q(Φi,Ω3) � max
t∈[a,b]

g(t) = β , i = 1,2.

So Ms,q(Φi,Ω3) is mean of g(t) for i = 1,2 and also monotonic. L(s,q) is logarithmic
mean defined by

L(s,q) =

{
s−q

log s−logq , s �= q

s, s = q.
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EXAMPLE 4. Consider a family of functions

Ω4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

ks(x) =
e−x

√
s

sn .

Since d2nks
dx2n (x) = e−x

√
s is the Laplace transform of a non-negative function (see [20]) it

is exponentially convex. Obviously ks are (2n)-convex functions for every s > 0. For
this family of functions, μs,q(g,Φi,Ω4), i = 1,2, in this case for [α,β ]∈ R

+ , from (53)
becomes

μs,q(g,Φi,Ω4) =

⎧⎪⎨
⎪⎩
(

Φi(ks)
Φi(kq)

) 1
s−q

, s �= q,

exp
(
− Φi(id·ks)

2
√

sΦi(ks)
− n

s

)
, s = q.

This is monotonous function in parameters s and q by (52).
Using Corollary 12 it follows that

Ms,q(Φi,Ω4) = −(
√

s+
√

q) lnμs,q(Φi,Ω4), i = 1,2

satisfy
α � Ms,q(Φi,Ω4) � β , i = 1,2.

As in the previous examples, if we set that the image of the function g is [α,β ] ,
in that case we have that

α = min
t∈[a,b]

g(t) � Ms,q(Φi,Ω4) � max
t∈[a,b]

g(t) = β , i = 1,2.

So Ms,q(Φi,Ω4) is mean of g(t) for i = 1,2 and also monotonic.
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